Tag Archives: Brian Huff

Sandvik retaining the platform approach for load & haul electrification

Sandvik’s aim to electrify the underground mining space have been gaining traction over recent years, with single machine trials and deployments that typified the early stages of its mission now replaced by fleet-wide agreements that, if not already in operation, will be starting up underground in the years to come.

As with all transitions, the electric one has not been easy. There have been teething issues along the way; whether that is equipping batteries for the harsh nature of an underground mines, educating employees about best practice maintenance and operations of this equipment, or facing an onslaught of questions about potential battery fires witnessed in passenger vehicles via YouTube.

Just how much traction the company has been gaining was made clear late last year during its Capital Markets Day event.

Here, the company outlined that battery-electric vehicles accounted for 15% of all load and haul orders in the year to the end of October. On top of that, it displayed an impressive pie chart showing that, from January-October 2023, Sandvik had won more than 75% of orders for battery-electric equipment.

These numbers do not factor in the cable-electric loaders the company has been selling for decades, plus the underground battery-electric drilling equipment that trams on battery power at mining operations across the globe.

For all this positive momentum, battery-electric does not make sense for everyone…yet.

IM has documented a series of both diesel-electric and hybrid diesel-electric LHD sales in Australia recently, with at least one of these sales following the trial of battery-electric equipment.

Sandvik has made clear that it will have something in store for miners in transition between diesel and fully-electric operation, stating last year that it was developing diesel-electric trucks and loaders for the industry.

Unlike some of its peers, Sandvik is deliberately building this offering with fully-electric operations in mind.

“Currently we are developing diesel-electric solutions both for trucks and loaders,” Juha Virta, VP Sales and Marketing for the Load and Haul Division within Sandvik Mining and Rock Solutions, told IM. “We aim to maximise the customer value by utilising modular design in our equipment: battery and diesel-electric equipment will have commonalities eg in drivelines, hydraulics, electrics and spare parts.”

This approach will make it easier for customers to transfer from diesel-electric equipment to battery-electric equipment, Virta says. The “commonalities” could also prove beneficial in developing the skill sets required from service personnel.

“Energy storage elements are also included in our development portfolio, enabling, for example, hybrid solutions, delivering positive results in the area of fuel consumption and the equipment performance,” he added.

This is all part of an increasingly diverse offering from the OEM that Brian Huff, Vice President of New Technologies for the Load and Haul Division within Sandvik Mining and Rock Solutions, mentioned during the Capital Markets Day.

He said: “We’re taking the technology of our battery-operated drills, loaders and trucks, and expanding that with diesel-electric using the same motors, inverters and componentry in a modular approach that allows us to offer diesel solutions with the same electrified driveline from our battery-operated equipment.”

The developments the company is making as part of this project are being displayed on the TH66X diesel-electric demonstrator – a Toro diesel-powered truck that has been retrofitted with an electric driveline – that customers first saw in Turku, Finland, in 2022. This machine is currently in factory tests, according to Virta, saying that component validation and a variety of simulations were also being run.

“The program also includes a significant amount of testing in a real underground mine environment,” he added. “Developing new technology and ensuring its performance takes some time, and sufficient and careful tests are extremely important – we are in a very good progress with that currently.”

For this, Sandvik is using not only its Test Mine in Tampere, Finland, but also the Pyhäsalmi mine. Sandvik is using the latter operation – owned by First Quantum Minerals – as part of its involvement in the Callio consortium: a group of companies focused on developing ‘FutureMINE – the future digital test mine project’.

One of the other participants in this consortium is Byrnecut, who has been partnering with Sandvik based on a recent LinkedIn post by Sandvik Mining and Rock Solutions.

“We have long traditions with working in close collaboration with different customers, and that will continue to be Sandvik approach also going forward,” Virta said when asked about this partnership. “Byrnecut is one of our customers and a very important partner for us, and, along with Barminco, will be one of the first companies to test the TH66X in the field.”

Considering the majority of the team focused on this diesel-electric demonstrator are based in Turku, one would expect this facility to have significant influence on the commercial offering that follows.

The facility is undergoing an expansion focused on incorporating an additional 7,000 sq.m of production and storage space previously occupied by Tunturi, a manufacturer of bicycles and fitness equipment. The whole of the plant for load and haul equipment is also set to be enhanced and modernised.

