Tag Archives: TOMRA

TOMRA XRT ore sorters providing Mt Carbine with tungsten upgrade, circular economy advantages

TOMRA X-Ray Transmission (XRT) sorters are providing a game-changing solution for the EQ Resources-owned Mt Carbine mine in Queensland, Australia, reducing costs and achieving high-purity tungsten ore for follow-on processing while contributing to a circular economy by producing green aggregates for sale, the ore sorting company says.

The Mt Carbine mine, northwest of Cairns, Queensland, was acquired by EQ Resources in 2019. The company entered a joint venture with Cronimet Group to set up tungsten extraction from the mine’s large waste dump and tailings. It is also planning to operate the open pit and underground mine, of which it has full ownership.

EQ Resources management has a long-standing relationship with TOMRA, having used its sorters with success on a variety of projects since 2011, TOMRA says. Based on this experience, the company turned to TOMRA once again for the Mt Carbine mine, with test work conducted at TOMRA’s Test Center in Wedel, Germany, confirming its XRT technology would provide the solution for the project.

“We were confident it would work, but we sent a small sample for testing to make sure,” Kevin MacNeill, CEO of Mt Carbine mine, EQ Resources, said. “The advantage of TOMRA’s sorters compared to others is in the image resolution: it is able to resolve the finer inclusions in the tungsten. This high resolution gives us better recovery and more control over the sorting process.”

Mt Carbine is currently mining the 12 Mt of low-grade historical stockpiles. The ore is crushed and screened at 6 mm and 40 mm. Two TOMRA XRT sorters are used to pre-concentrate the feed in the 6-40-mm-size range before processing in the wet plant. Approximately 10% of the sorters’ feed mass is ejected as product with a recovery of tungsten of well over 90%. This means only 10% of the mass is processed in the wet plant, dramatically cutting running costs, reducing the required size of the wet plant, as well as saving water and energy, TOMRA says.

“We let the technology do the work for us and take out all the rubbish and we’re left with just the pure tungsten to send to the processing plant – and we do that very cheaply using the sorters,” MacNeill says. “One of the best things about the TOMRA XRT is the cost savings to the operation. It costs approximately A$1.5/t ($1.02/t) to sort and then it costs A$14/t for wet processing: as we take out 90% of the sortable fraction mass, we only have to process 10% of the higher grade concentrate and natural -6 mm material while maintaining recovery, so our cost benefit is obvious.

“We couldn’t afford to run this waste dump if we had to crush everything to 6mm and process it through the wet plant, it would be too low grade and costly.”

EQ Resources is also taking advantage of the TOMRA XRT sorters to create an additional revenue stream from the waste material.

MacNeil explained: “Normally you would grind the waste down to 6 mm and put it through the jigs, but, by putting it through the TOMRA sorters, we are able to keep a whole range of aggregates on the coarser size fractions. The sorters remove any material containing acid-forming sulphides and the waste rock that comes out is incredibly clean. We are, therefore, able to use it in making all kinds of different quarry products – from road bases to concrete aggregates. It’s a perfect example of a circular economy.”

“Selling these green aggregates adds a significant portion to our business – about A$5 million a year – and that’s all because of the TOMRA sorters. In fact, we’ve probably paid for each machine from this revenue five times over.”

The TOMRA XRT sorters are delivering both environmental and business benefits to the Mt Carbine operation, to the satisfaction of MacNeill: “They’re dry, they create no water usage, they require very little power compared to what we use in the processing plant, so it’s a real advantage to us to have these, and we’re looking at purchasing a third one in the near future.

“From an environmental point of view, I think the TOMRA sorters will play a huge role in the future because of their capability of removing sulphides. If you remove sulphide before stockpiling waste rock, you will have the benefit of no acid creation and drainage – and it would reduce your footprint in your closure plans.”

Metso Outotec aims for higher capacities as ore sorting offering develops

The entry of Metso Outotec into the bulk ore sorting space arguably heralds the beginning of a new stage of market adoption – one that is focused on significant throughputs across multiple commodities.

In May, the mining OEM announced a collaboration agreement with Malvern Panalytical, a company that has been using Pulsed Fast Thermal Neutron Activation (PFTNA) technology onboard its cross-belt analysers to analyse and help divert ore and waste streams with improved accuracy.

Up until that announcement, Metso Outotec had mooted the benefits of bulk ore sorting in several industry articles. On the smaller scale, it had also renewed its ongoing agreement with particle ore sorting major player, TOMRA.

The company said its agreement with Malvern Panalytical, which has previously worked on bulk sorting projects with Anglo American among others, brought together its expertise in crushing and bulk material handling solutions with Malvern Panalytical’s ore analysis nous to offer an industry-leading portfolio of solutions for bulk ore sorting.

