Tag Archives: Anton Du Plessis

Zinnwald Lithium and Metso engaged in ‘one-stop shop’ studies for LiOH project

Zinnwald Lithium plc and Metso have continued to make progress developing the beneficiation plant concept for the integrated Zinnwald lithium project near Dresden, Germany.

This project, which is situated in the heart of the European chemical and automotive industries, is designed to supply battery-grade lithium hydroxide (LiOH) to the battery sector.

Anton du Plessis, CEO of Zinnwald Lithium, said: “Achieving resilience and sustainability for the electric vehicle battery supply chain is essential, including in Europe where over 30 new gigafactories are planned by 2030.

“Our vision is to build a world-leading integrated lithium hydroxide operation to support this supply chain, adhering to the highest environmental standards. We are therefore delighted with the progress being made with Metso as we look to design the best possible particle sorting, otherwise known as the beneficiation process, for the plant.”

Metso was engaged to assist Zinnwald Lithium with its definitive feasibility study in early 2022. The two companies have since been working on developing a successful beneficiation process flowsheet based on a complete mineralogical study, batch and locked cycle tests. The design basis of the tests considers the mixture of two distinctive lithium ore types, Alibite Granite and Quartz Mica Greisen, potentially expanding the resource base considerably.

du Plessis said: “After the completion of the beneficiation pilot, we will start refinement of the calcination and hydrometallurgical flowsheet. We have partnered with Metso to develop and deliver this project as a ‘one-stop shop’ to reduce the need for engagement with multiple suppliers and to maximise in-house expertise in the design of the plant from run-of-mine to the battery-grade final product.”

Mikko Rantaharju, Vice President, Hydrometallurgy at Metso, added: “Metso is delighted to support Zinnwald Lithium with the development of this ambitious project. Development and supply of state-of-the-art, sustainable processes and equipment for the critical minerals required for the electric vehicle supply chain is an essential part of our minerals processing expertise.”

Metso provides sustainable technology and equipment for all ore types, including the critical minerals required for the energy transition, supported by its unique Planet Positive offering.

Metso says its solutions for battery minerals cover the entire lithium, nickel and cobalt production chain – from the mine to battery materials and black mass recycling – with project scopes ranging from equipment packages to plant deliveries. For high-end lithium-ion battery chemicals production, Metso’s expertise covers the extraction of lithium from various lithium sources up to battery-grade lithium salts.

Zinnwald Lithium and Epiroc to collaborate on low-emission mining operation

Zinnwald Lithium, the Germany-focused lithium development company, has signed a Memorandum of Understanding (MoU) with Epiroc Rock Drills AB to, it says, collaborate in the development of a state-of-the-art mine at its 100%-owned Zinnwald lithium project.

Under the terms of the non-binding MoU, Zinnwald Lithium and Epiroc will develop plans to implement high-end technology and deliver a low-cost mining operation focused on minimising CO2 emissions, the London-listed company said.

With an approved mining licence, the project is designed to be a long-life underground lithium mine with associated processing facilities, enabling the company to become an important local supplier of battery-grade lithium hydroxide to the European battery sector, it added.

In an interview with IM in September, Zinnwald Lithium CEO, Anton du Plessis, mentioned that electric LHDs could be used to load and haul ore to an ore pass at the mining operation. He said the cost estimates to use such equipment – which are factored into the project’s $336.5 million initial construction capital expenditure bill – had come from Epiroc.

“The base case is battery-operated loaders,” he told IM at the time. “The final selection will be based on an optimisation study where, in particular, partly trolley-fed haulage systems will be investigated.”

du Plessis added in the latest press release on the MoU: “Our vision is to build a world-leading, highly economic mine that adheres to the highest environmental standards; attracting Epiroc as a partner, which shares this ethos and brings with it considerable experience and technology, is a further step towards achieving this goal. By optimising mine design and material flow for electrification and automation, our joint focus is on fossil-free exploration and mining, sustainability and circular economy, including the use of battery-operated underground mining equipment as well as loading and haulage machinery. We look forward to providing updates as our plans advance.”

The Zinnwald project includes an underground mine with a nominal output of approximately 880,000 t/y of ore at an estimated 3,004 ppm Li and 75,000 t/y of barren rock. Processing, including mechanical separation, lithium activation and lithium fabrication, will be carried out at an industrial facility near the village of Bärenstein, near the existing underground mine access and an existing site for tailings deposition with significant remaining capacity.

With a 7-km partly-existing network of underground drives and adits from the ‘Zinnerz Altenberg’ tin mine, which closed in 1991, already mapped out, the bulk of ore haulage is expected to be via either conveyor or rail.

