Tag Archives: BluVein

Hitachi Energy and BluVein to combine technologies in electrification MoU

Hitachi Energy and BluVein, an innovator in dynamic charging technology, have signed a Memorandum of Understanding (MoU) to, they say, accelerate the electrification of heavy haul mining fleets and solve one of the biggest challenges in decarbonising mine operations.

Hitachi Energy’s advanced power electronics and digital charging technologies allow BluVein’s e-rail charging technology to deliver electricity safely and reliably to haul trucks of up to 400 t while transporting materials.

The collaboration will fast-track the development of a high-powered, fast and flexible dynamic charging solution for surface and underground mines and quarries in Australia and across the globe. BluVein will focus on its leading-edge e-rail and connection of the truck, which Hitachi Energy will further complement with advanced power electronics and digital solutions to power and monitor the whole system.

“This strategic collaboration with BluVein will enable our mining customers to trial next-generation dynamic charging solutions vital for achieving net-zero emission targets without compromising on operating practices or productivity,” Marco Berardi, Head of Grid & Power Quality Solutions and Service business at Hitachi Energy, said. “We believe this new collaborative approach will deliver on our common goal to accelerate the transition to all-electric mining and a carbon-neutral future.”

James Oliver, CEO at BluVein, added: “This MoU supports BluVein’s mission of partnering with a technology leader to deliver a universal dynamic connector that facilitates the removal of fossil fuel from mines and help propel the industry globally to meet its decarbonisation goals. Together, we are helping the industry move to a more sustainable and responsible future.”

Hitachi Energy and BluVein are also exploring the off-vehicle hardware requirements for BluVein1 for underground and smaller fleets, while actively cooperating on BluVein Proving Grounds, currently under construction in Queensland, Australia.

HydraGEN, Railveyor, BluVein, BEVs, hybrid vehicles being assessed by Evolution

Evolution Mining is considering the application of a number of technologies to displace diesel in its mining fleet, with its latest sustainability report highlighting several short to medium-term and longer-term solutions currently being assessed and considered by the gold-focused miner.

Evolution has set a target of reducing its Scope 1 and 2 emissions by 30% by 2030, with plans to reach net zero emissions in these two categories by 2050.

Over the course of its 2023 financial year, Evolution says it achieved an 11.2% reduction in absolute emissions compared with its FY 2020 baseline; maintained a robust direct (Scope 1) and indirect (Scope 2) accounting program, including resetting its emissions baseline; conducted a CO2 abatement cost review focusing on marginal abatement cost curves; externally validated modelling of emissions data including all input modelling; and developed and integrated internal emissions modelling tools to assess the impact of acquisitions and projects on its net zero performance and FY 2020 baseline.

It also completed an energy audit and decarbonisation roadmap for Mungari, conducted an independent audit of Scope 3 emissions, and developed and implemented its Renewable Sourcing Strategy, resulting in the Cowal (mine pictured above) power purchase agreement with AGL Energy Limited.

Evolution says the application of technologies to displace diesel in its mine fleet represents a complex decarbonisation challenge, hence the reason it is evaluating several options. It has been collaborating with partners as well as its supply and value chain partners to identify emissions reduction opportunities, including membership with the Electric Mine Consortium and Sustainability Advantage, the latter being a New South Wales Government scheme looking to accelerate the adoption of sustainable practices in the state.

Among the solutions Evolution is considering – ones it categorises as “technologically mature – are the HydraGEN carbon emissions reduction device, the all-electric Railveyor material haulage method, BluVein’s dynamic charging technology, and hybrid vehicles.

Evolution is already part of the consortium of funding members to fast-track the BluVeinXL project, looking at powering heavy-duty mining fleets with up to 250 t payloads through dynamic fast-charging technologies.

The company said in the report that it was also exploring “technologies that have high potential but have limitations at present due to their practical application within Evolution operating mines and their commercial competitiveness”. One example that comes under this category is battery-electric vehicles, which Evolution has experience of thanks to its use of both battery-electric loaders and utility vehicles at its Red Lake operations in Canada.

An asset that could potentially feature some of these technologies under consideration is the Mungari mine, in Western Australia, which is undergoing an expansion to boost output to 4.2 Mt/y, from 2 Mt/y.

In the latest report, Evolution said: “The Mungari mine expansion will result in a near-term increase in emissions due to an interim reliance upon diesel to power remote assets. However, Evolution is exploring potential opportunities to avoid diesel use and mitigate associated emissions through considerations such as hydrogen power and electrified Railveyor.”

BluVeinXL: aiming for benchmark status in the haulage fleet electrification game

Since being named one of eight winning ideas selected to progress to the next stage of the Charge On™ Innovation Challenge in 2022, BluVeinXL has done more than most, assembling a consortium of major mining partners focused on accelerating BluVein’s standardised dynamic charging technology to decarbonise the mining sector.