Rashmi Kasat, Vice President, Digital technologies at Metso Outotec, said in the press release that the pact with Malvern Panalytical would allow the company to meet the industry’s increasing sustainability and resource efficiency needs in an enhanced way in the early comminution stage.

“Sensor-based bulk ore sorting and data-driven analysis upgrades low grade or waste stockpiles, making them economical and far less energy-intensive to treat,” she said.

There are obvious positive benefits up- and down-stream of sensor-based sorting too, with the ability to carry out a low-cost mining method (upstream), as well as reduced capital investments in downstream equipment already shown with early-adopter projects.

That is before considering the relative energy and water reduction requirements that come with applying the technology.

Kasat later told IM that the company’s existing portfolio of material handling modules, crushing stations or mobile crushing equipment, as well as bulk material handling solutions, already “complement” the concept of bulk sorting.

“The addition of the bulk sensor is easily achieved,” she clarified. “The diversion mechanism will be included as well to be able to offer the whole plant out of one hand.”

With crushing stations – at least in the in-pit crushing and conveying (IPCC) space – that can go up to 15,000 t/h (see the company’s Foresight™ semi-mobile primary gyratory station), the prospect of Metso Outotec making a concerted effort to get into the bulk ore sorting space bodes well for the rising throughputs of projects.

NextOre recently claimed it had commissioned the world’s largest bulk ore sorting system at First Quantum Minerals’ Kansanshi copper mine in Zambia. This installation, which uses the company’s magnetic resonance technology, comes in at a 2,800 t/h-rated capacity.

Scantech, meanwhile, recently confirmed it has a GEOSCAN GOLD installation using prompt gamma neutron activation analysis technology for bulk sensing/sorting up and running that uses a diversion system at conveyed flow rates of more than 6,000 t/h.

Kasat, without naming a range, confirmed Metso Outotec was targeting “higher capacities” in line with the sensors available on the market. She also clarified that the agreement with Malvern Panalytical was “non-exclusive”.

“We will choose all our sensor/analyser partners strategically,” she explained. “Malvern Panalytical has a leading position and history in this field with proven technology for ore sensing. We will leverage our and their Tier 1 position in the industry for our bulk ore sorting offering.”

Malvern Panalytical uses Pulsed Fast Thermal Neutron Activation technology onboard its cross-belt analysers to analyse and help divert ore and waste streams with improved accuracy

As the type of sensor to be employed varies based on several factors including mineralogy, plant capacity, application of bulk ore sorting, etc, Metso Outotec will identify the right partners for the right need, she explained.

The major constraints for these sensors are often measurement times and sensor penetration, according to Kasat.

“There are very few sensors out there that can do sensing of a 500-mm-deep bed of rock on a conveyor belt, moving at 5-6 m/s,” she said. “But our current and future prospective partners are working on developing the technologies to reduce measurement times without compromising the accuracy of measurement.”

The mining OEM is looking to, in most cases, provide ‘plug and play’ flowsheets for bulk ore sorting and then carry out the required customisation per sensor.

This plan reinforces Kasat’s assertion that there is no ‘one-size-fits-all’ concept in bulk ore sorting applications.

For new projects, the process could see the company start with metallurgical testing, progress to mobile/fixed pilot plants in the “backyard” to test the accuracy of the sensors for the given application, and then find the right solution for the customer’s use case.

Renato Verdejo, Business Development Lead for Bulk Ore Sorting at Metso Outotec, added: “For existing plants, we will install the sensor over the belt conveyor and analyse the results after selecting the right sensor for this sorting application.”

Metso Outotec intends to focus on major commodities like copper, iron, nickel and gold, among others, with applications such as waste/ore sorting, low grade re-crushing and beneficiation process optimisation.

Within this wide remit – and in line with its non-exclusive agreements with Malvern Panalytical and TOMRA – the company is also considering the combination of both bulk and particle sorting in flowsheet designs.

Metso Outotec, in 2021, renewed its ongoing agreement with particle ore sorting major player, TOMRA

“The combination of the superior throughput of a bulk application with the selectivity of particle sorting in a rougher-scavenger setup is something that can bring sorting to high volume mines in the future,” Kasat said.

“Plant concepts and flowsheets have already been conceptualised and we expect the first deliveries to be in pilot stations to test the sensors on site,” she added, saying that the tonnage requirements for bulk ore sorting sensor validation meant a bulk sensor would have to be piloted in the field to get statistically meaningful data about the properties of the deposit.

Metso Outotec’s crushing system offering will form the “base” for these solutions, with ore sorting optionality available to all customers, she said.

This sensor-based optionality also overlaps with another in-demand part of Metso Outotec’s business: IPCC.

The company’s dedicated team in Germany are responsible for this area, developing projects backed by comprehensive studies.

They – like most of the industry – are aware of the potential application for sensor-based ore sorting in IPCC projects.

