Tag Archives: Tungsten

Almonty aims for ‘carbon neutrality’ at Sandong molybdenum mine

Almonty Industries is expanding its current environmental, social and governance (ESG) program at its Panasqueira mine in Portugal and at its Sangdong project (pictured) in South Korea, with the former set to receive a solar facility in the next 12 months and the latter eying up the use of underground electric fleets.

The solar project at Panasqueira, a tungsten mine, will see a 2.52 MW installation implemented over the next 12 months to produce 4.1 million kWh/y of renewable energy, which represents 21.5% of power consumption at the mine.

At the Sangdong tungsten mine, a third-party report will be concluded over the next three months to analyse the asset’s carbon footprint and how best to minimise it. Given the energy from the grid supplied to the Sangdong project is 100% renewable, the company says it has a “unique opportunity” to push towards carbon neutrality at the Korea site. The underground mine is currently under construction.

Lewis Black, Chairman, President and CEO of Almonty, said: “As we transition into the wider financial ETF markets of Asia and Australia, and our visibility continues to increase as a significant producer of the strategic metals of tungsten and molybdenum once Sangdong and Almonty Korea Moly opens, it has become increasingly important to ensure that we are continually reviewing and developing our ESG which sits perfectly in line with the equator principles around which the Sangdong project is being built.”

He added: “The aim for carbon neutrality at Sangdong is potentially achievable once underground electric fleets can maintain a charge for an entire shift, which is estimated to be technically possible within the next 18 months, but we are extremely fortunate that 100% of our energy comes from a renewable source making the target of carbon neutrality achievable.”

SMS group assigned to FEED work at Cinovec lithium project

European Metals Holdings (EMH) has appointed SMS group Process Technologies as the lead engineer for minerals processing and lithium battery-grade chemicals production at the Cinovec project in the Czech Republic.

Cinovec, a joint venture between European Metals (49%) and ČEZ Group (51%, through its subsidiary Severočeské doly), is operated by Geomet. The project has recently received investment of around €29 million ($34 million) of funding from EIT InnoEnergy, the principal facilitator and organiser of the European Battery Alliance, for the project, seeing it through to a construction decision.

Under the agreement, SMS group, a leader in plant construction and mechanical engineering for the technology metals and materials sector, will provide a complete front-end engineering design (FEED) study as the major component of the ongoing definitive feasibility study (DFS) work at Cinovec.

Under the agreement, SMS will provide the following to the Cinovec project:

  • Full process integration from the point of delivery of ore to the underground crusher through to the delivery of finished battery-grade lithium chemicals for battery and cathode manufacturers;
  • The FEED will include all of the process steps – comminution, beneficiation, roasting, leaching and purification;
  • The FEED will encompass both the lithium process flowsheet and the tin/tungsten recovery circuit delivering metal concentrates to refineries; and
  • The FEED is intended to deliver a binding fixed price lump sum turnkey engineering procurement and construction (EPC) contract with associated process guarantee and product specification guarantees for battery-grade lithium chemicals. The combination of these will greatly assist to underwrite project financing from leading European and global financial institutions lending into this new energy electric vehicle-led industrial revolution, European Metals Holdings says.

The FEED study will commence immediately and SMS group is expected to deliver the EPC contract, as the final component part of the Cinovec DFS, by the end of 2021.

Herbert Weissenbaeck, Senior Vice President for Strategic Project Development at SMS group, said: “Having successfully completed thorough technical due diligence, we believe in the compelling value proposition of Geomet’s Cinovec lithium/tin/tungsten project, which is set to become a cornerstone of the e-mobility driven European battery metals landscape. SMS group is delighted to deploy its second-to-none technology metals and materials production know-how and EPC capabilities into this exciting project.”

EMH Executive Chairman, Keith Coughlan, added: “SMS is the ideal engineering partner for the Cinovec project as it is based in neighbouring Germany with a globally-respected process design capability. The appointment of SMS is the culmination of a negotiation and due diligence process that has lasted over a year.