Petri Liljaranta, Supply Director for the Load and Haul Division within Sandvik Mining and Rock Solutions, says the expansion is progressing as planned with all but a few of the company’s finishing functions relocated according to its plans. “This final part of the project is expected to be finished in the June quarter,” he added.

One of the expansion project’s targets was to increase the manufacturing space at its facilities, and this target has already been achieved, with the company well equipped to respond to growing volume needs in the coming years, according to Liljaranta.

“Based on current views, the battery-electric vehicle manufacturing capacity is expected to meet expected market demand during 2024,” he said.

Sandvik looks to shape the surface drilling electrification conversation

“We are showing what technology can do today.”

These were the words Mats Eriksson, President of Sandvik Mining and Rock Solutions, during the Capital Markets Day in Tampere, Finland, last week when describing the launch of Sandvik’s latest battery-electric concept surface drill rig.

This rig is representative of more than just technological advances in the mining industry, also acting as a tangible example of Sandvik’s efforts to become a leader in the surface drilling space.

It has been four years since Sandvik announced this ambition, with the company having made significant headway on achieving this goal.

Sandvik doubled its order intake for rotary drills from 2019 to 2022. Over this three-year period, the company launched the Leopard™ DI650i down-the-hole (DTH) drill rig to support fully autonomous drilling operations and went on to capture major autonomous drilling contracts in Latin America, Australia and Finland.

The OEM is looking to at least double its surface mining revenue from 2022 to 2028. Key contracts in 2023 from Boliden and MACA have already provided early positive momentum towards such a goal.

There is potential for Sandvik to steal a march on its competitors in this space – companies who have already been able to automate the largest blasthole drills in key markets in the Americas and Australia – by leveraging the electrification expertise it has built up underground.

This was highlighted by Eriksson last week and was reiterated further when IM spoke to the company’s experts in Tampere in front of the second battery-electric surface concept rig.

The concept vehicle is the first in its size class, capable of drilling DTH holes up to 229 mm in diameter and blending the autonomy of battery with the continuous endurance of power cable, Sandvik says.

Dan Gleeson, IM Editor (centre), with Petri Virrankoski, President of the Surface Drilling Division (left), and Lauri Laihanen, Vice President, R&D of the Surface Drilling Division (right)

Flexibility and optionality are the name of the game, with the rig equipped with a battery able to carry out seven hours of tramming or one hour of drilling based on Sandvik research, plus plug into electrical infrastructure with a  37-mm diameter, 180-m-long tethered cable.

Lauri Laihanen, Vice President, R&D, Surface Drilling Division, Sandvik Mining and Rock Solutions, told IM at the Sandvik Capital Markets Day event last week: “The main benefit of this battery-electric solution is the ability to tram independently for up to seven hours.

“When you need to move the rig after drilling a certain portion of the pit ahead of blasting, you can disconnect the cable and tram the rig away from the pit independently without worrying about managing the cable logistics. Then, when you have carried out the blasting and explosives loading process and are ready for the next drilling sequence, you can tram back without recharging in between.”

Petri Virrankoski, President of the Surface Drilling Division, added: “The application where these drills are used is somewhat different to rotary drills. To a degree, they are used in production drilling, but in a very dynamic way – carrying out pre-splits or blasthole patterns on smaller benches, for example.

“They need to manoeuvre around more, so there are more demands placed on them from a flexibility and cable management perspective.”

There are other potential benefits Laihanen talks up – the ability to carry on drilling or tramming during “black outs” and, on mine sites where cable-electric equipment is already used, connect the rig to the grid after diesel-electric blasthole drills and cable shovels have started up (to avoid power surges).

“For some of our frontrunner customers that have already adopted electrification on surface and have the infrastructure in place, they would only need to add one transformer to lower the voltage level from what their larger pieces of equipment are working off to start using this rig for drilling and tramming,” he added.

This type of talk – more practical than conceptual – is representative of Sandvik ‘making the shift’ when it comes to electrification in surface mining.

It has only been just over a year since the company unveiled its first electric concept rig, based off a much smaller top hammer drill rig meant for urban construction, but the understanding of what it may take to electrify these large rigs has grown tremendously.

“From a technology development and demonstration point of view, it is crucial to understand the framework that you have from the lower and upper end of the drilling portfolio,” Laihanen said. “This helps you track it with the customer base and finalise your productisation plan to hit that 2030 goal of having an electrified offering for the whole range.”