Markus Dammers, Senior Engineer of Mine Planning for Metso Outotec and one of the team members in Germany, said there were applications for both bulk and particle sorting in IPCC applications, with the former likely integrated after primary crushing and the latter after secondary/tertiary crushing.

“Bulk ore sorting in an IPCC application should be integrated after primary crushing in order to recover marginal material determined as waste in the block model, or reject waste from the ore stream,” he said.

Bulk ore sorting in an IPCC application should be integrated after primary crushing in order to recover marginal material determined as waste in the block model, or reject waste from the ore stream, according to Markus Dammers

If integrated after secondary or tertiary crushing, it becomes less effective, with the ore’s heterogeneity decreasing every time the ore is rehandled, transferred, crushed, blended, etc.

“In this manner one can take advantage of the natural variability in the deposit, rather than blending it out, with bulk ore sorting,” he said.

After secondary and tertiary crushing, particle sorting may be applied as a “standalone or subsequent ‘cleaner’ process step”, he added.

With Metso Outotec open to the inclusion of ore sorting in fully-mobile, semi-mobile and stationary crushing stations within an IPCC context, the company has many potential customers – existing and new – out there.

And that is just in IPCC applications.

The company also has hundreds of crushing stations on fixed plant installations that could represent potential sorting opportunities.

Metso Outotec, on top of this massive install base, has a few advantages over traditional ore sorting vendors in that it understands the plant that goes around the analysis and diversion process associated with ore sorting; knows how important uptime is to its customers; and, through sophisticated modelling, realises what impact changes in the flowsheet will have up- and down-stream of such equipment.

“The key point here is to have all the equipment to handle and process the ore to feed the sorter and, later, having the technology to divert the material and retain the availability of the plant without changes,” Kasat said.

Energised by its Planet Positive aims of responding to the sustainability requirements of its customers in the fields of energy or water efficiency, emissions, circularity and safety, the company is now ready to flex its processing plant muscles to increase the industry’s adoption of bulk and particle sorting technology.

TOMRA Mining to demonstrate Final Recovery diamond sorter at Electra Mining 2022

TOMRA Mining will showcase its sensor-based sorting solutions at the Electra Mining 2022 exhibition, in Johannesburg, South Africa, in September, showcasing, for the first time, live demonstrations of its COM XRT 300 /FR Final Recovery sorter for diamond operations.

Representatives from its Sales and Field Service teams will also present TOMRA’s offering of advanced digital products and services, such as the TOMRA Insight cloud-based platform and its latest generation TOMRA ACT PC-based system, as well as its portfolio of sorting solutions for the diamonds, metals and industrial minerals industry at the show, which runs from September 5-9.

Corné de Jager, Diamond Segment Manager TOMRA Mining, said: “The Electra Mining Show is the perfect platform for us to showcase TOMRA’s advanced mining solutions. This important exhibition attracts a wide audience – from operators and metallurgists – interested in smart solutions that are simple to operate and maintain, to decision makers who need to be up to date with the latest value-adding technologies. At the event we will have the opportunity to meet them face-to-face and discuss their requirements, giving them a taste or TOMRA’s collaborative approach, product expertise and after-sales support.”

TOMRA will demonstrate the Final Recovery sorter with fine kimberlitic or alluvial ore together with diamond powdered tracers in a Final Recovery and Sort House application. Visitors will be able to experience first-hand the sorter’s capability to produce an ultra-high diamond-by-weight concentrate with an exceptionally low yield by using TOMRA’s proprietary ultra-high-resolution sensor, advanced new image processing and high-precision ejector valve system, the company says. The sorter offers 100% diamond detection within the specified size fraction and > 99% guaranteed diamond recovery with appropriate feed material preparation.

“We are very excited to demonstrate the TOMRA COM XRT 300 /FR sorter,” de Jager says. “It completes our unique partnered diamond recovery ecosystem, which covers the entire process. We are now able to offer our customers a full XRT solution to sort +2-100 mm particles: +4-100 mm particles with our bulk concentration sorters, and +2-32 mm particles with the COM XRT 300 /FR in its Final Recovery, Sort House or small-capacity exploration applications. The sorter offers higher efficiency, better grade, simplified security requirements with fewer sorting stages and a smaller footprint. It reduces complexity and operational costs, and unlocks the potential for previously deemed non-profitable projects and marginal deposits to be economically viable. ”

The COM XRT 300 /FR sorter can also add value to existing kimberlitic and alluvial operations that use conventional bulk-concentration methods like rotary pans, dense medium separation or X-ray luminescence, if installed in a Final Recovery and/or Sort House function after these existing processes. With a contained capital expense, operations can benefit from a quick, simple and significant revenue gain, TOMRA says.

