Tag Archives: Australia

Newcrest grads underline automation possibilities with SmartHog development

The use of an all-terrain unmanned ground vehicle, incorporation of military spec hardware and sensors, a bank of lead/acid batteries, and the ingenuity of three mechatronics graduates have brought Newcrest Mining closer to its goal of automating the PC1 extraction level at its Cadia East gold-copper underground mine in New South Wales, Australia.

The company has progressively been rolling out automation-focused technologies at this mine steered by its Mining Innovation and Automation (MIA) Team.

Last year, this team, with the help of Epiroc, successfully implemented the first semi-autonomous integrated production level at the mine, with, at the time, an autonomous Scooptram ST18 capable of full 24/7 production across seven drives of a whole panel cave at the operation.

It is a slightly smaller machine that is helping the company progress from the automation of production and support equipment at the mine to autonomously completing a range of inspection tasks on the fully-autonomous PC1 extraction level.

The seeds for the SmartHog vehicle – a WartHog all-terrain unmanned ground vehicle with ‘smarts’ – were sewn back in early 2021, when Cadia’s first mechatronics graduate arrived to join the MIA team.

“A challenge was set to build an automated underground inspection robot utilising a WartHog chassis,” Aaron Brannigan, Cadia General Manager, told IM, explaining that the challenge provided a hands-on task for the graduate that would result in a solution that was beneficial in realising the team’s key focus of improving safety through technology and innovation.

The new graduate began to design this robot with the WartHog chassis as the base and, over time, was joined by two more mechatronics graduates – one with a dual computer science degree – where the conceptual work behind the robot really started to accelerate.

In early 2022, the three started to build the robot from a range of hardware, all based on military specifications to withstand the underground environment.

Brannigan explained: “To achieve this, the graduates made every cable themselves, crimped every connector, assembled all the components and sensors and wrote the software code for various aspects of the sensor outputs.”

Since the inspection robot was designed to replicate tasks typically performed by people on the level, it had to be fitted with a range of sensors including LiDAR, Radar, a PTZ camera, stereoscopic camera, LED spotlights and a weather station for wet bulb temperatures and measuring wind velocity for ventilation purposes, the company explained. Powered by a bank of lead/acid batteries, the SmartHog was commissioned on surface and, in June 2022, completed trials underground, including being ‘checked in’ to the autonomous system.

“With some further testing and improvements, the SmartHog will soon live permanently underground in the autonomous zone and will be able to complete a range of inspection tasks,” Brannigan said. “This moves us closer to our goal of automation at the extraction level and is a key focus of improving operational safety and sustainability through technology.”

IM put some questions to Brannigan to find out more.

IM: How are you leveraging technology from the automotive sector in the SmartHog? What kind of adaptations are required for this to work underground?

AB: The SmartHog utilises automotive industry radars as a way of localising its position underground. LiDAR is vulnerable to interference from dust and moisture in the air, whereas radar can ‘see’ through these, allowing the SmartHog to continue to navigate and know its position underground when these are present. We believe the use of radar in this context is industry-leading and our intent with this is twofold: first, it demonstrates the advantages and reduced downtime of radar over LiDAR and, second, it encourages original equipment manufacturers (OEMs) to move from LiDAR to radar for their autonomous equipment so they can take advantage of the benefits it offers.

IM: What existing underground communications infrastructure is in place at PC1 to help facilitate the real-time transmission of data from the SmartHog?

AB: Our underground PC1 level has Wi-Fi throughout which forms the basis of the autonomous system, and this is connected to the surface via fibre optic cables.

IM: How are you using the new data you are collecting with the SmartHog at Cadia? What tasks is it allowing you to do that you couldn’t previously carry out (or conducted differently)?

