Tag Archives: Teck Resources

MEDATech speeds up battery-electric mining charge

The potential for electric drivetrain specialist MEDATech Engineering Services to add another high-profile client to its list of mining company references is high given the developments the Collingwood-based company is currently working on.

Having helped Goldcorp (now Newmont) and several OEMs realise their vision of an all-electric mine at Borden, in Ontario, MEDATech is energising more electrification projects with its ALTDRIVE system.

The company has been developing electrification technology for heavy-duty, off-highway vehicles for about six years. Its current drive train technology, MEDATech says, is capable of being scaled for most heavy haul applications in mining and other industries.

These last six years have seen it help fellow Collingwood resident MacLean Engineering convert underground roof bolters, graders, water trucks and many other production support vehicles for Canada’s underground mining sector. MEDATech has also helped Torex Gold and its Chairman, Fred Stanford, develop the necessary equipment to take the Muckahi all-electric underground mining concept to testing phase. Similarly, it has played a role in Nouveau Monde Graphite’s all-electric open-pit mine vision as part of a Task Force Committee developing studies for the Matawinie project, in Quebec.

Aside from the Muckahi project, the ALTDRIVE system, having been engineered to replace internal combustion engines, has been the driving force behind this work, according to Jeff Taylor, Managing Director of MEDATech Engineering.

The powertrain consist of a hybrid, or completely electric means of propelling the machine with industrial batteries, and can be adapted to heavy equipment such as commercial trucks, tractors, excavators, buses, haul trucks, light rail and – most important in this context – mining vehicles.

ALTDRIVE leverages battery systems from Akasol and XALT, chargers and power electronics from Bel Power Solutions and Dana TM4’s electric motors. The balance of the power electronics, control systems and sub systems, thermo management systems, VMU (a software component critical to the power management of the battery, electric motor charging and regenerative capabilities), and integration engineering is developed by MEDATech.

Taylor says it is the battery chemistry and charging philosophy of the ALTDRIVE technology that differentiates it from others on the market.

“The battery chemistry is really quite advanced and is all based on the future of fast charging,” he told IM. “In this scenario, we don’t want the batteries to be brought down to a high depth of discharge (DOD). We instead want operators to carry out quick, opportunity charging on the go.”

Most of the machines the company has been involved in manufacturing to date have been equipped with 25-100 kW on-board chargers, yet Taylor thinks its new breed of fast-charge battery-electric solutions could eventually require up to 1 MW of power and be charged through an automated system.

Such powerful charging systems may be the future of MEDATech’s ALTDRIVE drivetrain technology, but for now it is focused on leveraging the system for the conversion of a diesel-powered Western Star 4900 XD truck (pictured).

Part of a collaborative project with a Western Star dealer in Quebec where the dealer (Tardif) has donated the truck and MEDATech has provided its materials and engineering expertise, the truck is equipped with a 100 kW capacity on-board charger, 310 kWh of battery capacity, loaded gross vehicle weight of 40,824 kg and 25% more horsepower than its diesel-powered equivalent.

Loaded, the truck can cover 85 km (0% grade) on a single charge (80% DOD). This vehicle is ideal as a pit master unit for short run material moving, road maintenance, water hauling/spraying and snow plowing activities, according to the company. The truck can be on-board charged (2.5 hours) and fast charged (1 hour) during idle periods (at 80% DOD).

The machine will be ready for demonstrations at a gravel pit around 15 km away from the company’s Collingwood headquarters in September, and it has already caught the attention of some major miners.

According to Taylor, Anglo American (Chile), Teck Resources (British Columbia) and Vale (Ontario) are scheduled to see the BEV 4900 XD unit in September at the Collingwood facility. “Each company is looking at an electric machine(s) for their operations,” he said. “They might end up with a different truck, built to their exact specifications, but they want to test this machine out to experience a battery-electric conversion.”

After the 24 t payload truck, the company has eyes on converting a 40 t payload Western Star 6900 XD diesel truck to battery-electric mode.

“This will just be a bigger conversion on a bigger truck,” Taylor explained. “We’ll have extra room on the truck for placing batteries and the extra motor that will be required. It will also be an all-wheel drive vehicle, as opposed to the real-wheel drive of the 4900 XD, which will need some extra engineering.”