The TOMRA team at the exhibition will explain the full benefits of its complete partnered diamond recovery ecosystem consisting of XRT technology covering the entire process – from Bulk Concentration to Final Recovery and Sort House applications – as well as its advanced digital products and services. These include the newly refreshed TOMRA ACT PC-based system interface and TOMRA Insight cloud-based subscription solution.

TOMRA Mining has 190 sorter installations operating around the world, of which more than 60 are in Africa. It offers installation opportunities in Africa in the metals industry, for example in applications such as lithium, chromite, platinum, manganese and gold.

Tungsten West breaks ground at Hemerdon for TOMRA XRT ore sorters

Tungsten West says it has broken ground at its Hemerdon tungsten-tin mine in Devon, England, with the first sod turned for the installation of the TOMRA X-ray Transmission (XRT) sensor-based ore sorters.

This event, the company says, marks another major step in the company’s upgrade and refurbishment plans for the project’s processing plant.

Hemerdon is, Tungsten West says, the third largest tungsten resource globally, as well as being a previously producing mine that was operational from 2015-2018. Tungsten West purchased the Hemerdon Mine in 2019, and has since completed a bankable feasibility study that demonstrated an extensive reserve of approximately 63.3 Mt at 0.18% W and 0.03% Sn, as well as 37.4 Mt of saleable aggregate material. The company estimates that the life of mine is currently 18.5 years with the opportunity to extend this through future investment.

As announced earlier this month, the company took receipt of important long-lead equipment items, including the seven XRT ore sorters, which will make up part of the upgraded equipment the company plans to install into the front end of the processing plant. The XRT ore sorter will substantially improve and streamline operations once production restarts, minimising plant downtime, increasing recovery as well as a host of ESG benefits, it said.

After significant test work, Tungsten West engaged TOMRA to supply the seven units that are required to treat the run of mine throughput. This consists of six duty units and one standby unit. Orders and deposits for these units were placed in 2021 and the units have now been delivered to the UK and await final transfer to Hemerdon where they will be installed in the front end of the processing plant.

Additionally, the company is pleased to announce the appointment of James McFarlane as Managing Director of Tungsten West. McFarlane previously held the position of Technical & Operations Director of the company.

Max Denning, Tungsten West CEO, said: “We are extremely excited to have broken ground at Hemerdon this week, marking an important milestone in the project’s restart. Ensuring the UK and the western hemisphere have got access to two key critical minerals has never been more profound. We are also delighted to announce James as our new Managing Director; his extensive experience will prove invaluable in the company’s development as we move closer to first production at Hemerdon.”

Tungsten West makes EPCM progress at Hemerdon as TOMRA XRT ore sorters hit the road

Tungsten West has named Fairport Engineering Limited as its engineering, procurement and construction management (EPCM) contractor at the Hemerdon tungsten-tin project, in the UK, as well as confirmed it was soon expecting to receive seven X-ray Transmission (XRT) sensor-based ore sorters from TOMRA.

Since successfully listing on the AIM Market of the London Stock Exchange, Tungsten West has been advancing the development of Hemerdon, which is one of the most advanced mining projects in England and is expected to be a key future global supplier of tungsten and tin.

Hemerdon is, Tungsten West says, the third largest tungsten resource globally, as well as being a previously producing mine that was operational from 2015-2018. Tungsten West purchased the Hemerdon Mine in 2019, and has since completed a bankable feasibility study that demonstrated an extensive reserve of approximately 63.3 Mt at 0.18% W and 0.03% Sn, as well as 37.4 Mt of saleable aggregate material. The company estimates that the life of mine is currently 18.5 years with the opportunity to extend this through future investment.

On top of the ore sorters, Tungsten West said the rest of the long-lead items had been ordered and were scheduled for delivery within the company’s timetable. It plans to recommence mining this year.

The upgrade and refurbishment of the existing processing plant at Hemerdon is centred around the optimisation of the existing concentrator circuit as well as the introduction of a new crushing and screening circuit that will then feed into a new XRT ore sorting stage. These upgrades will streamline processing, minimise plant downtime and improve recovery rates, according to the company.

After significant test work, Tungsten West engaged TOMRA to supply the seven units that are required to treat the run of mine throughput. This consists of six duty and one standby units. Orders and deposits for these units were placed in 2021 and the units have now been delivered to the UK and await final transfer to Hemerdon where they will be installed in the front end of the processing plant.

On top of this, six new screens and 11 vibrating pan feeders have been ordered from Vibramech of South Africa at fixed prices. These will replace the existing large screens, which caused the low frequency issues, and were a key contributor to plant downtime under Wolf Minerals – the previous owner of Hemerdon. Delivery is expected in the June quarter of 2022.