The nominal output capacity of the project is targeted at circa-12,000 t/y LiOH with circa-56,900 t/y of SOP, 16,000 t/y of PCC, circa-75,000 t/y of granite and 100,000 t/y of sand as by-products.

Zinnwald striving for battery-electric circularity with lithium project development

The development of the integrated Zinnwald lithium project in Germany could see the incorporation of a battery-electric fleet of LHDs and the return of metal production to a region of saxony with mining history dating back to the Middle Ages.

The London-listed owner of the project, Zinnwald Lithium Plc, has just released a preliminary economic study on its namesake project focused on supplying battery-grade lithium hydroxide to the European battery sector.

As with any responsible battery metal project being developed today, the project’s ‘green credentials’ are being considered even at this early stage.

Zinnwald Lithium has been keen to flag these, mentioning the project is located close to the German chemical industry, a fact that should enable it to draw on a well trained and experienced workforce with well-developed infrastructure, plus reduce the ‘carbon footprint’ of the final end-use product.

This focus will see all aspects of the project – from mining through to production of the end product – located near to the deposit itself.

Zinnwald Lithium also said the project has the potential to be a low- or ‘zero-waste’ project, as the vast majority of both its mined product and co-products have their own large-scale end-markets.

This could see it produce not only battery-grade lithium hydroxide monohydrate products, but sulphate of potash (SOP) for the fertiliser market and precipitated calcium carbonate (PCC) – the latter being a key filling material in the paper manufacturing process.

The project now includes an underground mine with a nominal output of approximately 880,000 t/y of ore at an estimated 3,004 ppm Li and 75,000 t/y of barren rock. Processing, including mechanical separation, lithium activation and lithium fabrication, will be carried out at an industrial facility near the village of Bärenstein, near the existing underground mine access and an existing site for tailings deposition with significant remaining capacity.

With a 7-km partly-existing network of underground drives and adits from the ‘Zinnerz Altenberg’ tin mine, which closed in 1991, already mapped out, the bulk of ore haulage is expected to be via either conveyor or rail

The nominal output capacity of the project is targeted at circa-12,000 t/y LiOH with circa-56,900 t/y of SOP, 16,000 t/y of PCC, circa-75,000 t/y of granite and 100,000 t/y of sand as by-products.

The company is looking to complete the ‘circularity’ dynamic in its fleet and equipment selection, according to CEO, Anton Du Plessis, who mentioned that electric LHDs could be used to load and haul ore to an ore pass in the envisaged operation.

He said the cost estimates to use such equipment – which are factored into the project’s $336.5 million initial construction capital expenditure bill – have come from Epiroc, which has a variety of battery-operated mobile equipment.

“The base case is battery-operated loaders,” he told IM. “The final selection will be based on an optimisation study where, in particular, partly trolley-fed haulage systems will be investigated.”

Forms of automation are also being studied, Du Plessis said, with the caveat that “only select technologies we consider proven” will be evaluated.

Zinnwald Lithium is also looking at electric options for long-hole drilling underground, with both battery-based units and cabled versions under consideration and requiring firming up in the optimisation study.

With a 7-km partly-existing network of underground drives and adits from the ‘Zinnerz Altenberg’ tin mine, which closed in 1991, already mapped out, the bulk of ore haulage is expected to be via either conveyor or rail. The former, of course, will be powered by electricity, but the company is also considering potential battery-electric options for the latter, according to Du Plessis.

The company is blessed with existing infrastructure at the mine, which should help it in advancing the project at the pace its potential end-use manufacturing suppliers would like. It is already evaluating options for the construction stage – with an engineering, procurement and construction management contract the most likely option – and it has plans to conclude a feasibility study by the end of next year.

Du Plessis said while most of the fixed assets have been removed or were deemed outdated a long time ago from the former operating underground mine, other infrastructure was in good shape.

“The excavations, main level, underground workshop, ventilation shafts and, particularly, 2020 refurbished access tunnel provide a very good starting point for our project,” he said. “The access tunnel was originally constructed for dewatering the old mine and, therefore, the mine and the tunnel have been maintained very well.”

The company is now shifting to the bankable feasibility study and currently selecting partners for the project.

With what it calls a “simple, five-stage processing” route confirmed by test work for the extracted material at Zinnwald, the company is looking to select OEMs with the optimal concept for the project, Du Plessis said.

“In the PEA, mineral processing equipment cost is based on Metso Outotec estimates, pyrometallurgy is based on Cemtec technology, and hydrometallurgy is based on various providers’ technology,” he clarified.