Late last year, Austmine, which manages the BluVeinXL project, welcomed Rio Tinto, OZ Minerals, BHP, Newcrest Mining, Evolution Mining and Freeport-McMoRan to the consortium of funding members to fast-track the BluVein technology. It has since welcomed Vale to the consortium.

These companies have backed the vision of BluVein, a joint venture between Olitek (Australia) and Evias (Sweden), to dynamically power mixed-OEM haul fleets while in motion, enabling smaller on-board battery packs, faster vehicle haulage speeds up ramp, grid load balancing, elimination of static fast charging, maximum fleet availability and – most importantly – the complete elimination of diesel.

These consortium partners are focused on delivering BluVein’s fleet electrification solution to Technology Readiness Level (TRL) 6 with a minimal viable product (MVP) demonstration, ahead of full commercial deployment of the technology.

BluVeinXL leverages much of what was developed for BluVein1, the primarily underground solution using the BluVein Rail™ slotted power rail system and the on-vehicle BluVein Hammer™ to simultaneously charge and power mining fleets ‘on the go’. The Rail is an enclosed electrified e-rail system mounted above or beside mining vehicles while the Hammer connects the electric vehicle to the Rail.

In underground scenarios, BluVein’s technology completely removes the need for battery swapping or static fast charging while allowing the use of smaller, lighter and lower cost batteries in continuous and high-duty applications, according to the company.

In open-pit operations, BluVeinXL will be similarly transformative, offering a next-generation alternative to what BluVein refers to as “the cumbersome, inflexible and expensive conventional catenary wire trolley systems that are currently hampering mines from fully decarbonising their haulage operations”.

To get the latest on the BluVeinXL open-pit electrification solution, IM caught up with James Oliver, CEO of BluVein.

IM: Now you have the founding consortium members confirmed for BluVeinXL, where do you go from here? Are you currently engaged with major OEMs on creating a standard design that can fit on any truck?

JO: Seven consortium members is just the start, and we will be announcing additional members very soon. We greatly value our members as it is ensuring we get ‘voice of industry’ and the key technical requirements during this critical stage. One of the major benefits our members see in BluVein is our standardisation, meaning our technology can be used with mixed-OEM fleets, mixed machine types and can even be used to make alternative clean fuel use more efficient and cost effective.

We are currently working with two to three major fleet OEMs and progressing agreements related to integration and demonstration of the BluVeinXL technology. We are confident we will be able to demonstrate with at least one OEM as the MVP, and hopefully more during the current project. Once we agree with each OEM the agreed interface point, then the BluVeinXL integration with the various fleet types becomes quite simple. To do this our technical team works closely with the OEMs on all aspects of the integration including Hammer, Rail and the control systems. By standardising with our various OEM fleet partners, we are delivering on what the mining customers are demanding – a truly standardised dynamic charging system.

James Oliver, CEO of BluVein

IM: How are you managing to engage OEMs that are also providing their own trolley assist applications that, they believe, may be suitable for similar haul truck propulsion setups to BluVeinXL?

JO: BluVein’s safe and proven electrification technology is based on over a decade of research and development undertaken for electric highways by our joint venture partner Evias. We are confident in our system’s ability to deliver high power transfer whilst also delivering on the safety and robustness requirements demanded by mining customers. Critically, the high-power transfer characteristics of BluVein’s slotted rail system enables simultaneous on-ramp hauling and charging of multiple closely spaced mining haul vehicles. This is a game-changing capability and of high interest to our mining partners. The conventional catenary wire-based trolley systems have limitations on power delivery capacity, earthing and other critical safety elements, and, therefore, are not as favoured by miners.

We do, however, see benefits of OEMs trialling a range of different mine electrification approaches, as long as we can all agree on a common vehicle connection point, specifically at the dynamic charge interface. This will ensure the end customer is able to select the best solution for their individual sites. We understand that BluVein will not be everything to everyone, but for the applications it does suit, we are confident it will be a true game changer over conventional catenary and static fast charging options for haul truck fleets.

We hope to be able to demonstrate BluVeinXL side by side with a catenary wire system to showcase the competitive advantages BluVeinXL has – that is higher power transfer; safer, easier to install, use and relocate; and overall lower cost. Ultimately it will be up to the customer to choose based on the performance of the system and we think this will stack up in BluVeinXL’s favour.

IM: Can you expand on how your system alleviates the requirements on haul road conditions that typically comes with the current generation of trolley assist technology? Do you see your Rail and Hammer technology being able to work in any conditions (the Arctic included)?

JO: Part of our current package of work is to understand with our mining partners what these extremes are to ensure we are developing a solution that has minimal up-stream and down-stream impact on operations. The vision is to have a deployable solution that suits all climates and terrains.

Our core technology partner, Evias, has spent over a decade developing BluVein’s core technology to function effectively in icy and muddy conditions. By building on these learnings, we are confident that BluVeinXL will work in the vast majority of terrains and climates experienced in mining – from the hot and humid Pilbara region of Australia to the coldest parts of northern Canada.