Max Denning, Tungsten West CEO, said: “We are extremely pleased with progress at site, particularly the onboarding of Fairport Engineering to undertake the detailed design and construction of the project. We are looking forward to working with Fairport as we move towards restarting full production at Hemerdon, with a substantially improved processing route, through the introduction of XRT ore sorting and upgraded processing equipment. The company has assembled a strong projects and operations team, and we remain confident in our progress.”

TOMRA’s XRT solution creates value from waste at Mina Esperanza de Caravelí in Peru

The integration of TOMRA’s ore sorting technology at the Mina Esperanza de Caravelí mine in Peru has helped the polymetallic miner produce more metal as well as clean up its legacy tailing operations.

The close collaboration between two companies emphasises a shared philosophy, that of making the most of natural resources and embracing a circular economy.

Mina Esperanza de Caravelí, owned by MTP and operated by Minera Croacia, is a polymetallic vein deposit with a mining rate of 150 t/d. It is located in the district of Atico, in the Nazca-Ocoña geological gold belt in the southern part of Peru, and contains narrow veins with a rosary formation, of which over 30 have been discovered so far. The mineralisation is located in vein fill fractures of hydrothermal origin and are mesothermal in appearance.

In 2019, Minera Croacia contacted TOMRA to explore a solution to extract value from low-grade material previously deemed uneconomical, and to address the environmental issue of metals left in the dumps.

Marco Fernandez Concha, Senior Geologist to Minera Croacia, said: “Mining operations need to find ways to optimise the use of natural resources while reducing waste and their impact on the environment as much as possible. With TOMRA’s ore sorting technologies, this is possible.”

A sensor-based ore sorter represents a significant investment for a mine the size of Minera Croacia, according to Emilio Uribe, Senior Metallurgical Advisor at Minera Croacia.

“When we purchase important equipment, we need to analyse the solution in great detail because we can’t afford to make mistakes,” he said. “We need it to work and deliver the results we want from the start. TOMRA has adapted to our needs as a small business with limited resources. They have been an important advisor, giving us all the support we needed with highly qualified and knowledgeable staff. They have really committed to the project and found the solution that meets our operational needs and is financially viable for us.”

The teams from TOMRA and Minera Croacia worked closely to precisely analyse the requirements and identify the best solution. TOMRA’s Test Center in Wedel, Germany, conducted three series of tests on samples from the mine to narrow down the requirements. A technical team from Minera Croacia attended the final session, which gave them a better understanding of what TOMRA’s XRT technology could do for their operation.

Christian Korsten, who at the time was the Test Center’s Manager, said: “This project stands out for presenting different types of ores from different locations. Usually we test one or two different ores for a customer, but, with Minera Croacia, we had different metallogenic veins. They were all a little bit different in mineralogy, sensor response and in the customer’s objectives for each.”

Strong communication between the two companies’ teams was crucial to the successful outcome – especially since COVID-19 travel restrictions limited the opportunities for face-to-face meetings.

Mathilde Robben, TOMRA Key Account Manager, said the company ensured Minera Croacia received the support and advice they needed throughout the process.

“We did it all through online meetings,” she said. “The management team and staff at Minera Croacia were always to the point and friendly, and together we completed this fast-track project.”

Korsten agreed: “Minera Croacia had very clear objectives. All our questions were answered in a perfect, fast and professional manner, and the same applies to the discussion of the test results. This project was one of my favourites in almost 10 years in the Test Center.”

Following the detailed analysis of the test results and Minera Croacia’s requirements, Robben proposed the use of a TOMRA COM Tertiary XRT sorter as the solution: a machine suited to the particle size range of the dump material (-25 mm/+ 10 mm and -40 mm/+ 25 mm) and an investment that fitted Minera Croacia’s budget.

The test results made a clear business case for the sorter, showing that out of 1,300 t of run of mine material containing gold and copper, 21% are fines (-10 mm) and screened out. This results into a concentration of gold and copper in the fines and, therefore, this material does not need to be sorted. Of the rest of the material, 34% is enriched, going from a grade of 2.7 g/t gold-equivalent to 5.12 g/t gold-equivalent – almost double.

This leaves 45% of the material discarded as waste with very low metal content, 0.41 g/t gold-equivalent, which addresses the environmental issue, as it contains virtually no contaminants. This also shows that maximum value has been extracted from the material, as there is virtually no gold left, TOMRA said.

Uribe said: “The test has shown that TOMRA’s sorter can create value from material that would have gone to the waste dump, from 33% of the run of mine that is too low-grade for processing to be financially viable.”

The TOMRA COM Tertiary XRT sorter is now installed and has been operating since December 2021 re-processing the mine’s 800,000 t of historic dumps. It is delivering on all counts for Minera Croacia: now able to increase the grade of the dump material that was not considered economic, it has reduced freight costs of the operation as it is now transporting less low-grade material to its processing plant, and it has successfully addressed the environmental impact of its waste materials.

