Tag Archives: steelmaking

Mitsui and Rio Tinto to explore low-emission supply chain options

Mitsui & Co has signed a memorandum of understanding (MoU) with Rio Tinto to jointly explore opportunities for reducing emissions and transforming the world’s supply chains.

Under the MoU, Mitsui and Rio Tinto will work closely together to examine more sustainable measures such as reducing the carbon content of raw materials for iron and steel production; developing new renewable energy; supplying alternative fuels such as ammonia, methanol and hydrogen; decarbonisation in marine transportation; decarbonisation of mobility at mining sites; and initiatives like nature-based solutions, carbon credits and others.

The new partnership builds on Mitsui and Rio Tinto’s long history of collaboration, stretching back to the beginnings of the Robe River Joint Venture in Western Australia, which this year celebrated 50 years of iron ore shipments to Japan. The MoU combines Mitsui’s vast network, assets and accumulated industry knowledge with Rio Tinto’s grand-scale supply chain and leading position in the mining & metal industry, the companies said.

Metso Outotec to develop hydrogen-based DRI pilot plant in Germany

Metso Outotec says it will convert its existing 700 mm circulating fluidised bed (CFB) pilot plant in Frankfurt, Germany, for hydrogen-based direct reduction of fine ore as it looks to further drive down carbon emissions associated with the iron-making part of steel production.

The company will apply its Planet Positive Circored™ technology as part of this process, with the pilot plant able able to be used for the reduction of high-grade iron fines concentrate and to confirm the design basis for an industrial-scale Circored plant.

Commissioning of the plant is expected to take place by December 2023.

Parizat Pandey, Director, Direct Reduced Iron (DRI) at Metso Outotec, said: “The investment enables us to pilot the reduction of low-grade iron concentrate fines in larger quantities than what we do today, and, subsequently, perform downstream fines DRI electric smelting tests for hot metal production.

“The Circored processing route used in the process offers the lowest possible carbon footprint in the iron-making segment of an integrated steel plant.”

Once operational, the 700 mm pilot plant will be able to continuously produce 150-200 kg/h of direct reduced iron, using 100% hydrogen as the sole reducing agent, Metso Outotec claims. The pilot plant will have an integrated pre-heating and reduction section, followed by a gas cleaning and recirculation facility.

The investment includes installation of electric heaters in the process, making it an almost zero-carbon-emission plant, according to the company. Further, the data obtained from the use of electric heaters will be used to scale up the design of industrial heaters capable to running on renewable energy.

The Circored process is based on the fluidised bed knowledge and experience developed and applied by Metso Outotec over decades in hundreds of plants for different applications. The process applies a two-stage reactor configuration with a CFB followed by a bubbling fluidised bed downstream. The typical plant capacity is 1.25 Mt/y per line. Two or more lines can be combined using joint facilities and utility areas. In standalone plants, the produced DRI is briquetted to hot briquetted iron to enable further handling and safe transport.

If a Circored plant is integrated into an existing steelmaking facility, energy efficiency can be further increased by direct hot feeding of the DRI to an electric arc furnace, according to Metso Outotec.

Rio Tinto and Shougang Group collaborating on low-carbon steelmaking solutions

Rio Tinto and Shougang Group, one of the world’s top 10 steel producers, have signed a Memorandum of Understanding (MoU) to promote research, design and implementation of low-carbon solutions for the steel value chain.

The MoU’s focus areas include low-carbon sintering technology, blast furnace (BF) and basic oxygen furnace (BOF) optimisation, and carbon capture and utilisation (CCU).

This partnership with Shougang underlines Rio Tinto’s strategic commitment to partner with customers on steel decarbonisation pathways and to invest in technologies that could deliver reductions in steelmaking carbon intensity, it said.

Initial efforts will be focused on, but not limited to, BF slag heat recovery, BOF slag utilisation, CCU and low-carbon sintering technology.

The MoU builds on the nearly 30-year relationship between Rio Tinto and Shougang as trade and technical partners. The two companies will work together, leveraging their respective strengths in research and development, technologies, processes, equipment, logistics and industry coordination to support their shared objectives of limiting the impacts of global climate change and reducing carbon emissions, Rio said.

Rio Tinto Chief Commercial Officer, Alf Barrios (pictured), said: “Steel is a vital material for economic growth and low-carbon infrastructure. At Rio Tinto, we want to play a strong role as an industry partner to support the decarbonisation of steel. We are delighted to be able to extend our partnership with Shougang to jointly work towards our shared vision of a ‘greener’ steel value chain.”