While Taylor said work on converting this 40 t machine would not start until the all-electric 4900 XD had been tested, he saw plenty of opportunities for scaling up and down the ALTDRIVE technology to create more customised ‘green’ vehicles for the mining industry.

“If you look at any mine site in Canada, there are five or 10 vehicles you could replace with electric versions,” he said.

Teck Resources intensifies carbon cutting strategies

Teck Resources has announced a target to reduce its carbon intensity by 33% by 2030 as part of its new sustainability strategy and goals.

This news builds on Teck’s previously announced commitment to be carbon neutral across all its operations and activities by 2050. It also follows the company announcing it was withdrawing the regulatory application for the Frontier oil sands project in Alberta, Canada.

Don Lindsay, President and CEO, said: “At Teck, we are always challenging ourselves to improve sustainability performance, so we can be sure we are providing the mining products needed for a cleaner future in the most responsible way possible.

“We have set ambitious new goals for carbon reduction, water stewardship, health and safety, and other areas because we believe that a better world is made possible through better mining.”

Teck’s sustainability strategy has been updated with new long-term strategic priorities, supported by short-term milestone goals. Highlights include:

  • Be a carbon neutral operator by 2050;
  • Reduce the carbon intensity of its operations by 33% by 2030;
  • Procure 50% of electricity demands in Chile from clean energy by 2020 and 100% by 2030;
  • Accelerate the adoption of zero-emissions alternatives for transportation by displacing the equivalent of 1,000 internal combustion engine vehicles by 2025 (a topic IM heard much about at the recent SME MineXchange Annual Conference and Expo);
  • Transition to seawater or low-quality water sources for all operations in water-scarce regions by 2040;
  • Implement innovative water management and water treatment solutions to protect water quality downstream of all our operations;
  • Preferentially consider milling and tailings technologies that use less water for both new mines and any mine life extensions at existing mines;
  • Work towards disposing zero industrial waste by 2040;
  • By 2025, develop and implement a responsible producer program and “product passport” that is traceable through the value chain;
  • By 2025, all operating sites would have and implement plans to secure a net-positive impact on biodiversity;
  • Eliminate fatalities, serious injuries and occupational disease;
  • Increase the percentage of women working at Teck, including women in leadership positions, and advance inclusion and diversity initiatives across the company by 2025; and
  • Achieve greater representation of Indigenous Peoples across the business by 2025 by increasing employment and procurement through business development, capacity-building, education and training opportunities.

In releasing its 2019 Sustainability Report today, Teck showed it had reduced its annual greenhouse gas emissions by 297,000 t of CO2 equivalent since 2011. This is the equivalent of taking 90,500 cars off the road.

CEEC gets behind mining industry water use initiatives

The Coalition for Energy Efficient Comminution (CEEC) is looking to build on the industry success it has had with its free Energy Curves tool with the development of a global Water Curves tool.

In its efforts to develop this, around 40 leaders from the mining, METS, research and support services world came together in Vancouver, Canada, this month for “a groundbreaking workshop” to do exactly this.

Jointly organised by Canada Mining and Innovation Council and CEEC, with facilitation by KPMG, the project definition workshop at Teck Resources’ Vancouver headquarters explored many important questions, such as: what the industry requires from Water Curves, what metrics are required to benchmark water use, how information could be gathered and assessed, and how the project could be funded, CEEC said.

“The Water Curves approach builds on the success of CEEC’s trusted free Energy Curves tool, which has been used since 2015 to assess and map operational energy efficiency improvements and options,” the organisation said.

Workshop speakers included CMIC CEO, Carl Weatherell; CEEC CEO, Alison Keogh; CEEC Director, Simon Hille, Newmont Goldcorp Group Executive Global Projects, and, Metso VP Product RTD (Mining and Aggregates, Minerals Consumables).

The workshop was timed to follow the SAG Conference, in Vancouver, which brought together all those engaged in the field of autogenous, semi-autogenous and HPGR grinding in the industrial and metalliferous mineral industries and took place on September 22-26 at the Marriott Parq Vancouver.