“EMH, Geomet and ČEZ have all been consistently impressed by SMS group’s capabilities and insights into the development of efficient high recovery plants capable of producing very high quality end-products. Successful delivery of the FEED study will provide a gateway to financing institutions and offtakers of the highest quality. We believe that the intended product and process guarantees will greatly enhance the project finance either directly through commercial lenders or through the recently announced collaborative agreement with EIT InnoEnergy.”

A 2019 prefeasibility study on Cinovec outlined a 1.68 Mt/y operation producing 25,267 t of battery-grade lithium hydroxide over a mine life of 21 years. This came with a capital cost of $482.6 million.

Rafaella considers processing options after positive TOMRA XRT ore sorting tests

Sensor-based ore sorting test work from TOMRA Sorting Solutions has shown the potential for lowering the planned capital expenditure and operating costs associated with developing the Santa Comba tungsten-tin project in Galicia, Spain, project owner Rafaella Resources has reported.

The “exceptional” ore sorting results showed a 50% rejection of un-mineralised rock and an approximate doubling of feed grade, which would significantly lower the planned process capex and opex, and enhance process efficiency through a simpler process flowsheet, the company said. The 50% cut in process tonnage also reduces the project’s environmental impact, with a far lower volume of waste generated, lower energy consumption per unit of metal produced and reduced water consumption.

The “Grade Recovery Curve” showed the potential for over 90% tungsten recovery with an increased yield of up to 55% of feed mass, it added, while testing of the low-grade ores showed viable recovery from over 2 Mt of mineralisation not currently factored into the project’s economics.

The program tested two bulk samples selected from assayed drill core crushed to two size groups: +8 mm to -20mm and +20 mm to -40 mm. Sample No. 40 was circa-1,100 kg of average grade ore at 0.15% WO3, while Sample No. 41 was circa-250 kg of low-grade ore at 0.05% WO3.

TOMRA’s conclusion in its report was that “the results from this test work were positive for both sizes and samples. Significant upgrades of WO3, as well as high recoveries, were achieved in all test runs for sample ‘40’ using X-ray Transmission (XRT), while leaving rather low grades for WO3 in the waste fraction. A calculation has shown that a 90% recovery of tungsten can be possible at a waste removal of more than 50%.

“The low-grade sample ’41’ could be upgraded by a factor of 1.7 to 3. For further calculations, a waste grade between 0.025 and 0.030 is achievable.”

The success of the XRT sorting tests allows several mining and process options, Rafaella says, including:

  • Simplification of the process;
  • Bulk ore zone mining to reduce operational costs and maximise ore recovery;
  • In-pit sorting and conveying;
  • Bulk underground mining and sorting of wider ore zones using larger and longer stopes;
  • Separate sorting of sub-grade mineralisation; and
  • Sorting of satellite deposit ores prior to hauling to the process plant.

TOMRA estimates a throughput of 1 Mt/y of feed ore and circa-500,000 t/y of pre-concentrate would require two XRT units.

Rafaella’s Managing Director, Steven Turner, said the results from the ore sorting test work have exceeded the company’s expectations.

“The clear discrimination between ore-bearing rock and low grade or barren rock has delivered high recoveries and yields allowing for a simpler process plant,” he said. “The benefits of this simplification will be significant once the metallurgical studies are completed. These results are now being fed into the feasibility study that is in the final stages of completion.

“The company looks forward to providing the market with these exciting updates on the fast tracking of its flagship project over the coming weeks.”

Santa Comba is a brownfield project with a 5.1 Mt JORC 2012 compliant near-surface inferred resource at 0.203% WO3 and 0.014% Sn and an underground inferred resource of 234,000 t at 0.95% WO3 and 0.28% Sn.