Eriksson says the company is confident in being able to offer electric surface drilling products across its range by 2030, with Sandvik’s continued advances in underground mine electrification spurring this on.

It is worth, therefore, noting some of the numbers that came out of the Capital Markets Day from the underground load and haul division.

Brian Huff, Vice President of New Technologies for the Load and Haul Division within Sandvik Mining and Rock Solutions, said the company had won more than 75% of the tenders it had been involved in from January-October this year, with more than 15% of the company’s load and haul order intake over this period representing battery-electric equipment.

One can also add sales of the company’s underground battery-electric drills, which started to be offered to the market from 2016, to these numbers.

The company’s Test Mine in Tampere, which IM visited last week, has played a key role in this growing Sandvik underground battery-electric population, and the recent announcement that Sandvik will look to replicate this on surface with the Sandvik Test Pit – some 40 km away – is another indicator of how serious the company is about becoming an open-pit drilling major.

Virrankoski explained: “If you look at the peak capabilities that have enabled us the successes underground, one of these is the Test Mine. This has been helpful for testing and developing not only the drill rigs, but also tooling, digital tools, automation, rock drills, etc.

“It became pretty clear about four years ago that we needed a similar capability for surface.”

This location just outside of Tampere was chosen due to the “good rock” availability, the ability to offer significant scale where the company could test out all boom and rotary drill rigs up to the DR413 class at the same time as providing customer showcases both on electrification and automation, the ability to cross-fertilise underground learnings from the existing Test Mine with surface drilling developments, and the continued development of existing and new Sandvik surface mining engineers.

The Sandvik Test Pit, which has previously served as a quarry, will be developed by its own drilling plan

The company already has multiple rigs, both boom and rotary, at the site – which is still being setup for testing – with the new electric concept rig expected to soon join it.

“The next action after that is to begin customer trials next year,” Laihanen said. “We have had preliminary discussions with several customers, but we need to finalise our own internal development testing before locking in these trials.”

This is indicative of the emphasis the company is placing on surface mining and the opportunity it has to shape the battery-electric conversation in the surface drilling space.

“For us, it is important to have a physical specimen to have these conversations with customers,” Laihanen said. “When you have something available, it makes the conversation around capabilities and limitations a lot easier, taking these discussions to a whole new level.”

Virrankoski added: “This will lead to a conversation around maintenance processes, the skills requirements, the service models, etc.

“Having a machine that can play in a real-life sandbox is very different to showing a model on a screen.”

Sandvik has laid its surface drilling marker down. The market will now decide if this is the direction it wants to move in.

Sandvik to boost battery output with higher-capacity systems, standardised processes

Sandvik’s higher-capacity batteries – ones that could eliminate one battery swap every shift in some mining applications – will soon start to be installed across the company’s line of battery-electric vehicles, according to Brian Huff, Vice President of New Technologies for the Load and Haul Division within Sandvik Mining and Rock Solutions.

Speaking to IM on the side lines of the OEM’s Innovation in Tunneling event in Tampere, Finland, Huff said the last of the previous generation of batteries were being manufactured in Camarillo, California, with the new generation battery packs lined up for future installations.

The company announced the introduction of these batteries for BEV loaders and trucks back in May, claiming they could deliver 36% more energy in the same envelope as the previous generation.

At that point, the company said they would be in production from the December quarter of 2023 and equipped as standard on all new Sandvik BEV loader and truck orders.

In addition to 36% longer runtime, customers can expect a lower cost per amp-hour compared with current-generation Artisan® battery packs. The increased capacity also improves charge acceptance, enabling faster downhill speeds and better efficiency.

Sandvik-Camarillo-BEV

Purpose-built for underground mining and designed and manufactured in-house by Sandvik, the new battery maintains the modularity and ruggedness of the existing pack and features significant design improvements.

Revamped housing and increased rigidity enhance structural strength, enabling the battery to better withstand shock and vibration. Laser-welded terminals provide a stronger connection with lower resistance, reducing energy loss and heat while improving efficiency and safety.

Top and bottom cooling plates improve cooling performance to slow cell degradation and extend life. Key design improvements also include better ingress protection against dust and moisture.