Uribe concluded: “All the calculations we made when we evaluated this investment are being fulfilled. The sorter’s performance is perfectly consistent with the test results, and we expect it to pay for itself as planned within two years – including the other components and infrastructure of the circuit.”

The company’s management is so impressed with the results achieved that it is considering investing in further sorters for low grade run of mine ore with the aim of extracting value from mineral that is currently considered marginal, according to TOMRA.

Australian Government backs EQ Resources Mt Carbine ore sorting plan

EQ Resources Ltd says it has successfully secured A$600,000 ($422,386) in co-investment from the Australian Federal Government’s Advanced Manufacturing Growth Centre (AMGC) via the A$30 million Commercialisation Fund. Combined investment from EQ Resources, its partners and AMGC, totalling A$1.97 million, will assist in commercialising industrial-scale operations for advanced minerals processing flowsheet developed for the Mt Carbine Expansion Project, in Queensland, EQ said.

Technologies to be incorporated include the advanced X-ray Transmission ore sorting technology from TOMRA Sorting Pty Ltd, as well as hyperspectral imaging sensors developed by Plotlogic Pty Ltd. The implementation will further be supported by Cronimet Australia Pty Ltd and The University of Queensland – Sustainable Minerals Institute, it said.

The formal co-funding agreement between AMGC and the company has been finalised and signed.

AMGC is an industry-led, not-for-profit organisation established through the Australian Government’s Industry Growth Centres Initiative. AMGC’s vision is to transform Australian manufacturing to become an internationally competitive, dynamic, and thriving industry with advanced capabilities and skills at its core.

AMGC’s Managing Director, Dr Jens Goennemann, said: “EQ Resources’ project brings together industry and research leaders to commercialise a world-leading technology which will convert what was once a mining waste product into new revenue streams. The project proves that Australia’s manufacturing industry is stepping forward to develop globally relevant solutions which will improve operations and add value in the process.”

EQ Resources, as a result of the acquisition of Mt Carbine Quarries in June 2019, now has 100% ownership of the two mining leases and surrounding exploration projects at the project. In a joint venture with Cronimet, the tungsten processing plant has been refurbished, commissioned and expanded to 300,000 t/y capacity. The installation of the pilot sensor-based sorting technology has seen a 20-plus times upgrade of feedstock grade, the company says.

The company is in the process of completing the required environmental amendments to allow the operation to process 300,000 t/y and eventually 1 Mt/y. Once the bulk test work is completed, a feasibility study will be completed for the design of the 1 Mt/y operation.

Vast sees path forward at Manaila with help of TOMRA’s XRT ore sorting solution

Vast Resources says it is continuing to evaluate the recommencement of production at its Manaila polymetallic mine in Romania and, as part of this process, has been working with TOMRA to assess the suitability of X-ray Transmission (XRT) ore sorting technology to optimise the mine’s production profile.

The assessment has demonstrated, to date, that by installing an XRT machine at the plant to pre concentrate ore at the pit, the technology would be highly effective for three main reasons:

  • A reduction in transportation costs as improved mass reduction would significantly reduce the material being transported from the mine to the processing plant;
  • A reduction in processing costs due to reducing the throughput at the plant; and
  • Higher-grade product being delivered to the plant.

It is anticipated that processing and transportation costs could be reduced by up to 55%, according to Vast.

“This cost reduction could have a dramatic impact on the mine’s financial performance,” the company says.

Samples from both types of mineralisation at Manaila, massive sulphide and disseminated sulphide, were sent to the TOMRA Test Centre in Wedel, Germany, to ascertain improved mass reduction and grade upgrade potential. Both mineralisation types showed amenability to the XRT process with metal content recovery on the massive sulphides at 95.4% for copper, 93.6% for lead and 95.2% for zinc in 71% of the mass, the company explains. The disseminated sulphides returned a metal content recovery of 84.2% for copper, 67.2% for lead and 84.4% for zinc in 35% of the mass.

The combined results show that 93.1% of copper, 82.2% of lead and 92.4% of zinc metal could be recovered in 45% of the mass when mining the polymetallic ore on a ratio of three tonnes disseminated sulphide to one tonne of massive sulphide, being the typical historical ratio of mining at Manaila.

Andrew Prelea, Chief Executive Officer of the Vast Resources, says: “These results clearly underpin our view that Manaila is economically viable, and the management team are considering various mine plan scenarios of bringing Manaila back into production.”

The 138.6 ha Manaila-Carlibaba exploration licence contains a JORC 2012 compliant measured and indicated resource of 3.6 Mt at 0.93% Cu, 0.29% Pb, 0.63% Zn, 0.23 g/t Au and 24.9 g/t Ag with inferred resources of 1 Mt at 1.1% Cu, 0.4% Pb, 0.84% Zn, 0.24 g/t Au and 29.2 g/t Ag. Comprising the Manaila polymetallic mine (currently on care and maintenance) and the Carlibaba extension project, Vast intends to establish a larger mining and processing facility at Manaila-Carlibaba which would eliminate the need for costly road transport of mined ore to the existing processing facility located at Iacobeni, around 30 km away.