Wang Jianwei, Vice President of Shougang Group, added: “Green and low-carbon transition and upgrading is the only way for high-quality and sustainable development of the steel industry. The cooperation between Shougang Group and Rio Tinto Group to develop low-carbon generic technologies for the steel sector and explore decarbonisation solutions is a positive move for both sides to cooperate and promote low-carbon technology innovation.”

BHP achieves shipping first as it extends funding for steelmaking decarbonisation

BHP has welcomed the arrival of MV Mt. Tourmaline – the world’s first LNG-fuelled Newcastlemax bulk carrier – that will transport iron ore between Western Australia and Asia from 2022.

The mining company has chartered five LNG-fuelled Newcastlemax bulk carriers from Eastern Pacific Shipping (EPS) for five years and awarded the LNG fuel contract to Shell.

On her maiden voyage, the vessel arrived at Jurong Port in Singapore for her first LNG bunkering operation (the process of fuelling ships with LNG) which will take place through the first LNG bunker vessel in Singapore, the FueLNG Bellina. FueLNG, a joint venture between Shell Eastern Petroleum and Keppel Offshore & Marine, operates the bunker vessel.

After LNG bunkering, the 209,000-deadweight tonne vessel will leave for Port Hedland in Western Australia for iron ore loading operations.

BHP Chief Commercial Officer, Vandita Pant, said: “BHP works with our suppliers to embed innovative and sustainable solutions in our supply chain. This vessel delivers significant improvements to energy efficiency and emissions intensity, as well as reduced overall GHG emissions in our value chain. These achievements demonstrate BHP, EPS and Shell’s shared commitment to social value through innovative emissions reduction initiatives.

“These LNG-fuelled vessels are expected to reduce GHG emissions intensity by more than 30% on a per voyage basis compared to a conventional fuelled voyage and will contribute towards our 2030 goal to support 40% emissions intensity reduction of BHP-chartered shipping of our products.”

EPS CEO, Cyril Ducau, said: “Today’s historic LNG bunkering is further evidence that the industry’s energy transition is in full swing. These dual-fuel LNG Newcastlemax vessels are a world’s first, but more importantly, they represent a culture shift in shipping and mining.”

In a separate announcement, BHP confirmed it would extend its partnership with the Centre for Ironmaking Materials Research (CIMR) at the University of Newcastle with a further A$10 million ($7 million) in funding to support ongoing research into decarbonising steelmaking.

The expanded research program will focus on low carbon iron and steelmaking using BHP’s iron ore and metallurgical coal, including conventional blast furnace ironmaking with the addition of hydrogen, and emerging alternative low carbon ironmaking technologies.

The collaboration, with funding from BHP’s $400 million Climate Investment Program, will last five years and help train the next generation of PhD researchers and engineers.

Dr Rod Dukino, BHP VP Sales & Marketing Iron Ore, said: “Greenhouse gas emissions from steelmaking represent around 7-10% of global total estimated emissions and the industry remains one of the most difficult sectors in the world to abate. Research and innovation have a critical role to play in accelerating the industry’s transition to a low carbon future.

“The expanded research program with the University of Newcastle complements BHP’s existing partnerships with our key steelmaking customers in China, Japan and South Korea. We are pursuing the long-term goal of net zero Scope 3 greenhouse gas emissions by 20501. Recognising the particular challenge of a net zero pathway for this hard-to-abate sector, we are continuing to partner with customers and others in the steel value chain to seek to accelerate the transition to carbon neutral steelmaking.”

Hancock partners with Uni of Melbourne on ‘game changing’ Carbelec solution

The University of Melbourne has entered into a multi-year partnership agreement with Hancock Prospecting Pty Ltd (HPPL) to develop Carbelec™, a technology that uses electrolysis at low temperature to convert carbon dioxide into reusable carbon and oxygen.

Carbelec is a potential game changer for industries such as steelmaking as it would enable the constant capture and re-use of carbon, balancing ongoing demands for production with the reduction of CO2 emissions in line with government mandates across the globe, the university said.

By capturing and reusing the carbon in a closed cycle, many existing efficient and proven processes will become essentially zero emission. This has the potential to speed-up decarbonisation by removing the challenges of introducing numerous bespoke solutions, according to the university. It is expected that commercial applications of Carbelec would utilise proven renewable energy sources to power the electrolysis process.