Brian Huff, Vice President of New Technology for the Load and Haul Division within Sandvik Mining and Rock Solutions

The next-generation LFP battery cells are fully encapsulated in a non-conductive potting material, increasing thermal conductivity and reducing the risk of overheating and short circuit. Sandvik has also redesigned its battery management system for improved reliability and function. This safety feature monitors every cell’s temperature and voltage to ensure everything is within operational range.

Huff said the new battery modules and accompanying largely automated assembly process would enable the company to significantly scale up its offering from current capacity.

“The batteries will be assembled in a much more controlled environment than before, which will inherently lead to less human error throughout the process,” he said. “Laying this foundation will enable us to scale our battery production capacity with limited additional resources.”

Camarillo will be the first to benefit from the new assembly line, yet Huff said the in-construction plant in Malaysia will also benefit from the same disciplines to maximise productive capacity from the off.

Earlier this year, Sandvik said it was establishing a new production unit in Malaysia for manufacturing underground loaders and trucks to answer growing demand for its BEVs. Equipment production was slated to begin in the December quarter of 2023 following factory upgrades and other site improvements. It was expected to have an annual manufacturing capacity of 300 loaders and trucks and 500 battery cages by 2030.

Sandvik setting the battery system safety standard in underground mining

In the three-and-a-half years since Sandvik acquired Artisan Vehicle Systems, the mining industry’s appetite and demand for battery-electric vehicle (BEV) solutions has grown exponentially.

From conversations that were concentrated to mainly North America and involved the trial of BEVs, the sector has moved on to discuss commercial, fleet-sized applications to be deployed across the globe.

Sandvik, itself, highlighted this in July with the award of its biggest BEV contract to date – a 20-strong equipment order from Foran Mining in Canada.

With this increased industry focus on underground electrification with the help of battery-electric equipment, the discussions around battery system safety have also stepped up in terms of both the number and complexity of conversations.

These are conversations Sandvik Mining and Rock Solutions’ Battery and Hybrid Electric Vehicles (BHEV) Business Unit is more than prepared to have, according to the unit’s VP Strategy and Commercial, Jakob Rutqvist.

“It’s on us as an early adopter to spread the learnings and help educate the industry in terms of battery safety and engaging with the stakeholders involved in the supply chain,” he told IM.

Sandvik, with the help of Artisan, has clocked up hundreds of thousands of operating hours in terms of BEVs in mining over the last decade or so.

This has been underwritten by the Artisan battery system architecture, which has been designed to move with both mining market demands and battery technology.

Brian Huff, Vice President of Technology for the BHEV business unit, expands on this: “We produce in-house battery systems, which gives us a lot of capability in terms of controlling the design. We can be much more reactive to the field in terms of making changes to the design, versus an OEM that is using batteries designed for automotive or industrial applications where those higher volumes tend to drive design decisions.

“We don’t have that diversion of focus; we do what is right for mining.”

Doing what is ‘right for mining’ has led to Sandvik investing in a state-of-the-art battery system facility in Camarillo, California, boasting 100 MWh of annual battery production capacity. This same facility acts as a training and customer visitor centre with a test ramp that has a 20% grade and a whole area for mucking on the property.

Sandvik’s state-of-the-art battery system facility in Camarillo, California, boasts 100 MWh of annual battery production capacity, as well as acting as a training and customer visitor centre with a test ramp that has a 20% grade and a whole area for mucking on the property

Huff said on the latter: “We will test every product that leaves the shop and do a lot of development work – our development cycle has, as a result, sped up.”

Beyond this, Sandvik’s mining sector commitment has seen the company invest in a battery system platform that – when it comes to safety – recognises the realities of operating machinery at underground mines.

Quality cells with the right chemistry

The inherent safety of Sandvik’s battery system starts at the cell level.

Artisan partnered with China-based CALB all the way back in 2015 as it looked to shore up a reliable and high-quality battery cell supply that could seamlessly fit into its battery system architecture.

Seven years on – half of that under the guise of Sandvik – Huff sees no reason to change.

“What matters from a battery system safety standpoint is consistency and high-quality cells,” he said. “That is achieved through high-volume manufacturing tied with automation and production controls that ensure the quality of production.

“CALB, which makes a lot of batteries for stationary and bus applications in China and globally, has all the compliance and testing completed on their cells and meet all the requirements from a safety standpoint.”