Preliminary studies by the company indicate the potential for a new open-pit mine to exploit mineral resources to a depth of some 125 m below surface, and to simultaneously develop a smaller higher-grade underground mine below the open-pit mineral resources.

TOMRA on achieving mining’s ‘circular economy’

TOMRA, a global leader in sensor-based technologies, says it understands that technology alone is not enough to create a closed-loop circular economy, with public policy, consumer engagement and collaboration across the value chain are necessary too.

Making the shift from “linear to circular” to build thriving economies requires radically lessening the environmental impact of extracting raw materials, reducing the use of primary resources, designing waste-free products, harnessing materials to keep them in use and implementing technologies to ensure the system is regenerative.

ReSociety

TOMRA says it is well positioned to contribute to the transition to a circular economy by collaborating with key players across the value chain to develop new methods, processes, technologies and business models.

To this end, it has created ReSociety, a global collaborative initiative to re-think, re-act and re-start our world for a more sustainable future.

“It is a place for industry, policy makers, companies and consumers to share ideas, increase awareness, collaborate with solution enablers and drive impactful change,” the company says. “It is also a hub in which TOMRA proactively shares its vast research and multi-national studies on holistic waste management systems, which have been indispensable in developing the circular value chains.”

Dr Volker Rehrmann, Head of Circular Economy, TOMRA, says: “Our commitment to the circular economy is unequivocal. Until recently, it was unheard of having players from the entire value chain at one table. From chemical companies to converters, retailers and brand owners, waste management companies and recyclers – there’s true dedication in finding solutions. We take pride in doing our part: sharing our know-how, developing new solutions and striving to make our planet more sustainable every day.”

Dr Volker Rehrmann, Head of Circular Economy, TOMRA

Dr Rehrmann says the company is aiming to build on the experience it developed in recycling and collaborate with the mining industry to reduce the environmental impact of its operations.

“This means finding green mining solutions that use less energy and water to recover resources – with a consequent reduction in CO2 emissions – and ways to turn waste into value,” he says.

“With the recycling sector, we are working on reducing the mountains of plastic waste; we want to do the same in mining and address the dumps and tailings building up in mines.”

Advanced mining tech with a small environmental footprint

As the world addresses the environmental challenges of our time, the mining industry has an important contribution to make. Mining companies need to find ways to maximise the efficiency of their operations to cut back on the use of water and other resources, while reducing waste and the total impact on the environment as much as possible. Amongst other challenges, they need to effectively address the storage and handling of tailings which pose a potential physical and chemical environmental risk.

TOMRA’s advanced sensor-based sorting technologies can not only significantly reduce the environmental impact of mining operations and, at completion, fully rehabilitate the site. They also enable a much more efficient use of resources. These solutions bring the dual benefits of greater sustainability and better profitability for the mining company.

TOMRA’s sensor-based sorting technology has been shown to significantly reduce the amount of energy and water used compared with traditional methods like DMS (Dense Media Separation), while maximising the efficiency and recovery of valuable ores. An extensive study conducted by Alchemy Process Plants (AlcPro) comparing these processing methods concluded that TOMRA’s solution also brings multiple cost benefits.

AlcPro’s Erik Bruggink explains: “Although capital costs of the separation circuits are similar, with DMS, the additional cost of handling the resultant water from the circuit needs to be taken into consideration together with the associated water use licensing and tailings facilities. In addition, TOMRA’s sensor-based sorting technology requires no reagents, and maintenance costs are limited to the sorting unit and the associated conveyors, screens and chutes.”

Water consumption is a key consideration when assessing the environmental impact of a mine, as it can severely affect local supply. Water management strategies are integral to reducing the mine’s usage and ensure future water security for the communities in the mine’s surrounding areas. The Water Research Commission in South Africa commissioned a project to compile a compendium of best practices and technological innovations in the mining industry with regards to Water Conservation and Water Demand Management, with the study identifying TOMRA’s X-Ray Transmission (XRT) sorting technology as a solution that would lead to substantial improvements in water use efficiency.

José Guilherme Valadares, Project Coordinator of Exploration and Mineral Projects at Vale, says: “By reducing the mine’s water usage and fine-grained wastes, TOMRA’s sensor-based sorting technologies also contribute to improving the issue of wet tailings management and, with that, mitigate the risks associated with tailings dams.”

Vale is now investigating the implementation of sensor-based sorting in several mines and processes in Brazil, TOMRA says

Turning waste into value

TOMRA’s sensor-based sorting technology can contribute to circular economy practices at the mine and processing plant, turning marginal waste into value with a positive impact on both the sustainability and profitability of the operation. This is the case at Wolfram’s tungsten mine in Mittersill, Austria, where TOMRA has installed two COM Tertiary XRT sorters.