It is BluVein’s safe slotted e-rail technology that enables it to be located near to the ground to the side of haul roads. Our Hammer and Arm is being designed to cater for the full range of haul road conditions, thereby reducing the burden on mines to maintain haul road conditions to perfection as is required with conventional overhead wire catenary systems.

Our consortium members have very good geographic spread to help us understand and test in these conditions. Part of our current work is to clearly understand from our mining partners what these environmental extremes are to ensure our solution will function effectively in all operations.

IM: Has your work to this point indicated how small the on-board batteries could be in a typical open-pit scenario for 220-t-payload trucks?

JO: We have taken a technology-agnostic approach to what on-board power and storage system we are supplying; our current focus is getting enough energy onto the vehicle as efficiently and safely as possible to power drive motors and charge smaller batteries if and when available. While we cannot reveal exactly how much smaller we can make the batteries, early studies show the batteries can be reduced as much as 60% when coupled with dynamic charge that has enough capacity to power the drive and charge the battery.

BluVein1 for underground and quarries can provide up to 3 MW of power sufficient for up to 100-t payload vehicles

IM: So what payloads do you think you could be providing this solution for?

JO: The BluVein Rail and Hammer design is completely scalable. BluVein1 for underground and quarries can provide up to 3 MW of power sufficient for up to 100-t payload vehicles. The BluVeinXL system can offer in the range of 4-7 MW, sufficient for up to 250-t payload vehicles. Our engineering team plan to use BluVein1 and BluVeinXL as stepping stones for an eventual introduction of a BluVein solution suited to ultraclass fleets with 9-12 MW of capacity sufficient for up to 350-400 t payloads.

IM: Where are you with your field trials on this solution? Do you expect these to commence this year?

JO: The targeted ‘wheels on track’ for BluVein1 is 2023, followed closely in 2024 with the BluVeinXL MVP demonstration. Right now I cannot reveal too much but there are some exciting partnerships being progressed to achieve this.

In terms of field trials, our ideal setup – and I think one the industry really wants – is a single site where all key mine electrification technologies can be tested out side-by-side. There are some very positive conversations going on between all three parties – the solution OEMs, truck OEMs and mining companies – on this front, which is exciting for BluVeinXL.

As has been said many times, there is no ‘silver bullet’ when it comes to mine decarbonisation. We know that BluVein’s dynamic charging solutions will tick a lot of boxes, but not all. So, it’s great if we can work together to ensure we cover any gaps. There is just too much at stake to try and go it alone.

IM: Anything else to add on the subject of electrification and dynamic charging?

JO: One question we have been asked is does BluVein’s Hammer and Rail technology only support dynamic charging? While power transfer while in motion is our obvious advantage, our system is basically an automated IP2X-rated power connection that can transfer more than 4 MW of energy. Could we use this for automated static fast charging also? Our answer to that is absolutely.

BluVein’s underground dynamic charging developments accelerating

BluVein, after officially receiving agreement and project approval from all project partners, has initiated the third phase of technology development and testing of its underground mine electrification solution, BluVein1, it says.

BluVein is a joint venture between Australia-based mining innovator Olitek and Sweden-based electric highways developer Evias. The company has devised a patented slotted (electric) rail system, which uses an enclosed electrified e-rail system mounted above or beside the mining vehicle together with the BluVein hammer that connects the electric vehicle to the rail.

The system, which is OEM agnostic, provides power for driving the vehicle, typically a mine truck, and charging the truck’s batteries while the truck is hauling load up the ramp and out of an underground mine.

The underground-focused development under BluVein is coined BluVein1, with the open-pit development looking to offer dynamic charging for ultra-class haul trucks called BluVein XL. This latter project was recently named among eight winning ideas selected to progress to the next stage of the Charge On Innovation Challenge.

The purpose of the third phase of the BluVein1 technology development is to:

  • Conduct a full-scale refined hammer (collector) and arm design and testing with a second prototype;
  • Execute early integration works with mining partners and OEMs;
  • Provide full-power dynamic energy transfer for a vehicle demonstration on a local test site; and
  • Confirm a local test site for development.

IM understands that the company is close to sealing an agreement for a local test site where it will carry out trials of the dynamic charging technology.

James Oliver, CEO, BluVein, said the third phase represents an essential final pre-pilot stage of BluVein1.

“It excites me that the BluVein solution is becoming an industry reality,” he said. “The faster BluVein1 is ready for deployment, the better for our partners and the mining industry globally.”

BluVein recently entered a Memorandum of Understanding with Epiroc, where the Sweden-based OEM will provide the first ever diesel-to-battery-converted Minetruck MT42 underground truck for pilot testing on the slotted electric rail system from BluVein.

“This MoU also ensures that we are designing and developing the system into a real-world BEV for full-scale live testing and demonstration on a pilot site in 2023,” BluVein says.

In addition to Epiroc, IM understands BluVein is working with Sandvik, MacLean, Volvo and Scania, among others, on preparing demonstration vehicles for the BluVein1 pilot site.