Minespider wins EIT Raw Materials funding for supply chain transparency app

Minespider, a blockchain protocol for responsible mineral tracking, has been awarded a grant of over €180,000 ($213,732) from the EIT Raw Materials Booster Programme.

The program aims to support start-ups and SMEs in creating innovative products and services that will positively impact the raw materials sector, according to Minespider.

The grant will help Minespider develop OreSource, a due diligence product that helps mines and smelters capture key information that importers in the European Union need to comply with EU Conflict Mineral Regulation. The regulation, which comes into force in January 2021, requires EU importers of 3TG (tin, tungsten, tantalum and gold) to perform due diligence to determine whether their material comes from a conflict affected or high-risk area.

Minespider Founder and CEO, Nathan Williams, said: “European importers need to have better access to data to operate in this new regulatory environment. They require certain data to be included with the materials they purchase.”

The OreSource product extends the capabilities of Minespider’s open, public blockchain protocol, which allows companies to track their raw material shipments, demonstrating where the materials come from and the conditions under which they were produced, the company says. This blockchain creates digital certificates that separate data into three different layers, depending on whether the data should be publicly visible, transparent between members of the same supply chain, or private between a company and their customer.

“This allows their clients, including Volkswagen and Google, to share sensitive transparency information with their customers and other supply chain participants securely,” Minespider says.

The OreSource app allows mines and smelters to provide information to distinguish their products from the rest of the market. Mines and smelters who use the app upload key data such as bills of lading, invoices, company policies, and third-party certifications, which are assembled into a digital certificate and linked along the supply chain.

By affixing a QR code to a mineral shipment, or on an invoice, the recipients of the materials have all the data they need to ensure their compliance with the EU regulation, secured on Minespider’s public blockchain protocol, the company claims.

Williams continued: “Responsible producers are often at a disadvantage in the global market. OreSource is a solid first step toward making responsibly sourced material the norm instead of the exception.”

Companies importing material into Europe benefit from this information, as they have all they need to conduct due diligence. “This means they can view transport routes, analyse production site responsibility, and demonstrate a chain of custody for their raw materials,” Minespider says.

OreSource will also offer analytical tools that allow material importers to identify potential conflict areas and other red flags, the company says, enabling them to ask further questions when needed and ensure all of their imports have been sourced responsibly.

Williams concluded: “The EU and other government agencies are spearheading a new global era of sustainable sourcing. OreSource will support these efforts by ensuring that key data from mineral producers is captured in a transparent manner, and communicated along the supply chain. We are moving away from a world of anonymous commodities, to one of trusted products.”

Lost Dutchman Mine ready to tell its metal separation tale

A company out of Arizona, USA, believes it has come up with a density separation technology that could upgrade heavy metal concentrates without the need for water or chemicals.

Lost Dutchman Mine (LDM), named after the legend of a rich Arizona gold deposit discovered by an elusive Dutch prospector, never since located, is the company in question. Being supported along the way by the Centre for Excellence in Mining Innovation (CEMI) out of Sudbury, Ontario, the firm is looking to find a way into the mining sector at a time when environmental, social and governance (ESG) concerns have reached a new high.

Mark Ogram, one of three Co-founders of LDM, explained the company’s aim and name, saying: “We’ve been able to find gold where people could not find it.

“We have now come up with a solution that requires no chemicals or water to purify a gold ore.”

While gold is the company’s initial focus, the process can be applied to most heavy metals including silver, copper and tungsten, according to Ogram. Some encouraging results have also been seen removing sulphides from gold ore ahead of further processing, in addition to ‘cleaning’ coal, he added.

A gravity separation process that uses air flow rather than water to separate these materials by density, the obvious comparisons are with Knelson concentrators or other separation technologies – all of which tend to use water or another medium for their processes. Ogram says Knelson concentrators are also for free gold, not refractory gold, the latter of which the LDM technology can cope with.

allmineral’s allair® technology also comes to mind as a comparison. This is a process that leverages many of the functions of the water-operated alljig® technology but, instead, uses air as the pulsating medium. So far, allair’s applications have been confined to mostly coal and other minerals.