The battery cell manufacturer was also one of the early movers in the lithium iron phosphate (LFP)-based battery space, and Huff is keen to point out the safety benefits that come with using such battery chemistry.

“Our approach to battery safety, which is part of the standardised Sandvik approach for safety with ISO and other standardisation bodies, is to look, first, at reducing the severity of a potential incident or eliminating the hazard,” Huff said. “For us that means reducing the severity of a thermal runaway, which is primarily a chemistry choice.”

Thermal runaway is categorised as a chain reaction within a battery cell that occurs when the temperature inside a battery reaches the point that causes a chemical reaction to take place inside the battery. This chemical reaction produces heat, which drives the temperature higher, causing further chemical reactions to take place and further heat generation. Excessive heat generation at an accelerated rate can cause batteries to melt or be damaged beyond repair, or, in extreme circumstances, ignite and start fires.

With the potential to cause such an incident, thermal runaway preventions are often the first thing battery companies mention in safety briefings.

When plotting the main commercial battery chemistries against the heat-release-rate (HRR) on a graph, it is easy to see Huff’s point (see graph below). The rate of temperature rise (left) indicates the severity of a thermal event, with the higher the HRR, the harder it is to contain an incident, Sandvik says.

Taking all this into account, the LFP rate of temperature rise is over 100 times lower than other batteries with chemistries such as nickel-manganese-cobalt (NMC), lithium-cobalt oxide (LCO) and lithium-nickel-cobalt-aluminium (NCA), making containment more achievable, according to the company.

In thermal runaway tests, LFP-based cells have emitted a flammable gaseous electrolyte but do not self-ignite during standardised safety tests, Sandvik clarified.

Tests on batteries looking at the release of harmful emissions have also highlighted the safety benefits of using LFP-based batteries. A US CDC nail penetration test showed minimal emissions of the likes of carbon monoxide, nitrous oxides and hydrogen fluoride, compared with much higher levels emitted from NMC- and lithium-ion-manganese-oxide (LMO)-based batteries.

Passive and intrinsic safety

The battery chemistry choice fits into the ‘severity reduction’ basket in terms of safety controls, but it is not where Sandvik’s battery system safety approach ends.

“We then move to reducing the likelihood of the hazard occurring through design controls,” Huff said. “This is where the engineering comes in, with the best design controls often deemed to be passive and intrinsic – where you don’t have to do anything in the case an event arises.”

Sandvik has more than a handful of such controls in its locker, starting at the cell.

The cells in Sandvik’s battery systems are equipped with high-reliability vents that prevent pressure build-up in case of thermal runaway. This eliminates the risk of a case rupture/burst, according to the company. They also come equipped with a laser-welded aluminium housing that offers thermal conduction and mechanical safety with mylar and polycarbonate insulation.

A shutdown separator coating, meanwhile, is designed to melt if the temperature inside the cell reaches 110-130°C, blocking the ion flow, interrupting the current and preventing further temperature increases. An additional porous ceramic separator coating melts at 160-175°C, bonding with a polypropylene electrode separator to help block dendrites and provide structural support to prevent shrinkage and maintain the separation of electrodes.

Huff expands on this: “Dendrite growth is an effect of overcurrent, overcharging, charging at cold temperatures and a side effect of ageing. Excessive growth can result in an electrical short as well, which can then lead to thermal runaway.”

In Sandvik’s battery system design, a battery cell (far left) is placed into a battery module (second from left), which is then incorporated into a battery pack (second from right). This pack is then enclosed in a cage (far right)

These cells are placed into a battery module, which operates at low voltage for safe servicing, comes with isolating foam potting to block moisture and prevent isolation faults, offers thermal conduction to draw heat away from a hot cell and distribute it across the entire module to moderate temperature rises, and offers environmental and mechanical damage protection, according to Sandvik.

These modules are then incorporated into a battery pack, which comes with mechanical protections such as a 6-mm plate steel enclosure; a non-conductive coolant to manage temperature during charging; and gore vents and drains to prevent pressure build-up, allowing vented gases to expel air in the enclosure and fluids to drain rather than collect, all while limiting ingress of dust and contaminants.

The redundant configuration of the battery pack contactors allows the circuit to be broken in the case of over/under voltage, isolation fault, over temperature or overcurrent, the company says. This may also be triggered by a high-voltage interlock loop (HVIL) system. Lastly, the inclusion of 600 A fuses provides protection against overcurrent and damage from external shorts.