The BluVein1 consortium welcomed South32 into the project in May, joining Northern Star Resources, Newcrest Mining, Vale, Glencore, Agnico Eagle, AngloGold Ashanti and BHP, all of which have signed a consortium project agreement that aims to enable final system development and the construction of a technology demonstration pilot site in Australia.

The project is being conducted through the consortium model by Rethink Mining, powered by the Canada Mining Innovation Council (CMIC), which CMIC says is a unique collaboration structure that fast-tracks mining innovation technologies such as BluVein and CAHM (Conjugate Anvil Hammer Mill).

Carl Weatherell, Executive Director and CEO, CMIC/President Rethink Mining Ventures, said: “With the urgent need to decarbonise, CMIC’s approach to co-develop and co-deploy new platform technologies is the way to accelerate to net zero greenhouse gases. The BluVein consortium is a perfect example of how to accelerate co-development of new technology platforms.”

Oliver concluded: “The BluVein1 consortium is a great reminder that many hands make light work, and through this open collaboration with OEMs and mining companies, we’re moving faster together towards a cleaner, greener future for mining.”

BluVein XL open-pit mining dynamic charging solution gains momentum

Much of the buzz around BluVein to this point has focused on its dynamic charging infrastructure for underground mining and quarries, but the company has also been gaining momentum around a surface mining project – as the most recent Charge On™ Innovation Challenge announcement indicates.

The company and its BluVein XL solution were today named among eight winning ideas selected to progress to the next stage of the competition, which is seeking to solve one of the biggest challenges in decarbonising mining operations: the electrification of haul trucks.

Within this context, BluVeinXL, the company’s new product line, will be capable of dynamically feeding power to heavy-duty mining fleets with up to 250-t payloads.

The technology leverages much of what was developed for BluVein1: a patented slotted (electric) rail system using an enclosed electrified e-rail system mounted above or beside the mining vehicle together with the BluVein hammer that connects the electric vehicle to the rail. This system provides power for driving the vehicle, typically a mine truck, and charging the truck’s batteries while the truck is hauling load up the ramp and out of an underground mine.

To this point, funding support for the BluVein1 project – being developed for vehicles up to 60-t payload and powered by Rethink Mining (Powered by CMIC) – is being provided by Vale, Glencore, Oz Minerals, Northern Star, South32, BHP, Agnico Eagle, AngloGold Ashanti and Newcrest Mining.

BluVeinXL, meanwhile, has seen the company engage with more than 10 “global mining company leaders” in progressing to a pilot demonstration of the technology. While the company plans to announce the names of these supporting mining companies shortly, it says they all see the need for an industry-standardised, OEM-agnostic, safe dynamic power feed infrastructure to suit mixed OEM open-pit fleets.

The key benefits of the dynamic power feeding solution BluVein is pushing are smaller on-board battery packs, faster vehicle haulage speeds up ramp, grid load balancing and maximum fleet availability.

“Our mining company supporters have provided feedback to us on the benefits they see with BluVeinXL over traditional overhead exposed wire catenary systems offered by other OEMs,” the company said. These are:

  • Near to the ground installation enabled by our patented Ingress Protected safe slotted rail technology;
  • Safer and faster installation;
  • Easy relocation as required to suit open-pit ramp movements over time;
  • Requires no heavy civil foundation requirements;
  • Alleviates the requirements on haul road conditions;
  • Offers purchasing flexibility on electric vehicles through the adoption of an industry-standard dynamic power feed infrastructure; and
  • Safer mine sites with no high voltage exposed overhead wires.

The company concluded: “Together with our mining company supporters, BluVein looks forward to working with all OEMs as we progress towards our planned pilot demonstration at a yet to be announced location.”

South32 becomes latest miner to join BluVein mine electrification project

BluVein has announced its ninth and newest funding partner to join the BluVein mine electrification project powered by Rethink Mining (Powered by CMIC), with South32 being the latest miner to join the cause.

BluVein is a joint venture between Australia-based mining innovator Olitek and Sweden-based electric highways developer Evias. The company has devised a patented slotted (electric) rail system, which uses an enclosed electrified e-rail system mounted above or beside the mining vehicle together with the BluVein hammer that connects the electric vehicle to the rail. The system provides power for driving the vehicle, typically a mine truck, and charging the truck’s batteries while the truck is hauling load up the ramp and out of an underground mine.

South32 joins Vale, Northern Star Resources Limited, Glencore, Newcrest Mining, AngloGold Ashanti, BHP, OZ Minerals and Agnico Eagle Mines Limited as BluVein funding partners.

Earlier this month, BluVein and Epiroc formed an MoU with BluVein aimed at fast-tracking development of the BluVein dynamic charging solution towards an industrialised and robust solution which is ready for deployment across the global mining industry. The MoU is focused on the BluVein Underground solution (BluVein1), but BluVein is also developing a solution for open-pit mining.

MacLean’s van Koppen on affecting industry change

MacLean Engineering has been a fast mover when it comes to leveraging battery-electric equipment, having announced an EV Series platform back in September 2016 and rolled out electrified machinery across its production support offering in the five-and-a-half-years since.