Like many of these technologies, it is feed preparation that will prove decisive for the application of LDM technology, with ore crush size and moisture content the two key factors.

“We don’t think we would need ball mills to get the feed down to the right size,” LDM Co-founder Ken Abbott said. “A standard crushing and screening setup should be suitable.”

While test work to date has been with material in the 30-60 mesh range, Abbott is confident the technology will work with material from 100-200 mesh.

“It will be a little more of a sensitive process, but it does work should people require it,” he said.

When it comes to moisture content, a drying process will most likely be needed ahead of feeding to the LDM unit.

“The material needs to flow freely to work well,” Abbott said.

In-field test work involved the company using a tumble-type continuous screener/dryer to reach the appropriate moisture content, but a more ‘industrial’ process will be required in commercial applications.

The best results are likely to be achieved when both factors are consistent, according to LDM.

“The system requires a steady and uniform distribution in the feed cycle that includes surge capacity and automated material flow to ensure a steady feed rate,” the company says.

Dale A Shay, a consultant with RIMCON advising LDM, said vat leaching operations were already producing material at the appropriate size for the LDM technology to be tested. “They are also reducing the moisture content to an appropriate level,” he said.

Despite this, the company feels tailings applications may be the most suitable place to start with. This harks back to the ESG concerns miners are feeling – some of which revolves around tailings impoundment areas – as well as the fact the ‘conservative’ mining industry is generally more comfortable testing new technologies on material they already consider to be ‘waste’.

For the technology to prove out, the company will have to scale up its testing.

LDM has, to date, carried out benchtop, laboratory scale and in-field tests on low-grade material, but it has only reached a 1 ton (0.9 t) per hour rate.

“We would put in a tonne and get a few grams out,” Ogram said. “That is how we developed the technology.”

Despite there being a linear progression of recoveries from benchtop to lab to the field, LDM will need to go bigger to find the widescale applications it is after.

Yet, its potential entry into the market is well timed.

Removing the use of chemicals and water in a process that will most likely come after initial crushing could prove cost-effective, as well as environmentally sound.

Yes, the air flow component and feed drying will consume power on mine sites, but this ‘upfront’ operating cost will pay off further downstream as not as much material will be transported to make its way down the process flowsheet. It is more likely to go straight to tailings or backfill material feed.

Abbott explains: “The technology drastically reduces the material that will move onto final concentration, which substantially reduces material movement on site.”

For new developments, there is a knock-on benefit for permitting; the regulatory boxes are much more likely to be ticked when the words ‘water’ and ‘cyanide’ are absent from applications.

LDM Co-founder, Wayne Rod, sums this up: “Although from a cost perspective, it is expected to be competitive with other concentration technologies, the real savings will come on the ESG front and being able to reduce any environmental issues you may have.”

This is a message Rod and the rest of the LDM team are taking to the headquarters of major mining companies, where executives and board members are treating ESG challenges like a ‘cost’ they need to reduce to stay viable.

“As that ESG issue becomes even more prevalent, I see technology becoming a much bigger focus area,” Rod says. “Taking water and chemicals out of the concentration process will help alleviate some of that pressure.”

Metso engineering work steers Almonty towards production at Sandong tungsten project

Metso, in the face of COVID-19 restrictions, has kept Almonty Industries’ Sandong tungsten project in South Korea on track, completing and delivering the basic engineering work for the crushing and grinding circuit of the process plant.

Almonty said the work was delivered on May 15 and is now under review by the technical team, with approval expected within two weeks.

The overall process flowsheet with process mass balance, equipment list, plant layout drawings, process control philosophy, control diagrams and general technical information were provided after five months of extensive work by Metso, in collaboration with Almonty’s technical team, it said.