Finally, this battery pack is enclosed in a cage that offers, Sandvik says, robust mechanical protection, mobility and swap-ability, plus quick access to the pack modules without cage disassembly.

Beyond design controls

“We start with the assumption that, however good, design controls should never be believed to be 100% effective,” Huff said. “You cannot just approach the issue by never considering the likelihood of thermal runaway, for instance. It is unrealistic, especially in a mining environment where accidents happen, damage occurs and mistakes in servicing can arise.”

This leads the company on to the active controls it includes in its battery systems.

“All this starts with monitoring,” Huff said. “It could be looking at temperatures – the case temperature, terminal temperature, as well as the temperature of the conductors – and voltage.”

The Battery System Controller (BSC) is responsible for protecting the battery – calculating the limits and thresholds, monitoring the HVIL, isolation, temperature and currents and connecting the battery and communicating the status – but it is not the system that implements the controls and limitations.

“The battery system controller communicates what the limits are – only 400 A in discharge due to heat, for example – but the master controller unit (MCU) is the one responsible for accomplishing those limits,” Huff explained. “If the MCU fails to do that – drawing too much current, for instance – then the battery system controller opens its connectors and disconnects power as a last resort.”

The battery monitoring system (BMS) monitors the cell voltage and temperature (case temperature, terminal temperature and conductor temperature, for instance), manages the cell balancing and communicates data to the BSC.

This monitoring will be further enhanced with the incorporation of Akkurate (a battery analytics company acquired by Sandvik earlier in the year) and its remote battery diagnostic and prognostic platforms into the BHEV business unit, with Rutqvist saying that “embedded” monitoring software on the battery and “remote health monitoring” applications are the first development priorities, post-integration.

Jakob Rutqvist says “embedded” monitoring software on the battery and “remote health monitoring” applications are the first development priorities for Akkurate, post-integration into Sandvik

Such monitoring can go a long way in ensuring safety from within the system, but you cannot always limit external threats, Huff said.

“In terms of electrical failure modes, you can prevent overcharging and over-discharging through monitoring-based functions, but you can’t prevent deformation, mechanical damage or penetration from foreign objects,” he said.

This is where the ‘suppression’ element comes into play.

Sandvik uses a potassium-based, electrically non-conductive chemical emulsion for its fire suppression system. It acts by filling the battery pack interior with an aerosol agent that chemically interrupts combustion and stops a potential fire in its tracks.

“We’ve had a couple of incidents in the past, which were minor, and these suppression systems came in and did the job we prescribed for them,” Huff said. “They are not designed to put out a widespread battery fire, where, instead, the chemistry selection and the other passive controls we have designed in are the safety barriers.”

No expense spared

This three-step safety approach is indicative of the company’s focus on risk reduction for its customers, with Huff saying the company often looks beyond industry standards and regulations when designing features in.

“The volume and value proposition of our products change the battery system design requirements,” he said. “We’re not trying to save a dollar here by reducing the thickness of, say, the enclosure, or amending some design feature for cost effectiveness.

“Safety and reliability are way more important than the cost of manufacturing the system.”

There are plenty of examples of this safety-design-over-cost philosophy on board its battery systems.

For instance, the company has minimised the use of cables, designing as much as possible with busbars to avoid potential electrical shorting. All these busbars are powder coated and protected from an electrical perspective, meaning any “casual” contact from operators or service technicians will not result in the live conductors being engaged.

When it comes to isolation monitoring, the company has also designed in safety precautions.

“Isolation monitoring was originally mandated for battery systems to notify technicians about the potential for an electrical shock if there was an isolation fault,” Huff said.

“Beyond that, it can be used as an early warning for a higher current short circuit where an isolation fault occurs that is lower than a certain resistance.”

Huff and his team have carried out some research and chosen 5,000 ohms as the relevant threshold for this particular risk.

“If you have a 5,000-ohm isolation fault in a location and have a direct connection from another point to the chassis, you can create a short circuit with enough power to melt some of the protective materials in the battery system and potentially accelerate this to a much higher current short circuit,” he said.

This second isolation monitoring consideration requires a differentiated response.

“Shock hazards are a warning situation – you need to notify people there is a hazard and behave differently,” he said.