A family-owned company with roots in Canada’s mining technology heartland – Sudbury – MacLean is continuing to innovate with new solutions that leverage not only electrification, but the latest in automation and digitalisation too.

IM spoke to Maarten van Koppen, VP Product Management, ahead of his presentation at The Electric Mine 2022, in Stockholm, Sweden, to find out how these three industry trends are converging in line with the company’s Application Intelligence philosophy.

IM: As a mine engineer with experience integrating both battery-electric and autonomous equipment into mining operations (at the Borden operation, among others), what new perspectives have you brought to MacLean since you joined in 2020?

MvK: It’s a little atypical for a mining engineer from a mining company to join an OEM. Mine engineering graduates do join OEMs, but the typical route is to head there straight from school.

In terms of electrification and automation, the perspective that I brought to MacLean was an acute awareness of what is ‘on the other side of the fence’. Having that knowledge has slightly changed the way we interact with customers.

I made a point of preparing material for consultants and study managers that could be very useful in preparing tradeoff studies and inspiring more discussion. We now have an overview for consultants that lists the budgetary prices – based on an ‘average’ MacLean vehicle – for both electric and diesel equipment in an apples-to-apples comparison. We also have crude cost models that can be customised with different energy prices, labour rates and a couple of other key drivers. That really helps consultants with these early tradeoff studies.

Having been a study manager at Borden, I can appreciate what it takes to make consultants and study managers’ lives easier. We are now getting positive feedback from industry that speaks to that.

The good news for me and MacLean was that there was a solid team with Stuart, Anthony and others already doing this work. They understood what the industry was looking for and our key strengths as an OEM.

Since coming in, I have also taken over the static simulations for our EV Series offering. A lot of customers still have range anxiety and I have been able to help with that by customising these simulations for their own sites factoring in, for example, their ramp grades, lengths, etc. Through those simulations, you can outline different scenarios and explain the opportunity charging philosophy in a way that is specific to their operation.

And, finally, MacLean was already on this track, but I reiterated that our battery rental arrangements were very simple and needed to remain so. It is typically just a fixed rate, single number per month. Other OEMs use other arrangements that are a little more complicated, but my experience is that, in terms of forecasting and budgeting, these systems can become onerous to administer and difficult to model out accurately without encountering a bias around expected machine utilisation rates.

IM: At the same time, what was it that attracted you to a company like MacLean?

MvK: First and foremost, my dad, until he retired, was a heavy-duty mechanic who was promoted up the ladder in the company he worked for. This was primarily in the Port of Rotterdam where he helped maintain the big forklifts that operate there – these can be quite complicated from an operational point of view. In that regard, I have always had an affinity and interest in equipment, something that has carried through to my siblings, all of whom are involved in engineering.

Second, joining a family-owned company with three generations of MacLeans involved is a sign of long-term commitment. That was also very attractive.

On a slightly different note, I felt that joining an OEM would allow me to affect the greatest amount of change across the industry. In my role, I get to talk to customers all over the world with a wide range of projects, enabling me to explain where electric machines might make most sense for them in terms of generating increased shareholder value, improved working conditions for employees, etc. That also had a bearing on my decision to join MacLean.

Then, of course, there was an opportunity to embark on a steep learning curve – learning about powertrains, drive trains and all the mechanical and electric bits and pieces that go into our machines. It has been very rewarding so far.

Maarten van Koppen, MacLean Engineering’s VP Product Management

IM: Have you been surprised by the industry take-up of these new solutions since joining MacLean? What trends have supported this acceleration in demand?

MvK: That’s an interesting question. Taking it back a little further, when I started off at Borden, I expected the industry adoption to be quite rapid – perhaps more so than it has been.

We were on a good track in 2019, but the pandemic caused a brief interruption. I think a lot of operations took that time to re-evaluate certain choices or projects.

We were very busy with consultants on tradeoff studies in the early days of the pandemic – that never really stopped – and we’re starting to see these studies result in fleet orders.

The other thing that went under the radar with the pandemic is, in 2020, all the big mining companies made massive commitments to carbon reductions. Part of that is now starting to trickle through with quotes and interest.

For companies that have aggressive targets for 2030, this is impacting fleet decisions today. If you buy a machine now, it will most likely last for 15 years or more, so you are effectively deciding today about what machines you will be operating in 2037.

IM: MacLean initially announced an equipment electrification plan all the way back in September 2016 at MINExpo, selling your first EV Series machine that year. Since then, you have accrued in excess of 100,000 operating hours on these machines. When evaluating this data, what has surprised you in terms of operating performance, industry acceptance, cost outcomes, etc?

MvK: We have a lot of experience with all our BEV equipment, which is spread out across the offering. We have, through this experience, confirmed operating performance and proven the increased speed of these machines going up-ramp. For instance, with the new batteries we are using on 17% ramps, providing the road conditions are OK, you can drive up that ramp at 15 km/h with an empty battery-electric boom truck. You are looking at 8 km/h with a diesel-powered boom truck, so the speed difference is quite significant.