Ore characterisation tests on drop weight, bond mill work index, abrasion and crushability were conducted at the Metso laboratories during 2019 and 2020 in order to determine the physical properties, mineral liberation and comminution indices of the ore, which were used as the basis for the design criteria of the equipment for the Sangdong processing plant, it said.

“The Metso equipment selected for the basic engineering is from the world-class product range, which provides for high availability and low operational costs,” Almonty said.

Almonty’s Chairman, President and CEO, Lewis Black, said: “We appreciate Metso and its specialised professionals for their intensive work and dedication in the past months to produce this meaningful basic engineering output, turning its second-to-none experience and expertise in the mining field to the most optimum design criteria for the equipment and process of the Sangdong plant.

“Despite the hardship set by COVID-19, the timely delivery of Metso’s basic engineering work on these critical processing units and long-lead items, such as crushers and mills, will enable Almonty to meet the critical path timeline of the Sangdong project as proposed for the KfW-IBEX Bank project financing.

“The comprehensive and thorough basic engineering work produced by Metso will surely serve as the basis of attaining the performance criteria of the plant guaranteed by Metso.”

Almonty is currently running a pilot plant at Sandong (pictured) to test out the flowsheet on a much smaller scale, but the aim is to build the beneficiation plant this year before moving into tungsten concentrate powder production in 2022.

W Resources signs Régua haulage and crushing services contract with FPMI

W Resources says it has signed a contract with FPMI to provide low cost haulage and crushing services to its Régua tungsten project in northern Portugal.

Under the contract, once mining has commenced, ore from Régua will be hauled 27 km to the existing FPMI crusher and crushed to a range of 5-10 mm. As part of the service contract, FPMI will use the waste ore for rehabilitation of its existing quarry providing local environmental benefits. The estimated crushing and haulage cost is around $40-45 per metric tonne unit (mtu) and W will pay €50,000 ($56,020) to expand access roads for haulage.

The Régua mine and processing circuit comprises near-horizontal adit mining using contract mining and a combination of open stoping and room and pillar; haulage of ore from mine face to FPMI crushing plant; crushing of ore to 5-10 mm using the existing FPMI crusher, and; processing the crushed ore through to tungsten concentrate using the existing La Parrilla concentrator plant, which will be moved to Régua and upgraded later this year.

Golder Associates, which completed the JORC compliant mineral reserves and resource estimate for Régua in 2015, is working on the updated estimate and has advised it will be completed no later than early-October.

The current resources is 5.46 Mt at 0.28% WO3, with the mine on-track and targeting first ore in 2019. The development of Régua (on top of the operating mine at La Parrilla) will increase W Resources tungsten production profile to over 3,800 t/y, the company says.

Michael Masterman, Chairman of W Resources, said: “Régua is a high-grade, low-capital cost tungsten mine development with significant scope to increase the resource base, which is currently underway. The haulage and crushing services contract with FPMI allows W to advance Régua to development with efficient capital deployment.

“Our aim is to bring Régua into commercial production with sensible capital deployment leveraging contract mining, haulage and crushing contracts, thereby keeping the capital costs of development low. The FPMI contract is an important step in achieving this objective.”

W Resources reaches new processing milestone at La Parrilla tungsten-tin mine

W Resources has fed the first ore through its newly commissioned jig and mill plant at its La Parrilla tungsten-tin mine in Spain.

The move follows construction completion in April and commissioning of the conveyors, pumps, thickener, two mills and two jigs over the past month, the company said.

The plant takes ore crushed to less than 10 mm and increases the grade to be fed to the concentrator plant while rejecting waste mass, according to the company. This is achieved with high tungsten and tin metal recoveries, W said.

The jigged mine feed will now be fed through the existing concentrator plant, while the new large scale concentrator plant advances to construction completion in June and commissioning in July, according to the company.

Michael Masterman, Chairman of W Resources, said: “Great progress has been made by the team which keeps us on-track to ramp-up to design production capacity of 200 t/mth by the end of 2019.