It also follows closely on the heels of ratings agency Moody’s Investors Service saying in a report that scarcity costs associated with securing reliable sources of water represents “an elevated risk”.

Moody’s Senior Vice President, Carol Cowan, said: “Many countries, including Peru, Chile, Australia, South Africa and Mongolia, have large mining operations exposed to decreasing water availability. In the next 20 years, all of these countries will be in the high to extremely high ratio of water withdrawals to supply, which will make it difficult for companies to secure reliable sources.”

Analytics, data and security on the Austmine 2019 agenda

Austmine 2019 is set to delve into the future of analytics, data and security, key themes that are setting the agenda for the next horizon in the mining industry, according to event organisers.

Running from May 21-23 at the Brisbane Convention and Exhibition Centre, Austmine 2019 will, organisers say, feature thought leaders from around the world, who will present their insights into the latest developments in digital efficiencies and live analytics systems, as well as how big data is leading to change across the industry.

“The topic of digital change is one which encompasses the entire value chain, with the optimised use of data leading to production efficiencies, while also having favourable human and environmental outcomes,” the organisers said.

For Austmine 2019, presenters will cover a broad range of perspectives, from mining companies, METS, academia and government.

One of the keynote speakers is Michelle Ash, Chair, Global Mining Guidelines (GMG) Group, who will examine the question: “Disruption is here: how will we harness it?”

Ash said: “I am really excited to be speaking at the Austmine 2019 conference and sharing with delegates how digital technologies are impacting mining around the world.

“There are some amazing advancements in other industries that are also applicable and exciting, but as always, the technology is only part of the challenge implementing them into our organisations, and driving the value and impacts of safety, the environment and productivity is key to the success.

“Delegates will also hear about some of the keys to ensuring that implementation of technology is successful, and how we can increase our rate of change as an industry.”

Other speakers slated to present include Rob Cunningham, Mining Operations Manager at CMOC Northparkes Mines, who will explain how the company is driving an Improvement Innovation Culture at its operations, which embrace the latest block cave mining technologies.

Rob Labbé, Director, Information Security, Teck Resources, will delve into cyber security – enabling the digital mine through cyber risk management and collaboration – while John Vagenas, Managing Director, Metallurgical Systems, asks the question – “Blue pill or red pill? Digital case studies within mineral processing.”

During his presentation, Vagenas is set to explore why so many companies are hesitant when it comes to digital transformation.

“Essentially, digital transformation is about turning data into information so as to gain full transparency into a plant’s operations,” Vagenas said. “For many companies in our sector, it can be an uncomfortable notion. Transparency isn’t always immediately popular, as it threatens how much control some people have over what is and isn’t reported. But, in reality, it can deliver such an enormous and rapid benefit that it’s madness not to make the transition.”

Joining this speaker line-up is Barry Elliot, Vice President, Enterprise Accounts: Heavy Industries, Rockwell Automation, from South Africa, to provide insights into improving mining value from operations data.

He is set to outline solutions around data collection, storage, visualisation and analytics, with a focus on the company’s scalable analytics approach, the FactoryTalk Innovation Suite, as well as applications of AR/VR for visualisation, according to organisers.

In addition to a focus on analytics, data and security, other key themes are set to include the human element of technology, intelligent equipment, sustainability, as well as integration and connectivity.

The two-day conference will be complimented by workshops, a sold-out exhibition, networking opportunities, the Industry Leaders’ Dinner and Awards and more, organisers said.

International Mining is a media sponsor for the upcoming Austmine event

Teck sees big future for saturated rock fill water treatment technology

Teck Resources says the results from a saturated rock fill (SRF) project at its Elkview coal operations in British Columbia, Canada, show the technology has the potential to replace future active water treatment facilities (AWTF) and, further, reduce capital and operating costs for water treatment.

In 2018, the company successfully operated its first SRF project at Elkview, which has now been working for the past 12 months and “is demonstrating near-complete removal of nitrate and selenium from the feed water”, Teck reported in its 2018 financial results.