We have also carried out some very targeted trials, one of which was with a customer in British Columbia, Canada, last summer, where we captured those carbon savings with a bit more detail.

In that trial, we recorded 315 hours on the machine over the course of three months. If you had used a diesel machine over those hours, it would have consumed about 5,000 litres of diesel, generating about 18 t of carbon. With the grid being as clean as it is in BC, the carbon emissions from powering up the machine were about 100 times lower than pure diesel – about 130 kg in total.

Even when we do the back calculation using conventional diesel generation to power up these electric machines, it is still three times cleaner than a machine with a diesel engine.

The one thing we still need to do at our test facility in Sudbury is to confirm what heat savings we can achieve when using BEVs compared with diesel vehicles. We know from other work in the industry that we should see an order of magnitude lower heat emissions, and we are looking at building on our own in-house simulations with real-world test data.

IM: Has this data and feedback influenced your EV Series product line developments over this timeframe? What new products/concepts have come to light on the back of analysing this data?

MvK: Absolutely. Our on-board chargers, for instance, now come from a different supplier that offers better performance, a lower price point and an improved tolerance to less-than-ideal power infrastructure. If you have more robust electronics on these batteries, it is always likely to be better suited to more underground mines.

We have also been able to simplify the drivetrain by removing the transfer case for some of our lighter machines such as the shotcrete sprayer.

As well, we have some exciting changes coming up with the offering of a CCS-2-type off-board charger receptacle. For all-electric mines where off-board chargers are required to power other equipment, such as trucks and loaders, we figured it would make sense for our equipment to be compatible. This means we can charge machines with up to 250 kW of power, provided the off-board charger can push that kind of energy. As for on-board charging, we hit a practical limit to our maximum 100 kW charging capacity. Most mine grids have a limit of about 150 kW on their 400-1,000 V AC mine grids to accommodate jumbos, so we have to stay within that limit. Depending on customer needs, we can configure the charging solution to what makes sense for their project or operation.

MacLean, on the charging front, is also working with the BluVein consortium out of Australia to explore overhead battery charging. While primarily focused on haul trucks, this type of charging solution could be a good fit for our battery-electric grader. Graders typically work on ramps – where this charging infrastructure would be located – and, out of all the machines in our portfolio, a grader is the one machine that should not stop moving in ideal circumstances. The overhead charger matches the application in that regard.

We don’t blanket everything with one solution at MacLean – there is a niche for every solution when it comes to batteries and charging. Yet, knowing and understanding what the application is provides us the opportunity to configure a better product for the customer. That type of Application Intelligence is at our core.

Where this ties back to our battery-electric vehicle experience is in the importance of the ramp quality in these types of operations. In every haulage operation, you know the smoother the ramp, the faster you can tram and the more efficient it is for the overall mine. Yet, the added benefit that comes with battery-electric machines is the regeneration opportunities presented with a smoother ramp. That is why we felt it was necessary to come up with a product like this.

IM: On-board, opportunity charging with a standardised battery capacity has been the order of day for the majority of machines you have deployed in mining to this point. Is this blueprint changing for the next generation EV Series in line with the different applications?

MvK: We’re open to evaluating just about everything, but the one thing we are married to is the idea of the battery staying on our vehicle. This makes sense for the type of equipment we make and the applications we serve. Outside of that, we’re pretty flexible.

On top of the CCS 2-type charger coming out in 2022, we have a chiller for active cooling available to allow BEVs to work at higher ambient temperatures. That is currently on a boom truck in South Africa. As you can imagine, it is easier to test a chiller in a South African summer than a Canadian winter. We think we can operate those machines effectively up to 50°C ambient temperature and possibly more.

The battery supplier change is very big for us and we now have a roadmap to improve performance where we can more easily switch between battery products with that one supplier, taking advantage of future improvements.

It is interesting times as that whole battery-electric vehicle component field is changing so much with the world going greener in general terms. The more components we can pick from that are meant for mobile industrial uses, the better we can configure our machines. The one thing I don’t think people realise is that mining equipment manufacturers are way too small to mandate customised components on a machine. We are at the mercy of what components are available on the market.

Those technology improvements will also hopefully put some downward pressure on costs when all the supply chain interruptions settle down.

IM: Where is the industry’s level of maturity with battery-electric solutions? Have many of the initial barriers to entry (upfront cost, worries over range, etc) been overcome?

MvK: I think there is still a bit of a ‘sticker shock’ when people see the quotation for a BEV, which is common among the OEMs. Yet, people are now looking beyond the initial capital cost, taking into consideration the cost savings that can be realised over the lifetime of the machine.

What I find interesting is how capital markets are now playing a role.