AB: The primary purpose of the SmartHog is to undertake a range of tasks that a person has usually performed in the past, improving both safety and efficiency. One example is geotechnical inspections of draw points and extraction drives. In the past when it was necessary for a Geotechnical Technician to undertake an inspection, the autonomous level would need to be deactivated and the autonomous equipment removed to ensure there was no risk of vehicle on person interaction. This is a time-consuming process and means production is stopped for the duration, not to mention the potential risk to the person entering the level on foot.

With the various sensors fitted to the SmartHog, it can scan and photograph the draw point (using the conventional digital camera and stereoscopic camera) and send this information to the surface where a Geotechnical Engineer can review it, all while autonomous loading operations continue.

As the SmartHog is ‘checked in’ to the autonomous system and is ‘seen’ by the other equipment, it can operate independently but also become part of the autonomous traffic management system. Should the Geotechnical Engineer require further information about the draw point, the SmartHog can return and drive up to the limit of the draw point and capture further data from the range of sensors.

IM: Are there other projects outside of the PC1 where you could use the SmartHog?

AB: We anticipate in the future that each panel cave could have their own SmartHog, so that a range of tasks can be completed as previously outlined.

IM: Are there plans to make more SmartHogs? Could they be adapted to carry out other tasks?

AB: The way we have developed the first SmartHog may look very different to how any future SmartHogs may look. The value the graduates gained from solving a current problem using a hands-on approach is priceless and helps demonstrate the value of the graduate program. We believe the graduate program at Newcrest is industry-leading given the types of challenges our graduates can address and solve using the skills recently acquired at university on real-world challenges.

Given the SmartHog is battery powered, as battery technology improves, the next generation of SmartHogs will be able to carry lighter and higher capacity batteries allowing for larger payloads and longer run times. This could allow the inclusion of other sensors and different types of cameras, such as infrared and thermal, which are traditionally heavy items and would limit the range of the current battery performance. The options available are endless once battery technology improves to the point where runtimes are increased and recharge times are reduced. This is not far off given the speed at which battery technology and design is improving.

Gekko Systems improves carbon sampling accuracy, safety at Cowal gold mine

The technical team at Gekko Systems has released further data that, it says, supports the benefits of new technology that optimises carbon management systems in gold processing facilities.

Optimising carbon management in the carbon-in-leach (CIL) circuit reduces gold solution losses and improves gold circuit recovery. This is essential for sites needing to offset higher inflationary costs with improved revenue, Gekko says.

The case study, released today, reviews operational performance of Gekko’s Carbon Scout at Evolution’s Cowal Gold Operation in New South Wales, Australia.

The Carbon Scout is a self-contained, ground-level sampling system that measures carbon concentration, as well as pH, DO and, more recently, has an option to measure gold loading on carbon using XRF technology on an hourly basis. Optimising the Carbon Scout for site conditions allows for more accurate, reliable and repeatable measurement of the carbon inventory of the CIL
circuit, Gekko says. Automating data collection and process actions such as carbon transfer, meanwhile, reduces operator risk exposure and person-hours (previously dedicated to the manual data collection tasks).

Installation of the Carbon Scout at Cowal commenced in February 2019, with the Gekko Systems Digital Services and Technical team providing ongoing support – both onsite and remotely – in the initial months of the system’s operation to ensure maximum availability was achieved and Evolution Mining was receiving the full benefit of the Carbon Scout.

After a few months of integration with the SCADA system, the Carbon Scout was able to use the data and analysis to facilitate automated transfer of the carbon inventory within the circuit to maintain pre-determined concentrations, according to Gekko.

The Carbon Scout at Cowal has successfully reduced operator exposure to slurry containing hazardous materials including cyanide and improved sample authenticity by collecting a more representative and repeatable sample, Gekko said in the case study.

The other critical success achieved by the Carbon Scout is its ability to take a larger CIL tank sample that is more representative. This is achieved by the Carbon Scout drawing from deeper within the tank, where more superior slurry-carbon mixing occurs, and a larger sample of up to 20 litres is taken, which is 10-20 times the typical manual sample size. Additionally, the sample is extracted from a consistent point each time the Carbon Scout cycle samples from that tank.