The University of Melbourne has successfully demonstrated Carbelec within its laboratories, it said. The partnership with HPPL will enable refinement and then scaling up of Carbelec over a two-stage developmental program.

University of Melbourne’s Dean of Engineering and Information Technology, Professor Mark Cassidy, said: “This partnership will allow University of Melbourne researchers and Hancock Prospecting to establish a comprehensive research and development program which addresses core components to develop this exciting technology. Our aim is to combine our world-leading research expertise with Hancock Prospecting’s ability for real-world practical deployment and, together, develop this technology on an industrial scale.”

Hancock Prospecting Chief Executive Officer, Garry Korte, said the potential benefits of Carbelec should be significant and far-reaching, noting that steelmakers could continue to benefit from the reliable and consistent supply of Pilbara ores, while also achieving their decarbonisation goals with both current and emerging steel technologies.

“Hancock Prospecting’s pioneering spirit is backed by a strong history of successfully partnering in innovative solutions to meet the needs of customers,” he said. “We believe Carbelec can be an important part of a future low-cost energy mix, allowing industries such as steel, cement and even current day baseload power generators to continue to lift the living standards of people in Australia and worldwide.”

Vale ponders investment in China Baowu’s pilot biochar plant project as part of Scope 3 emission targets

Vale says it has signed a Memorandum of Understanding with China Baowu Steel Group Corporation Ltd in which both companies agreed to pursue opportunities to develop steelmaking solutions focused on reducing greenhouse gas emissions.

The MoU comprises the discussion to produce biochar and use it in blast furnaces in order to consume a carbon-neutral material based on biomass instead of fossil energy. The MoU also intends to discuss a possible investment by Vale into China Baowu’s pilot biochar plant project, with an indicative amount ranging from CNY60-70 million ($9.4-10.9 million).

This initiative contributes to achieving Vale’s commitment to reduce 15% of net Scope 3 emissions by 2035. Additionally, Vale seeks to reduce its absolute Scope 1 and 2 emissions by 33% by 2030 and achieve neutrality by 2050, in line with the Paris Agreement, leading the evolution process towards low carbon mining.

Rio Tinto and BlueScope to test clean hydrogen use at Port Kembla Steelworks

Rio Tinto says it and BlueScope are to work together on exploring low-carbon steelmaking pathways using Pilbara iron ores, including the use of clean hydrogen to replace coking coal at BlueScope’s Port Kembla Steelworks, in Australia.

The two companies have signed a Memorandum of Understanding (MoU) to research and design low-emissions processes for the steel value chain, including iron ore processing, iron and steelmaking and related technologies.

Rio Tinto and BlueScope will prioritise studying the use of green hydrogen at the Port Kembla Steelworks to directly reduce Pilbara iron ores into a product that could then be processed in an electric melter to produce metallic iron suitable to be finished into steel, it said.

The MoU expands the partnership between the two companies, who were already jointly studying technology to reduce carbon emissions from existing iron and steelmaking processes. It will also allow more projects to be added as technologies mature, according to Rio.

Rio Tinto Iron Ore Chief Executive, Simon Trott, said: “This partnership will benefit from BlueScope’s experience and know-how in using electric melters at its New Zealand steelworks, Rio Tinto’s experience in the Atlantic direct reduction market and the R&D capability and the experience of both Rio Tinto and BlueScope in iron ore processing.

“It is early days, but given both BlueScope and Rio Tinto are committed to net zero carbon emissions by 2050, we realise we need to investigate multiple pathways and strike partnerships across the steel value chain.”

BlueScope Chief Executive, Mark Vassella, said: “We are pleased to be working with Rio Tinto, who supply the majority of iron ore to our Port Kembla plant. It’s a natural fit for us both and a meaningful opportunity for Australian steelmaking and mining to explore ways of contributing to emissions reduction targets.

“This is an important program – one which will need broad support from governments, regulators, customers and suppliers. At a time when there is much talk and expectation about climate, this is an example of two significant Australian businesses getting on with real action. We are putting our dollars and our people right on the front line of addressing climate change.”

The first phase of the collaboration will be to determine the scale of a pilot plant to be based at the Port Kembla Steelworks, consisting of a hydrogen electrolyser, direct reduction process and melter.

At an investor seminar last week, Rio said it was focused on studying three potential pathways towards net neutral steelmaking; using sustainable biomass with Pilbara iron ore to replace coking coal in the iron and steelmaking process; using hydrogen-based hot-briquetted iron with high-grade ores in Canada; and using hydrogen direct reduced iron with a melter for Pilbara ores.