For example, underground coal miners, on top of the regulatory pressures they are facing, are now finding it very difficult to attract capital for their operations. The flipside is true when we think about some junior companies out of Canada that have announced plans to go carbon neutral and fully electric – they have been able to attract capital from investors that would typically steer away from mining. This is especially true when they are looking to mine ‘battery minerals’.

There is still a level of scepticism and hesitancy, but customers that have trialled BEVs generally realise the need to go all-electric. I do expect with the regulatory changes in certain jurisdictions where we do a lot of business, there will be more enquiries. If it becomes a tradeoff between going all-electric or spending a tonne of money on upgrading your ventilation infrastructure to abide by regulations, the battery-electric vehicle value proposition for existing operations will become a lot clearer.

“Knowing and understanding what the application is provides us the opportunity to configure a better product for the customer,” van Koppen says. Pictured is the battery-powered TM3 concrete transmixer

IM: In terms of technology development, MacLean has also been developing automation and digitalisation solutions. How do you see all three – electrification, automation and digitalisation – complementing each other?

MvK: The combination of electrification and digitisation is a good match. A lot of our telemetry developments came from the BEV side where we needed those diagnostics; these are now carrying over to the diesel side. Also, integrating automation and digitisation makes a lot of sense for a lot of the same reasons that you need the data to automate operations.

A lot of the engineering challenges will be around automation and electrification working together, and how you get energy into the machine. Driving, stopping and controlling the machine is not a problem – it is actually probably easier on an electric machine – it is how to get energy into it. The consortium we are in with BluVein is one solution, but I don’t think it is the ‘only’ solution. There are others on the market, but they currently come with a price point that makes them prohibitive.

IM: I know you have partnered with universities and colleges on the robotics side of things in recent years. What’s the latest on these developments?

MvK: A lot of the collaboration, to this point, has focused on boom movements. We are starting to automate boom movements as we think it will have applications in not just oversize management with water cannons, blockholers, or secondary ore reduction drills, but shotcrete and explosives loading too.

We are also partnering on several other things with universities and colleges on tech development. One of the things that comes to mind is the Robobolter we are working on right now. Here we are looking to put a robotic arm on the deck of our tried and proven Omnia bolter platform to take the operator out of the environment.

Customers have been telling us for a while that, due to the travel times, heat or seismic exposure, they would like to see the operator further removed from the face when it comes to bolting operations. At the same time, we wanted to make sure this solution had all the strengths of our proven platform bolter – being able to load up for an entire round, provide multiple types of support without extensive retooling, etc. We’re looking to introduce that product in 2023.

Like many of our new products coming out, these vehicles will primarily be designed around battery-electric operation, with a diesel option. That is a shift in thinking – designing for electric with a diesel consideration, instead of the other way around. The grader is the exception to that as we had to make the first one in diesel form. But, when we look at our new explosives rig coming out next year, that is primarily designed as an electric machine, which we will make available in diesel as well.

IM: Is the Robobolter likely to be your most advanced machine in terms of automation, digitalisation and electrification when it comes out in 2023?

MvK: I think the Robobolter, at launch, will be our most advanced machine, but there is increased internal competition within MacLean to reach new benchmarks across our offering. That competition is good for the business and the industry.

It’s refreshing and encouraging that the MacLean ownership is big on growth in both product lines and the territories which we operate in. We also want to disrupt the sector in the niches we operate in, having full support in terms of innovating and coming up with new products.

On top of that, as it is family-owned company, you can make decisions that best suit our customers. For example, our ownership will not allow us to sell machines we cannot support in the field.  This philosophy has somewhat saved our bacon with the supply chain pressures the industry is experiencing of late, ensuring we have enough spares to supply new machines as well as service those in the field.

Maarten van Koppen will be presenting ‘Electric, automated and digitally-connected: the MacLean machine pipeline’ at The Electric Mine 2022 conference in Stockholm, Sweden, on February 17-18, 2022. For more information on the event, click here.

BHP Ventures backs BluVein’s next gen trolley-charging project

BHP has become the latest company to back BluVein’s “next generation trolley-charging technology” project, with its Ventures arm joining Northern Star Resources, Newcrest Mining, Vale, Glencore, Agnico Eagle, AngloGold Ashanti and OZ Minerals as project partners.

A BHP spokesperson said the collaboration was “part of our multi-faceted approach to reducing vehicle emissions at our operations”.

It is one of several decarbonisation collaborations BHP Ventures is involved with in pursuit of BHP’s decarbonisation goals. Others include partnering on supply chain traceability through Circulor and low emissions steelmaking through Boston Metals.

Back in August, BluVein announced that seven major mining companies had financially backed BluVein, with the industry collaboration project now moving forward with final system development and construction of a technology demonstration pilot site in Brisbane, Australia. This came on top of agreements with four major mining vehicle manufacturers to support BluVein controls and hardware integration into their vehicles.

BluVein, a joint venture between EVIAS and Australia-based Olitek, is developing technology that removes the need to employ battery swapping or acquire larger, heavier batteries customised to cope with the current requirements placed on the heaviest diesel-powered machinery operating in the mining sector.