Gekko concluded: “Optimising the Carbon Scout for site conditions allows for more accurate, reliable and repeatable measurement of the carbon inventory of the CIL circuit. Utilising these measurements and integrating with a plant’s SCADA system, the automatic control of carbon concentrations through the CIL circuit can be achieved. Automating data collection and process actions such as carbon transfer reduces operator risk exposure and man hours previously dedicated to the manual data collection tasks.

“The improvement derived from the utilisation of the Carbon Scout should lead to increases in circuit recovery by reducing soluble gold losses.”

The Carbon Scout was originally the brainchild of Curtin University’s Gold Processing team, led by Dr Teresa McGrath and Bill Staunton. Curtin University selected Gekko Systems as its commercialisation partner.

Staunton noted that “real-time data collection instrumentation and related analysis is essential to the future of the gold processing industry”.

Gekko Systems’ Technical Director, Sandy Gray, said: “The increasing installation base of the Carbon Scout globally is providing a fantastic baseline of evidence that supports the benefits of quality data collection and automation.”

Anglo American, QMRS commission industry-first Shaft Rescue System at Aquila

Queensland Mines Rescue Service (QMRS), in partnership with Anglo American, has commissioned a critical new piece of mine rescue equipment for use across underground mines in the Queensland mining industry.

A funding commitment, in excess of A$2.3 million ($1.6 million) from Anglo American, enabled QMRS to purchase the Queensland mining industry-first Shaft Rescue System (SRS), a mobile truck-mounted emergency system to assist in underground rescues.

The commissioning at the Aquila mine followed a 2019 commitment from Anglo American Australia then-CEO, Tyler Mitchelson, to wholly fund the equipment for the QMRS.

Chief Executive Officer of QMRS, David Carey, acknowledged Anglo American for funding the equipment and supporting QMRS in its design and engineering.

“While we hope we never need to use it, the SRS will form part of the emergency response plan for every underground mine site in Queensland and we’re grateful for Anglo American’s support in delivering it,” Carey said. “The SRS lowers interchangeable cages into mine shafts to rescue trapped miners and is equipped with a world-first intrinsically safe directional Wi-Fi communications system that can be used safely underground.”

The Wi-Fi enables radio communications from the rescue cage to the surface, captures and shares real-time video and sends data from a gas monitoring system, according to Carey.

QMRS says the SRS has interchangeable cage options and over 1,200 m of rope on the drum for use in deep shafts. It is engineered with multiple fail-safe braking systems, hydraulically powered from the Volvo FMX 10*4 truck engine, which also has a back-up power system.

Carey added: “This equipment will make a meaningful difference to our emergency response capabilities in Queensland and will be housed at our Dysart headquarters in the heart of the Bowen Basin, so it’s close by if ever required.”

Head of Safety and Health at Anglo American’s Steelmaking Coal Business, Marc Kirsten, said the company was pleased to support QMRS in delivering the SRS for all those who work underground in the mining industry in Queensland.

“QMRS supports our industry with leading edge emergency response capability and support, and we are pleased to have been able to support them in turn, by providing this vital and potentially life-saving equipment,” Kirsten said.

“The SRS will improve emergency response capabilities across all underground mines in the Queensland mining industry, and it was important to us to make this investment in industry safety.”

Anglo American operates five steelmaking coal mines in Queensland’s Bowen Basin, three of which are underground.

Orica’s Chemicals business eyes new complementary opportunities

Orica’s Investor Day, taking place last week, highlighted potential growth areas in one of the company’s less-publicised ‘verticals’, its Chemicals business.

Mining, Quarry & Construction and Digital solutions often steal the headlines in quarterly updates, but Adam Hall, Group Executive & President of Asia & Chemicals, showed there is plenty going on within the company’s fourth vertical.