With the full-scale trial showing promising results, Teck is working to increase the capacity of the Elkview SRF to potentially reduce reliance on active water treatment, it said.

This approach has not yet received the necessary approvals and Teck said it continues to progress the construction of additional AWTFs to comply with the measures required by the Elk Valley Water Quality Plan, an area-based management plan approved in 2014 by the British Columbia Minister of Environment.

The plan establishes short-, medium- and long-term water quality targets for selenium, nitrate, sulphate and cadmium to protect the environment and human health, as well as a plan to manage calcite formation. In accordance with the plan, Teck has constructed and is operating the first AWTF at West Line Creek.

In the December quarter, Teck commissioned an additional treatment step to address an issue regarding selenium compounds in effluent from the West Line Creek AWTF. The facility is now operating as designed and the company has commenced construction on its next AWTF at Fording River Operations, which will use the same treatment process as the modified West Line Creek AWTF.

Teck said capital spending on water treatment in 2019 is expected to be approximately C$235 million ($178 million), including advancing a clean water diversion at Fording River, application of SRF technology at Elkview, construction of Fording River AWTF South, and advancing management of calcite and the early development of water treatment for Fording River North. “This compares to approximately C$57 million of capital spending on water treatment in 2018,” Teck said.

The company continued: “In our previous guidance, we estimated total capital spending for water treatment between 2018 and 2022 of C$850-900 million. We intend to complete construction of the Fording River South AWTF, currently under construction.

“If we are successful in permitting SRF projects to replace the Elkview AWTF and Fording River North AWTF, we estimate that total capital spending on water treatment during this period would reduce to C$600-650 million. If no reduction in AWTF capacity is permitted, overall capital in the same period would increase by approximately C$250 million over our previous guidance, as a result of engineering scope changes at the Elkview AWTF and an increased volume of water treated at Fording River North.”

Teck said it had presented regulators with evidence that SRFs are a viable technical alternative to active water treatment, and is working through a review process. “We expect that this process will result in a decision in the first half of 2019,” it said.

In the meantime, Teck continues to advance research and development, including the SRF technology.

“We estimate that over the longer term, SRFs will have capital and operating costs that are 20% and 50%, respectively, of AWTFs of similar capacity. If we are successful in replacing a substantial portion of active water treatment capacity with SRFs, we believe that our long-term operating costs associated with water treatment could be reduced substantially,” it said, adding that all of the foregoing estimates were “uncertain”.

MineSense front and centre in bulk ore sorting game

Having just commercialised its bulk ore sorting technology at Teck Resources’ Highland Valley Copper (HVC) operations in British Columbia, Canada, MineSense is looking to show the wider industry just how effective this pre-concentration process can be.

IM spoke with President and CEO, Jeff More, to find out more about the company’s ShovelSense and BeltSense technologies and how the Vancouver-based startup has been able to secure investment from the likes of ABB, Caterpillar and Mitsubishi.

IM: Can you explain in a little more detail how your ShovelSense and BeltSense solutions work?

JM: The base technology for both is X-ray Fluorescence (XRF) – a technology that has been around for some time. What we have done to this existing technology, which is quite unique, is three things:

  • One, we have extended dramatically the range of XRF. Traditionally XRF would almost have to be held to the surface of a rock to get accurate measurements. The range extension allows us to work in the shovel environment where we are working across metres of volume;
  • Second is speed. Our system is extremely fast. High speed analysis is required on our conveyor belt applications, but this is even more important in the shovel, where we’re measuring dynamically; as the material is flowing into the shovel, to get a representative reading, you have to be able to take very fast readings of the material as it is moving past the sensors;
  • The third is robustness. On a shovel, you are in a nasty environment from a shock and vibration perspective. We developed a system with sensitive components – the XRF itself, as well as the computing devices around it – that can stand up to that very high shock- and vibration-type environment.

IM: The most high-profile examples of the application of your ShovelSense technology have been at copper mines (HVC, in particular); is the detection technology particularly effective in these ores? Is it being trialled elsewhere?

JM: The current sensing we have with the XRF is very effective in a certain section of the periodic table, which nicely covers the major base metals. We’re focused on copper, nickel, zinc and polymetallic versions of those three. The fourth area of focus is iron ore.