“At this stage of construction, it is important to clarify that commissioning a metallurgical plant is not a turn of a key process. In the jig and mill plant alone there are two jigs, two roll mills, a thickener, reject disposal system, 10 screens and feeders, nine conveyors, five pumps, and over 50 motors which need to be started, aligned and tied into an integrated control system. The team has done an outstanding job commissioning the plant and achieving first jigged concentrate.”

The crushing circuit at La Parrilla, supplied by Metso Minerals’ Portugal division, is made up of a C130 jaw crusher and secondary cone crusher, both with vibrating grizzlies prior to size reduction, and two tertiary cone crushers in closed circuit with a double deck banana screen.

With a throughput of 350 t/h, the two alljig® jigs, provided by allmineral, provide grading, enrichment and cleaning of the pre-ground ore at La Parrilla.

Blast off at W Resources’ La Parrilla tungsten mine

W Resources says the first T2 blast at the La Parrilla tungsten mine in Spain shot successfully on April 30.

The blast covered a mainly barren zone to prepare access to the 10 m benches closer to the run of mine pad and crusher plant in the Fast Track Mine area, the company said. This explosion continued to open up directly accessible ore to the mine operation.

Ore mined to-date at the operation, which is envisaged as a scalable project, starting at 2 Mt/y to produce some 2,700 t/y of tungsten concentrate and 500 t/y of tin concentrate, before an expansion to 3.5 Mt/y and beyond, has been free-dig or from the early blast area, W said.

“The immediate priority at La Parrilla is to complete the commissioning of the jig and mill plant, which is underway in parallel with the completion of the large-scale concentrator plant,” the company said.

Michael Masterman, Chairman of W Resources, said: “The first T2 mine blast at La Parrilla is a significant event for W Resources and kicks-off the commencement of hard rock mining operations.

“The explosive blast was completed successfully with the highest level of safety and supervision. The ore will be mined at low cost using a truck and shovel operation and transported via the newly constructed ramp to the new 350 t/h crusher plant where it will be crushed and then fed to the newly constructed jig and mill plant as part of the commissioning process.”

The crushing circuit at La Parrilla, supplied by Metso Minerals’ Portugal division, is made up of a C130 jaw crusher and secondary cone crusher, both with vibrating grizzlies prior to size reduction, and two tertiary cone crushers in closed circuit with a double deck banana screen.

With a throughput of 350 t/h, the two alljig® jigs, provided by allmineral, are expected to provide grading, enrichment and cleaning of the pre-ground ore at La Parrilla.

Fairport and Saloro bring Barruecopardo tungsten mine closer to production

Saloro is gearing up for first production at its Barruecopardo tungsten mine, in Spain, with plant equipment being run through its paces, Fairport Engineering has reported.

Fairport, which has been supporting the re-opening of the historic tungsten mine since 2014 in the plant design and engineering aspects, said the multi-stage crushing and screening plant was the first part of the flowsheet to be tested, with the main concentrator following closely behind. The mine’s steady-state output rate is 260,000 metric tonne units of tungsten oxide.

“The state-of-the-art production facility, that combines both modern day technology and traditional minerals processing systems, will treat a scheelite ore mined at site to produce a tungsten-rich concentrate that will account for around 13% of non-Chinese global supply of tungsten concentrates,” Fairport said.

The Barruecopardo mine has a history dating back almost 100 years. It is located in the Salamanca Province of western Spain, an area of substantial historic tungsten production. For the majority of its operating life, Barruecopardo was the largest tungsten mine in Spain, producing a high-quality tungsten concentrate from open-pit mining and related processing operations, according to Fairport. Activities ceased at the old mine in the early 1980s.

“Since Saloro’s inception, in 2004, it has diligently advanced studies, permitting and funding activities related to its project for the re-opening of the Barruecopardo mine,” Fairport said.

Fairport was awarded the Construction Management Contract for Barruecopardo last year.