This business, which covers the fields of ore processing, chemical stabilisation and recovery & treatment, strengthens Orica’s presence across the mining value chain, having a strong alignment with its global footprint and understanding of customer needs, the company says. It also acts as a complementary component of Orica’s “new solutions offerings”.

Orica’s current exposure is to leaching agents and emulsifiers, with cyanide making up its biggest product today.

As one of the largest producers of sodium cyanide for mining, Orica delivers the leaching agent in briquette form in circa-1 tonne boxes that are easily containerised, or within an Orica-designed Sparge isotainer system, or in liquid form via purpose-built iso tanks suitable for safe road or rail transport around the world.

It relies on the Yarwun, Gladstone Cyanide Manufacturing Facility in Queensland for this supply, which has an annual capacity of 95,000 t/y and is compliant with ISO9002 and the International Cyanide Management Code. This facility is complemented by the company’s sodium cyanide transfer stations in Peru, Ghana and Malaysia.

Hall was positive about potential growth opportunities in the cyanide space, explaining demand for cyanide was expected to outpace the predicted growth in gold ore treated to 2026 as the complexities involved with treating orebodies continued to increase.

He said the Yarwun facility had great brownfield growth opportunities around the site, with the company evaluating potential expansions in the region of “high single digit” or “low double digit” percentages.

Hall was equally positive about cyanide retaining its presence in the gold leaching process, saying that, while substitution questions continued to come up, the realities associated with such a transition meant it was infrequently feasible.

“There is one major mine that has switched away from using cyanide into a different reagent,” he said. “That cost them north of $100 million, and our understanding is they would not necessarily do it again. Also, that specific mine has a certain lithography that lent itself to using that reagent.”

Hall said Orica’s emulsifiers – which allow it to differentiate its explosives products through maintaining the stability of the mixture – represented “a small but mighty part” of the company’s product suite. He saw potential growth opportunities for emulsifiers, which he said contained the “secret sauce for emulsification”.

Outside of these two Orica mainstays, Hall highlighted the potential for Orica to play in both flotation and solvent extraction markets as part of growth opportunities that added up to A$23 billion ($16 billion).

In flotation, collectors, frothers and flocculants are integral to optimising the process. The same can be said for solvent extractants in the SX space.

“We see all of these as potentially interesting for Orica,” Hall said. “These are all big fields…but each of them has something we could potentially partner or bring to our clients, and something we will be looking to do over the next five years or so.”

Partnerships could potentially see Orica team up with big chemical players that have a by-product or comparatively small value stream coming out of an integrated facility where Orica could bring its “deep understanding of what the miners need and how we can deliver against that using the products that are produced”, he explained.

This could see Orica act as an agent, an offtaker, or purchaser of the by-product production unit.

As with all other Orica verticals, the Chemicals business will be looking at any potential bolt-on to the emulsifier and cyanide offering as a way to influence more of the value chain, ensuring changes made up- or down-stream provide value throughout the full flowsheet.

DRA Global offloads G&S to KAEFER Integrated Services

DRA Global and KAEFER Integrated Services have executed an agreement for the sale and purchase of the business of G&S Engineering Services Pty Ltd and G&S Support Services Pty Ltd (collectively G&S), comprising selected contracts, assets and liabilities for A$8 million ($5.6 million).

The sale is subject to conditions precedent standard for a transaction of this nature and is currently expected to complete before the end of the September quarter of 2022.

G&S, based in Mackay, Queensland, has a 25-year track record of delivering services to the Australian resources sector, with a focus on maintenance and shutdown services and structural mechanical piping (SMP) construction services.

KAEFER Integrated Services is a provider of technical industrial services specialising in insulation, access, surface protection, passive fire protection, as well as mechanical services.

DRA Interim Chief Executive Officer, James Smith, said: “DRA has been undertaking a strategic review of its business, to ensure that we re-focus on our core strengths of engineering, project delivery and operations management. G&S, with its focus on operational maintenance, SMP construction and shutdown services, is not part of this core focus.