This MOU aligns with the last potential pathway and shows Rio Tinto’s commitment to each of them, the miner said.

At the same investor seminar, it announced new targets of reducing its Scope 1 & 2 carbon emissions by 50% by 2030, more than tripling its previous target, and a 15% reduction in emissions by 2025, five years earlier than previously. These targets are supported by around $7.5 billion of direct investments to lower emissions between 2022 and 2030.

BHP and POSCO to collaborate on low-carbon steelmaking technologies

BHP and South Korea’s POSCO have announced a Memorandum of Understanding (MoU) to jointly explore greenhouse gas emissions reduction technologies in integrated steelmaking.

As part of the MoU, the parties intend to undertake pilot and plant trials to lower carbon in the steelmaking process, including optimising coke quality and assessing carbon capture storage and utilisation (CCUS) options to lower carbon intensity in the blast furnace.

POSCO and BHP also intend to share research on hydrogen-based direct reduction technology, the use of biomass in steelmaking, as well as the potential to leverage BHP’s carbon offsetting capabilities in the development of carbon neutral steel products.

BHP intends to invest up to $10 million over the next five years under the MoU, with the opportunity to increase investment in technologies under the trial. BHP’s investment will be drawn from its $400 million Climate Investment Program, announced in 2019 to support projects, partnerships, research and development to help reduce Scope 1, 2 and 3 emissions.

BHP and POSCO also intend to collaborate on the reporting of carbon emissions through the steel value chain to further progress consistent, transparent and robust global standards.

BHP Chief Commercial Officer, Vandita Pant, said: “The pathway to net zero for steelmaking is not yet clear but we believe that, by working with industry leaders like POSCO, together we will find solutions more quickly to help reduce carbon emissions in steelmaking and along the value chain. BHP recently announced a goal to pursue net zero Scope 3 emissions by 2050 and we are committed to working with industry leaders in steelmaking to address this hard-to-abate sector.

“Steel is a critical product for the world to grow and decarbonise, and we must work hard together to enable greener steel, reducing carbon intensity in the blast furnace and testing new technologies for steel production.”

POSCO’s Head of Steel Business Unit, Hag-Dong Kim, said: “Though achieving carbon neutrality is a difficult path ahead, with POSCO working together with BHP’s outstanding mining expertise and the will to achieve a low-carbon future, I have every reason to believe that we can create a significant turning point in carbon emission reduction across our value chain.”

The MoU with POSCO follows BHP’s earlier partnerships established with major steelmakers China Baowu, JFE Steel and HBIS Group to explore emissions reduction from steelmaking. The combined output of the four steel companies equates to around 12% of reported global steel production.

Rio Tinto and Uni of Nottingham partner on biomass-backed low-carbon steelmaking project

Rio Tinto says it is progressing an innovative new technology to deliver low-carbon steel, using sustainable biomass in place of coking coal in the steelmaking process, in a potentially cost-effective option to cut industry carbon emissions.

Over the past decade, Rio Tinto has developed a laboratory-proven process that combines the use of raw, sustainable biomass with microwave technology to convert iron ore to metallic iron during the steelmaking process. The patent-pending process, one of a number of avenues the company is pursuing to try to lower emissions in the steel value chain, is now being further tested in a small-scale pilot plant.

If this and larger-scale tests are successful, there is the potential over time for this technology to be scaled commercially to process Rio Tinto’s iron ore fines, Rio said.

Rio Tinto Iron Ore Chief Executive, Simon Trott, said: “We are encouraged by early testing results of this new process, which could provide a cost-efficient way to produce low-carbon steel from our Pilbara iron ore. More than 70% of Rio Tinto’s Scope 3 emissions are generated as customers process our iron ore into steel, which is critical for urbanisation and infrastructure development as the world’s economies decarbonise. So, while it’s still early days and there is a lot more research and other work to do, we are keen to explore further development of this technology.”

Rio Tinto’s process uses plant matter known as lignocellulosic biomass, instead of coal, primarily as a chemical reductant. The biomass is blended with iron ore and heated by a combination of gas released by the biomass and high efficiency microwaves that can be powered by renewable energy.

Rio Tinto researchers are working with the multi-disciplinary team in the University of Nottingham’s Microwave Process Engineering Group to further develop the process.