We’ve selected copper as our first focus because of the size of the market and the geography. We have done most of our work in copper, but we now also have operating systems in nickel and zinc.

On a lab scale, the technology has been very effective in iron ore, but iron ore is a very different flow sheet, so we have purposely set it as our fourth market in what we call our primary clusters.

We have five mine site customers at the moment – three copper, one zinc-lead and one nickel-polymetallic.

We were very much focused on North America and, in particular, British Columbia for our first pilots and trials as it was quite easy for us to service in our back yard. The first international market was Chile, for obvious reasons in terms of copper production, and we now have a full MineSense entity and team operating in Chile and Peru.

We’re staggering the rest of our global expansion. We’re now quite active from a business development perspective in southern Africa – South Africa, Zambia, DRC – and have activity in Australia.

We have Systems installed at two different copper mines in British Columbia, one at a very large nickel-polymetallic complex in Sudbury, Ontario, and will have a fourth system operating in Alaska. We also have two mines, but four systems, operating in Chile. By the end of Q2, we will have another three systems operating in Chile.

We did all our development work for the system at Teck’s HVC operation and we’re now completely commercial there. We officially commissioned our first system in December, the second system is being commissioned as we speak and the third and fourth will be installed and commissioned in late-March. This will completely equip their fleet.

IM: Teck has previously said the use of ShovelSense has resulted in “a net measurable increase in the amount of ore (and the associated head grade)” it has available to feed its mill at HVC. Are these results in keeping with your expectations for the technology?

JM: Yes, absolutely. We base everything on, what we call, our value model. Very early in our engagement process, we set out a detailed model that calculates the profit improvement that mine will see – we did the same for Teck HVC.

We agreed on a target at HVC and are actually exceeding that estimate. Most importantly, Teck is also seeing that value and is estimating a great overall impact at that mine.

This is an abridged version of a Q&A to be published in the ore sorting feature in the March issue of International Mining.

Teck goes for RCT teleremote solution at Coal Mountain in British Columbia

RCT’s ControlMaster® Teleremote solution has been selected by Canada’s largest diversified mining company, Teck Resources, for use at one of its steelmaking coal operations in British Columbia’s Elk Valley region.

The ControlMaster Teleremote solutions were installed on a Cat D11T dozer and a Cat 390D hydraulic excavator, operating at the open-pit steelmaking coal truck and shovel operation at Teck’s Coal Mountain Operations.

The technology supports safe production at the operation, as equipment can be operated remotely in areas that are deemed unsafe for human operators, RCT says. The solutions also help increase productivity and profitability on site.

RCT, which recently announced a broadening of its automation offering, integrated a communication network into the Teck’s existing wireless network to facilitate the remote functions of the machines. In addition, the RCT Custom department played a part in the project as it was the first excavator of this model the company has completed an install on.

RCT’s VP of Business Development for Canada, Vern Deveau, said the solution provided to Teck met the client’s requirements and operators were impressed with the custom teleremote solutions.

In addition, RCT’s solutions “effortlessly connected” to Coal Mountain’s network infrastructure, making the remote features seamless, he said.

The project and training were delivered ahead of schedule with positive feedback received from Teck staff on site, RCT added. Customer support will be provided locally by RCT’s Ontario branch, which will carry out servicing and any support required by Teck going forward.

RCT says Teck is also assessing the viability of implementing the same technology at other operations.

Teck’s Coal Mountain Operations produces metallurgical coal, which it exports by sea to the Asia-Pacific region and elsewhere. The current annual production capacities of the mine and preparation plant are approximately 2.7-3.5 Mt of clean coal, respectively, Teck says.

Teck’s QB2 copper project in Chile moves forward to construction

Teck Resources has approved construction of the Quebrada Blanca Phase 2 copper project in the Tarapacá Region of northern Chile after Sumitomo Metal Mining (SMM) and Sumitomo Corporation agreed to help fund the development in return for a 30% indirect interest.