“We believe the G&S business will be best served under the ownership of KAEFER, where it can benefit from having an owner that is strategically aligned to providing the required investment and management focus.”

The sale comprises certain key contracts, assets and liabilities of G&S. Importantly, the new owner, KAEFER, is committed to building on G&S’ work program and connection with clients and suppliers and maintaining a strong workforce, DRA says.

DRA previously announced the cessation of its APAC construction business, with G&S currently seen as loss-making, as a result of some poorly performing construction projects. As a result, it is no longer considered a core part of DRA’s activities.

For the financial year ended December 31, 2021, G&S contributed approximately 20.1% of group revenue, EBITDA and profit contributions were negative, and accounted for approximately 10% of Group assets. Those proportions have since decreased.

The re-focus of DRA’s APAC business on engineering, project delivery and operations management requires a restructure to optimise these operations, the company says. Further, the group is finalising the outcomes of its previously announced operating model review which is also expected to optimise the group’s corporate overhead structure.

Orica’s WebGen wireless initiation system helps unlock reserves at BMTJV Renison tin mine

The Bluestone Mines Tasmania Joint venture (BMTJV) says it has become the first company in the Tasmania mining sector to demonstrate Orica’s fully wireless initiating system, WebGen™.

Since early 2021, BMTJV, the owner of the Renison tin mine, has been in consultation with Orica to implement the WebGen wireless blasting technology.

The first WebGen blast was successfully loaded in the Central Federal Basset (CFB_1458_5990_F4) section of the mine on June 13, 2022, with the first wireless blast in Tasmania successfully fired at BMTJV over the mine’s leaky feeder system on June 19.

Some 107 WebGen primers were loaded into BP4 (Block Panel 4) and “slept” for 14 days while BP3 was charged and fired, the company explained. Due to the geometry of the blast – and it being a high seismicity area – for B4 to be mined conventionally, a further 60 m of development would have been required to recover this ore.

The Orica WebGen system includes an i-kon™ plugin detonator, a Pentex™ W booster and a DRX™, which is a digital receiver comprising a multi-directional antenna and a battery that serves as the in-hole power source.

The Encoder Controller individually programs each wireless primer with its own unique encrypted codes. This encoder contributes to the inherent safety of the system, and programs each wireless primer with two codes, BMTJV explained. The first code is a unique group identity number for exclusive use at each mine and assigned to specified groups of primers which will sleep, wake and fire together. The second code is a ‘delay time’ specific to the wireless primer and blast design.

Mark Recklies, Chief Operating Officer – BMJTV, said: “WebGen has now been used to support continual safety improvements and deliver savings across the working mine.”

DustGuard looks to clean up Australian mining market with WaterGasRenew distribution pact

DustGuard Corp, a provider of cloud-based protection and safety solutions for machinery and people operating in severe off-highway environments, has announced a strategic agreement with WaterGasRenew Pty Ltd as its exclusive distributor in Australia.

DustGuard’s namesake product, DustGuard™, continuously monitors the combustion air of high horsepower, off-highway engines for the presence of unsafe levels of dust particles that can reduce engine reliability and cause engine failure, the company says. DustGuard’s partnership with WaterGasRenew Pty Ltd will allow mining companies in Australia to benefit from reducing engine wear and damage related to dust intrusion, thereby improving fleet reliability and lowering engine repair or replacement costs, it says.

Jason Green, DustGuard Corp’s President, said: “We are very pleased to partner with WaterGasRenew in Australia. Their extensive experience in the mining industry combined with a proven track record of exceptional customer service will ensure that our technology delivers substantial improvements in fleet reliability for Australian mining companies operating in some of the most severe environments in the world.”