Alexander Mosser, Manager Ore Dressing Plant, explains: “The sorting system in the scheelite processing in Mittersill sorts out waste material with a size range of 16-60 mm. This eliminates the grinding and flotation that would otherwise be required for this material. This results in the following savings for the coarse waste material compared to grinding and flotation: 75% lower power consumption and no water and no flotation reagents are required. Another resource conservation: the separated waste is a saleable product to the local construction industry. The sewage ponds are relieved and the impact on nature through local gravel pits is reduced. The sorting system thus not only reduces the footprint of the mine but also of the surrounding gravel pits.”

Sustainability as a facilitator

The proven environmental benefits of TOMRA’s sensor-based sorting solutions bring mining operations additional advantages. They can facilitate obtaining the licences needed to start a mining project by proving the efficient use of water and energy, the significantly reduced amount of waste materials, chemicals/reagents, and lower environmental risks such as tailings dam collapse.

Rare earths mining company Cheetah Resources has obtained a loan from the Canadian Federal Government to purchase a TOMRA sorter for its Nechalacho Demonstration Project in Yellowknife, Canada, on the strength of the sustainable performance of its XRT technology, TOMRA says.

(Left to right) Jeremy Catholique, Mathew Edler and Clarance Pikes from the Nechalacho Demonstration Project team in Yellowknife

The sorting solution will significantly reduce the amount of water and fuel used and eliminate chemicals and tailings from the mining process. Leftover waste rock can be stockpiled for future use or used on infrastructure projects, such as road construction. The aim of the project is to create a low-impact facility for the production of rare earth minerals used in green technologies, which will generate employment and economic benefits in the region.

“We anticipate that, with this project, we will demonstrate the economic feasibility as well as the technical and environmental advantages of sensor-based sorting of rare earths to produce a value-added mixed rare earth concentrate in the Northwest Territories,” David Connelly, Vice President of Corporate Affairs and Strategy at Cheetah Resources, says.

The path to a more sustainable future starts today

Overcoming environmental pollution by enabling the transition to a circular economy is one of the central challenges of the 21st century. Mining has a key role to play as the supplier of the raw materials, but a holistic approach is necessary. Beyond efficient operation and waste management in extracting the primary resources, it is necessary to curtail excessive consumption and ensure products are designed to be reused, and, once at the end of life, easily recycled. Such a holistic approach also includes raising global awareness within the industries and with consumers.

Dr Mathilde Robben, Key Account Manager at TOMRA Sorting Mining, explains: “The raw materials supplied by mining are vital for our modern way of living and are critical for the energy transition technologies. With mining as the entry point for these necessary materials, the circle will never be closed completely. However, this should be seen as an opportunity for the mining industry to re-think the way it fulfils this essential role with minimal impact on the environment, and for sectors downstream to shift focus from the core business to the chain around it, without losing sight of profitability. Re-using can be prioritised by the use of certain metals that are infinitely recyclable and whose inherent durability and anti-corrosive properties contribute to the longevity of the products they are used in.”

Metso Outotec and TOMRA to supply particle ore sorting solutions for mining

Metso Outotec and TOMRA Mining have agreed to continue a non-exclusive cooperation to supply particle ore sorting solutions for the mining and metallurgical industries.

The collaboration expands Metso Outotec’s and TOMRA’s capability to offer leading-edge solutions that help increase the overall value of ore deposits by reaching new levels of energy efficiency and productivity, decreasing costs and extending the life of mining operations, the companies said.

“Separating ore from waste rock as early and as efficiently as possible is essential in minerals processing. The best result can be achieved by combining state-of-the-art crushing systems with advanced ore sorting,” Guillaume Lambert, Vice President, Crushing at Metso Outotec, said. “The combination of Metso Outotec’s crushing know-how and TOMRA’s particle ore sorting expertise is an excellent match, providing substantial benefits to our customers.”

TOMRA’s sensor-based sorting solution has proven itself in the mining sector through many major installations.

It can reduce specific energy consumption by 15%, as well as the amount of water used by three to four cubic meters per tonne of ore, according to the company. This makes it a cost-effective and sustainable solution that can benefit both mining operations and the environment.

Mathilde Robben, Key Account Manager at TOMRA Mining, said: “TOMRA, as an original equipment manufacturer, can add significant value to the process and engineering optimisation of sensor-based sorting inclusive solutions when engaging with our customers within a cooperation agreement framework.”

TOMRA Sorting Solutions and Outotec (prior to merging with Metso) struck a cooperation agreement to supply Outotec-branded sorting solutions for the mining and metallurgical industry all the way back in 2014.