The transaction with SMM and Sumitomo Corp will see the two companies pay $1.2 billion for a 30% interest in Compañia Minera Teck Quebrada Blanca SA (QBSA), which owns the QB2 project. This will be comprised of an $800 million earn-in contribution and a $400 million matching contribution. On top of this $50 million will be paid to Teck upon QB2 achieving an optimised target mill throughput of 154,000 t/d by December 31, 2025, subject to adjustment.

Don Lindsay, President and CEO of Teck, said QB2 was one of the world’s premier undeveloped copper assets, with this transaction further confirming the value of the project.

“This partnership significantly de-risks Teck’s investment in the project, enhances our project economics and preserves our ability to continue to return capital to shareholders and reduce bonds currently outstanding.”

The $4.74 billion project is expected to produce 316,000 t/y of copper-equivalent for the first five full years at all-in sustaining costs of $1.38/Ib ($3,043/t). The initial mine life of 28 years uses less than 25% of the current reserve and resource. Based on a $3/Ib average copper price over the life of the mine, QB2 is expected to provide a net present value (8% discount) of $2.43 billion.

The mine is expected to use “demonstrated industry-leading technology to enhance safety, productivity and sustainability, including an integrated operations centre located in Santiago, autonomous haulage fleet, and the first large-scale use of desalinated seawater in the Tarapacá Region to eliminate freshwater use in operations”, Teck said.

The company added that it was positioned for project construction with a strong and experienced execution team in place, major permits in hand, engineering nearly 80% complete, and contracting and procurement well advanced.

Lindsay said: “QB2 will be a long life, low-cost operation with major expansion potential, including the option to double production or more, to become a top-five global copper producer.”

This expansion potential is expected to be shown off with the completion of a scoping study to assess QB3 development options.

The social and environmental impact assessment for the QB2 project was approved in August and early field work commenced in September.

The project scope includes the construction of a 143,000 t/d concentrator and related facilities, which are connected to a new port and desalination plant by 165 km concentrate and desalinated water pipelines.

Teck has agreed with SMM and SC to cover their share of the cost of power under the existing power purchase agreements in excess of QBSA’s needs until the earlier of the startup of the first grinding line in the mill or September 30, 2022. The target date for project completion and the start of commissioning and ramp up is the December quarter of 2021. Full production is expected in the middle of 2022.

The project will build on the existing Quebrada Blanca copper mine, which produced 23,000 t of copper last year and is expected to stop producing cathode in mid-2019 as the supergene deposit is exhausted.

After the transaction is completed, the ownership of QBSA will be as follows: 60% Teck, 30% SMM/SC, 10% Enami.

Newmont Mining still weighing up LNG/diesel dual-fuel options

The use of LNG in the engines of mining haul trucks has been gaining serious traction of late with OEMs and mining companies, alike, considering dual-fuel options.

Newmont Mining stated in its 2017 sustainability report, released back in April, that it and Caterpillar were looking at such a project as part of the US-based mining company’s attempt to decrease its greenhouse gas (GHG) emissions.

The company believes the advancement of dual-fuel engines on haul trucks could displace, on average, 65% of diesel fuel with LNG.

A Newmont spokesman told IM this week that the company is still in the process of evaluating an LNG option and, at some point, it may “take the next step towards a meaningful pilot project”.

Teck Resources carried out such a trial at its Fording River coal operations in British Columbia, Canada.

The pilot test, which used a hybrid LNG/diesel fuel system in six haul trucks and concluded in December 2016, provided many valuable learnings to Teck, including “utilising LNG safely and integrating new technologies at our operations”, Greg Brouwer, General Manager, Technology and Innovation, recently told IM.

“While the particular LNG technology used in this pilot did not achieve the targeted emission reduction benefits, we remain committed to exploring the use of LNG as a haul truck fuel source to reduce GHG emissions and costs and we are currently assessing other technologies,” he said. (You can read more about Teck’s latest innovations in the upcoming IM October issue)

Just last month, GFS Corp reported increased interest in its EVO-MT® System for off-highway machinery. Much of this renewed interest is coming from the mining sector where the company’s products allow haul trucks, wheel loaders and drill rigs to operate on a combination of diesel and LNG or NG+D® as the company refers to it, GFS said.