DustGuard was founded around the DustGuard engine protection solution. Other related technologies are being added to the company’s product lineup including CabGuard™, which monitors and alerts for dangerous particle, carbon monoxide, temperature and vibration levels inside operator cabs, and RoadGuard™, which monitors and alerts for haul truck vibration and g-load levels to protect tyres, suspension and frames while providing real time reporting of haul road conditions.

Bob Dixon, WaterGasRenew’s CEO, said: “We are privileged to be chosen to represent such an exceptional product and company. We have seen the DustGuard engineering team create unique solutions that satisfy both the technical and financial requirements of our customers. The DustGuard engine protection system is the first of a family of products that are designed to protect both current and future generations of mining equipment and operators. The Australian industry has always focused on the importance of safety, reliability and compliance and these principles are at the core of the DustGuard technology platform.”

Orica’s hardware and software platforms converging for Mining 4.0

Orica’s corporate vision of “mobilising Earth’s resources in a sustainable way” is being further realised through a host of developments from its Digital Solutions and Blasting Technologies divisions, IM reports.

Those involved in charging operations could soon benefit from the launch of Orica and Epiroc’s Avatel™ solution, which, in combination with the WebGen™ wireless initiation platform, offers the ability to remotely blast a development face.

At the same time, the company is busy with the sustainable production of emulsion, the integration of geological orebody information to optimise energy use for blasting, and the expansion of downstream mineral processing tools.

Avatel

Avatel is a combination of state-of-the-art hardware and software solutions designed to mechanise the blasting process.

It includes Orica’s HandiLoader™ emulsion process body, Epiroc’s M2C carrier integrating an RCS 5 control system with Orica’s LOADPlus™ control system, a WebGen 200 wireless initiation system and an automated WebGen magazine. Epiroc has also incorporated onboard dewatering and lifter debris clearing capability, while Orica’s SHOTPlus™ intelligent blast design software is leveraged to deliver superior blasting outcomes, Orica says.

Orica and Epiroc’s advanced technologies integrated into the Avatel system

These components help eliminate the need for personnel exposure at the development face throughout the charging stage of the mining cycle, keeping personnel out of the line of fire, by substituting inherently high hazard manual tasks with a mechanised development charging solution.

A prototype Avatel unit is set to commence operations at Agnico Eagle Mining’s Kittilä gold mine in Finland in the next few months. This follows “alpha trialling” of the complete prototype unit at Epiroc’s Nacka test mine in Stockholm, Sweden.

Adam Mooney, Vice President of Blasting Technology for Orica, said: “Our goal for Kittilä is to expose Avatel to a real mining environment, putting the unit through its paces in an active mine where safety, productivity and reliability are core requirements for success.

“We will gain a practical understanding of how Avatel will fit in with and benefit the entire mining cycle, while also taking the opportunity to measure the blasting improvements possible through the combined use of electronic initiation timing and the precise blast energy control available with Avatel.”

A separate unit, meanwhile, will head to Newcrest Mining’s Cadia copper-gold mine in New South Wales, Australia, later this year, for the first commercial deployment. This is currently undergoing pre-delivery commissioning at Epiroc’s customer centre in Burnie, Tasmania.

Cyclo

Not too far away in Papua New Guinea, Orica has successfully commissioned a Cyclo™ emulsion technology unit, which has been running at a customer site for around two months, according to Mooney. The unit in question has treated in excess of 100,000 litres of used oil, he said.

Cyclo combines the company’s emulsion technology with used oil processing technology to transform mine-site used oil for application in explosives. To provide the tight quality control and regular testing required to manufacture emulsions with such inputs, Orica has partnered with CreatEnergy to develop a standalone, on-site solution to treat used oil.

Orica initially scheduled Cyclo for market introduction in late 2022, but it scaled and sped up development and production plans to support customers’ operations and curtail material disruptions brought about by COVID-19.

The first automated containerised used oil recycling system was commissioned in Ghana late in 2021, with the Papua New Guinea unit being the latest deployment.