The university’s Head of Department, Chemical and Environmental Engineering, Professor Chris Dodds, said: “It is really exciting to have the opportunity to be part of a great team working on a technology that, if developed to commercial scale, has the potential to have a global impact through decarbonising key parts of the steel production process.”

The use of raw biomass in Rio Tinto’s process could also avoid the inefficiencies and associated costs of other biomass-based technologies that first convert the biomass into charcoal or biogas, the company said.

Lignocellulosic biomass includes agriculture by-products (ie wheat straw, corn stover, barley straw, sugar cane bagasse) and purpose-grown crops, which would be sustainable sources for the process. Importantly, the process cannot use foods such as sugar or corn, and Rio Tinto says it would not use biomass sources that support logging of old-growth forests.

Trott added: “We know there are complex issues related to biomass sourcing and use and there is a lot more work to do for this to be a genuinely sustainable solution for steelmaking. We will continue working with others to understand more about these concerns and the availability of sustainable biomass.”

If developed further, the technology would be accompanied by a robust and independently accredited certification process for sustainable sources of biomass, Rio said.

HYBRIT partners produce world’s first hydrogen-reduced sponge iron

SSAB, LKAB and Vattenfall say they have now produced the world’s first hydrogen-reduced sponge iron at a pilot scale.

The technological breakthrough in the HYBRIT initiative captures around 90% of emissions in conjunction with steelmaking and is a decisive step on the road to fossil-free steel, the partners say.

The feat from the HYBRIT pilot plant in Luleå, Sweden, showed it is possible to use fossil-free hydrogen gas to reduce iron ore instead of using coal and coke to remove the oxygen. Production has been continuous and of good quality, the companies said, with around 100 t made so far.

This is the first time ever that hydrogen made with fossil-free electricity has been used in the direct reduction of iron ore at a pilot scale, according to the HYBRIT partners. The goal, in principle, is to eliminate carbon dioxide emissions from the steelmaking process by using only fossil-free feedstock and fossil-free energy in all parts of the value chain.

Hydrogen-based reduction is a critical milestone, which paves the way for future fossil-free iron and steelmaking. SSAB, LKAB and Vattenfall intend, through HYBRIT, to create the most efficient value chain from the mine to steel, with the aim of being first to market, in 2026, with fossil-free steel at an industrial scale, they say.

Last year, HYBRIT, a joint initiative of SSAB, LKAB and Vattenfall, began test operations to make hydrogen-reduced sponge iron in the pilot plant built with support from the Swedish Energy Agency. The technology is being constantly developed and the sponge iron that has been successfully made using hydrogen technology is the feedstock for the fossil-free steel of the future, they say.

Jan Moström, President and CEO at LKAB, said: “This is a major breakthrough both for us and for the entire iron and steel industry. LKAB is the future supplier of sponge iron and this is a critical step in the right direction. Progress with HYBRIT enables us to maintain the pace in our transition and, already in 2026, we will begin the switch to industrial-scale production with the first demonstration plant in Gällivare, Sweden. Once LKAB has converted its entire production to sponge iron, we will enable the transition of the steel industry and reduce global emissions by around 35 Mt a year, which corresponds to two thirds of Sweden’s entire emissions. This is the greatest action we can take together for the good of the climate.”

Martin Lindqvist, President and CEO at SSAB, added: “This technological breakthrough is a critical step on the road to fossil-free steel. The potential cannot be underestimated. It means that we can reach climate goals in Sweden and Finland and contribute to reducing emissions across Europe. At the same time, it creates new jobs and export successes. SSAB’s transition means we will reduce carbon dioxide emissions by 10% in Sweden and 7% in Finland. High-strength fossil-free steel will also allow us to help our customers to strengthen their competitiveness. As early as this year, we will deliver minor quantities of steel made using hydrogen-based reduction to customers, and in 2026 we will deliver fossil-free steel at a large scale.”

The hydrogen used in the direct reduction process is generated by electrolysis of water with fossil-free electricity, and can be used immediately or stored for later use, according to the partners. In May, HYBRIT began work on building a pilot-scale hydrogen storage facility adjacent to the direct reduction pilot plant in Luleå.

Anna Borg, President and CEO at Vattenfall, said: “Sweden’s and Vattenfall’s fossil-free electricity is a basic requirement for the low carbon footprint of hydrogen-reduced sponge iron. The breakthrough that we can announce today shows in a very real way how electrification contributes to enabling a fossil-free life within a generation.”