It is doing this through adapting charging technology originally developed by Sweden-based EVIAS for electrified public highways. The application of this technology in mining could see operations employ smaller, lighter battery-electric vehicles that are connected to the mine site grid via its ingress protection-rated slotted Rail™ system. This system effectively eliminates all exposed high voltage conductors, providing significantly improved safety and ensures compliance with mine electrical regulations, according to BluVein. This is complemented with its Hammer™ technology and a sophisticated power distribution unit to effectively power electric motors and charge a vehicle’s on-board batteries.

BluVein has been specifically designed for harsh mining environments and is completely agnostic to vehicle manufacturer, according to the company. This standardisation is crucial, BluVein says, as it allows a mixed fleet of mining vehicles to use the same rail infrastructure.

BluVein says it plans on starting the trial install early works towards the end of this year for a mid- to late-2022 trial period in a simulated underground environment.

The BluVein project is being managed by the Canada Mining Innovation Council (CMIC).

XEMC, ABB, 3ME, BluVein, Hitachi and more make Charge On Innovation shortlist

The Charge On Innovation Challenge, formally launched on May 13 as a push for industry, OEMs and other stakeholders to come up with workable solutions for faster charging of large surface electric mining trucks and spearheaded by Austmine, has shortlisted 21 vendors to progress to the next phase of the challenge.

These 21 vendors are matched by 21 mining companies who have joined as patrons. This includes founding patrons BHP, Rio Tinto and Vale, alongside Roy Hill, Teck, Boliden, Thiess, Antofagasta Minerals, Codelco, Freeport McMoRan, Gold Fields, Yancoal, Barrick Gold, CITIC Pacific Mining, Evolution Mining, Harmony Gold, Mineral Resources Ltd, Newcrest Mining, OZ Minerals, South32 and Syncrude.

The 21 vendors to have made the cut were selected from more than 80 organisations that submitted expressions of interest.

The list of companies to make it to the next stage (one of which who declined to be named) includes:

  • 3ME Technology;
  • ABB;
  • Altreonic-Kurt.energy;
  • Ampcontrol/Tritium;
  • Australian Turntables;
  • BluVein;
  • DB Engineering & Consulting with Echion Technologies;
  • Farmboro Consulting;
  • Hitachi Group;
  • Infosys;
  • InvertedPower Pty Ltd;
  • IT & ES Industries (OZ) Pty Ltd;
  • L&T Technology Services;
  • Midwest Energy Pvt. Ltd;
  • Mitsui & Co. with Forsee Power and AVL;
  • Saft;
  • Shell Consortium;
  • Siemens;
  • Solar System Resources Corporation Sp. z o. o.; and
  • Xiangtan Electric Manufacturing Group Heavy-Duty Equipment Co. Ltd;

The next phase of the challenge will comprise of a pitch session followed by a deep dive into the innovative solutions proposed to charge haul trucks powered by battery instead of diesel, Austmine says.

Vale, Glencore, Newcrest and others join BluVein’s next gen trolley charging project

Seven major mining companies have financially backed BluVein and its “next generation trolley-charging technology” for heavy mining vehicles, with the industry collaboration project now moving forward with final system development and construction of a technology demonstration pilot site in Brisbane, Australia.

BluVein can now refer to Northern Star Resources, Newcrest Mining, Vale, Glencore, Agnico Eagle, AngloGold Ashanti and OZ Minerals as project partners.

Some additional mining companies still in the process of joining the BluVein project will be announced as they officially come on board, BluVein said, while four major mining vehicle manufacturers have signed agreements to support BluVein controls and hardware integration into their vehicles.

BluVein, a joint venture between EVIAS and Australia-based Olitek, is intent on laying the groundwork for multiple OEMs and mining companies to play in the mine electrification space without the need to employ battery swapping or acquire larger, heavier batteries customised to cope with the current requirements placed on the heaviest diesel-powered machinery operating in the mining sector.

It is doing this through adapting charging technology originally developed by Sweden-based EVIAS for electrified public highways. The application of this technology in mining could see operations employ smaller, lighter battery-electric vehicles that are connected to the mine site grid via its ingress protection-rated slotted Rail™ system. This system effectively eliminates all exposed high voltage conductors, providing significantly improved safety and ensures compliance with mine electrical regulations, according to BluVein. This is complemented with its Hammer™ technology and a sophisticated power distribution unit to effectively power electric motors and charge a vehicle’s on-board batteries.

BluVein has been specifically designed for harsh mining environments and is completely agnostic to vehicle manufacturer. This standardisation is crucial, BluVein says, as it allows a mixed fleet of mining vehicle to use the same rail infrastructure.

While underground mining looks like the most immediate application, BluVein says the technology also has applications in open-pit mining and quarrying.

It is this technology to be trialled in a demonstration pilot in a simulated underground environment. BluVein says it plans on starting the trial install early works towards the end of this year for a mid- to late-2022 trial period.

The BluVein project will be managed by the Canada Mining Innovation Council (CMIC).