Cyclo – containerised, automated used oil recycling service at a customer site in Ghana, Africa

A Senegal Cyclo debut is on track for July given the unit is already in country and connected into the emulsion plant on site, Mooney explained.

The company also plans to bring to market a Cyclo unit suitable for Arctic conditions by the end of this year, with the solution already under construction.

Data to insights to intelligence

Aside from hardware and sustainable emulsion solutions, Orica has recently signed an agreement with Microsoft Azure predicated on creating data-rich and artificial intelligence-infused tools that enable productivity, safety and sustainability benefits on site, with Raj Mathiravedu, Vice President of Digital Solutions, saying such a tie-up enables the company to think of the blasting value chain in a much more holistic manner.

“Orica Digital Solutions’ purpose is to develop and deliver a suite of integrated workflow tools to enable the corporate vision of mobilising Earth’s resources in a sustainable way,” he said. “A key attribute to delivering this workflow is the journey that we need to incorporate from data to insights to intelligence.”

Mathiravedu says the company is looking to go beyond the traditional solutions pairing software and IoT devices for a discrete product to – with the help of Microsoft Azure capabilities – building “answer products” focused on improving workflows.

“These workflows can benefit from understanding how geology within the orebody intelligence space can help us determine the optimised energy required for blasting in a real-time production workflow,” he said. “We have started this journey and are already delivering value to our customers by integrating workflows from orebody to processing.”

One example of this is the company’s FRAGTrack™ suite of solutions, devised to provide blast fragmentation data with auto-analysis capability.

Delivered as part of the company’s BlastIQ Digital Optimisation Platform, FRAGTrack is able to capture real-time fragmentation measurement data for optimising drill and blast operations, improving downstream productivity and tracking of operational performance.

Originally developed for measurements on both face shovels and conveyors, the solution was expanded earlier this year with the launch of FRAGTrack Crusher for automated pre-crusher fragmentation measurements.

FRAGTrack Crusher installation at Stevenson Aggregates

There are several vendors offering fragmentation measurement tools throughout the industry, but Mathiravedu says Orica’s solution can carry out such analysis consistently and accurately – day or night – in extremely dusty and dynamic environments like mining.

“The FRAGTrack image processing technology can handle extremely dusty and lighting-affected conditions beyond any solutions in the industry,” Mathiravedu said. “It is also able to learn and adapt to specific operational environments like the dumping habits of different truck operators using artificial intelligence technology. Together with the integration with fleet management systems, it can provide a fully autonomous and integrated measurement solution.”

On conveyors, the FRAGTrack solution can reliably measure fines with increased accuracy compared with conventional systems that leverage curve-fit algorithms, according to Mathiravedu, with the advanced image and 3D processing techniques providing the ability to measure fragments down to 5 mm in size.

The combination of FRAGTrack Conveyor and Orica’s ORETrack™ solution can provide not only particle size distribution information, but also critical information on ore grade and hardness for the milling operations in real time.

“The FRAGTrack platform architecture has been designed to be scalable to incorporate different sensor inputs along with its high-performance GPU compute capabilities,” Mathiravedu said, explaining that there could be further analysis solutions down the line.

EQ Resources enlists help of Golding for Mt Carbine tungsten development

EQ Resources Limited says it has executed an Early Engagement Contract with Golding Contractors Pty Ltd for the restart of the open-pit mining operations at the Mt Carbine Tungsten Mine, in Queensland, Australia.

EQR said it selected Golding, a subsidiary of NRW Holdings, as its preferred partner after working through a high-quality engagement and approval process.

“Early engagement was a preferred course for EQR as recent capital investment into the Mt Carbine processing plant is commissioning well and the company is receiving positive feedback from offtake partners for supply of our critical mineral product,” EQR’s Chief Executive Officer, Kevin MacNeill, said.

“EQR wants to deliver the highest quality outcome for the life of the Mt Carbine Mine for all stakeholders. Golding has strong credentials including specialist mine site rehabilitation works and environmental earthworks.

“Mt Carbine is ramping up treatment of its substantial low-grade surface resource as part of its joint venture with Cronimet with the next step in the development plan being the restart of its 100%-owned operations starting with the Andy White open pit, subject to the planned permit amendment. It’s a natural progression.”

Over the coming months, key areas of engagement and focus to finalise the mining contract and ensure smooth transition to mining operations will include:

  • Pit design: EQR is set to revise pit design in line with the recent drilling with Golding to maximise the strategic resource benefit and value for all stakeholders;
  • Equipment selection: In conjunction with the pit design under the contract, EQR and Golding will target strategic equipment selection to further optimise mining costs;
  • Contractor engagement: Golding will help manage the open-pit development through their in-house resources and network of preferred contractors to ensure compliance with Queensland mining legislation;
  • Stakeholder engagement: EQR and Golding will jointly engage local and strategic stakeholders regarding camp establishment, workshop establishment, personnel engagement, strategic regional suppliers and manufacturers; and
  • Timing: the open pit operations are forecast to begin during the first quarter of 2023.

EQ Resources, as a result of the acquisition of Mt Carbine Quarries in June 2019, now has 100% ownership of the two mining leases and surrounding exploration projects at the project. In a joint venture with Cronimet, the tungsten processing plant has been refurbished, commissioned and expanded to 300,000 t/y capacity.

The company is in the process of completing the required environmental amendments to allow the operation to process 300,000 t/y and eventually 1 Mt/y. Once the bulk test work is completed, a feasibility study will be completed for the design of the 1 Mt/y operation.

Field Solutions Holdings extends communications connection with Kestrel Coal

Australia-based Field Solutions Holdings Limited says it has been selected as exclusive preferred supplier for enterprise Managed Desktop, Network and general IT services for Kestrel Coal on a five-year contract term.

Coming with revenue of circa-A$25 million ($17 million), the contract extends Field Solutions’ existing connectivity provision relationship with Kestrel Coal, while leveraging its Regional Australia Network telecommunications infrastructure.

“The award of this enterprise contract to FSG validates and reinforces our strategy to build infrastructure and deploy full-time resources into rural, regional and remote Australia,” Andrew Roberts, FSG CEO, said.

FSG has been operating and building infrastructure across central Queensland for the past five years, providing residential, business and enterprise telecommunication services from its Emerald regional headquarters.

This win consolidates FSG as the largest Managed Services organisation in Emerald and surrounding areas and will see FSG expand its local operations at its Emerald Regional headquarters, the company said.

“Field Solutions’ Regional Australia Network services the mining regions northeast and west of Emerald and FSG has provided connectivity services to Kestrel Coal for three years, together with other mining and agribusiness customers,” Roberts said.

Kestrel Coal ran a competitive process to select FSG as its preferred IT partner, FSG says. Its mine is 51 km northeast of Emerald and was managed by Rio Tinto until 2018. It is one of the largest coking coal mines in the world, with an estimated 158 Mt of reserves.

Roberts added: “Last year, FSG acquired Infrastructure as a Service, cloud and ISP provider TasmaNet, which bolstered FSG’s existing capability to deliver enterprise grade managed and cloud services. This contract win highlights the value of our recent TasmaNet acquisition.”

FSG says it is currently finalising commercial terms for the Managed Network and Managed Services contracts and expects the transition to be completed by the end of July. Additional IT and procurement services will be sourced on an as-needs-basis over the course of the five-year term.

The company is continuing to pursue several key mining services contracts in central Queensland, according to Roberts.

“Mining and agribusiness areas across Australia will continue to be key focus areas for FSG to deploy its own infrastructure and services,” he said.

These areas will be serviced by FSG’s 4G and 5G Regional Australia Network, which is currently under construction.