“You need to handle a short circuit risk – a low impedance isolation fault – differently. For us, it means shutting the machine down and isolating the fault through removing the modules or locating the fault and transferring the modules.”

With Artisan’s battery systems designed to be broken down into individual batteries and transported individually as needed, the company can do exactly this.

“There have been a few battery fires reported in mines over the last five or so years, involving different types of equipment,” Huff said. “The two I know about had nothing to do with a BMS response and everything to do with isolation faults. How you handle a battery with this issue is, therefore, a key consideration.”

Backward-compatible benefits

Huff, a co-founder of Artisan, can contextualise the mining proposition better than most considering his experience in both electrifying the automotive sector and heavy-duty commercial vehicles – two sectors Artisan served prior to shifting focus to underground mining.

“A key difference is the level of serviceability required,” he said. “Mining is a very different world; you are separated so much from a nice clean shop with all the facilities and space to do work. With cars, there is such easy infrastructure in place; mining is not like that.

“At mine sites, there is huge pressure to do the work in-situ with the tools you have in your backpack and, if you don’t have the specific tool, you are typically going to make the tool or do without it. You have to have a product designed for that environment, and that is exactly what we have done.”

Rutqvist said the standardisation and commodification of Sandvik’s battery systems comes at the cell level, which leaves the company open to adapt and customise according to mining industry demands.

“If you take the market at a battery system level, mining customers don’t count in thousands, they count in hundreds,” he said. “Our average customer is big, and they expect to be very close to us when it comes to the product and the product development; our largest customers are very big and expect to have a say in the development and the requirements on the battery system.

“We’re happy to be middlemen for the battery cell, but we don’t want to be middlemen for the battery system design.”

Over the past decade or so – and going forward – this has enabled the company to take advantage of battery technology developments as they happen.

Sandvik says it is able to incorporate new technology and advances into its battery system platform

Haley-Anna Blinn – currently a BEV Applications Specialist at the Sandvik BHEV business unit and previously an Electrical Engineer at the Macassa gold mine in Ontario, Canada, which has one of the biggest battery-electric fleets in the world – has been on the receiving end of this.

“So much is changing in the battery space all the time,” she said. “I have only been involved for five years, and I have seen a lot of change.

“We recognise that, so it is important we design our systems to accommodate future design changes or even battery chemistry improvements when it comes to energy density.

“With the older vintage of equipment, there was a change of cell supplier at one point that resulted in cells with a different form factor.

“While this changed the number of cells in a module based on their characteristics, it was a change that was carried out seamlessly when the cells were due to be refreshed. The module had a similar form factor, so was backward-compatible from a battery system design perspective.”

The new cells also ended up improving performance by about 20% or so, according to Blinn.

With the average battery cell life being 3-5 years, battery performance continuing to improve exponentially over a similar timeframe and the internal funding capabilities of the Sandvik Group, Sandvik BEV customers could be in line for similar step-change improvements in the future.

There are more subtle changes the company can make to its battery systems tailored to the operation at hand, too.

Leveraging sophisticated modelling software and a databank that goes back to the start of Artisan’s BEV journey, technicians can tweak the system at the factory to the conditions they will likely experience underground.

This goes beyond implementing a simple speed restriction to protect the battery system and the operators.

“Some mines might be more conducive to a slower charge than others based on the duty cycle, so we can configure these parameters at the factory,” Blinn explained. “Other mines may impose a temperature limit based on the operating conditions underground that goes beyond the standard limits we program. We can make those changes to ensure the system engages differently during operation.”

Having solved the obvious teething problems that came with introducing BEVs at underground mines over the last decade-or-so, Sandvik is moving into a consolidation phase where refinements to its system design will take place as opposed to major overhauls.

At a time when mining companies require improved performance and uptime from these machines to achieve their own electrification and productivity goals, the company’s mining-focused, safety-conscious battery system design philosophy continues to set it apart.

Sandvik outlines its emission-free mining journey at The Electric Mine 2022

Sandvik Mining and Rock Solutions President, Henrik Ager, got The Electric Mine 2022 Conference in Stockholm, Sweden, off to a bang earlier this month, with a major product reveal that will set a new benchmark in the battery-electric underground mining space.

After reflecting on a journey that saw him escape a broken lift on his way to the Radisson Waterfront that morning, Ager announced the company would soon release the largest-capacity battery-electric truck for underground mining to the market, the TH665B.

With a 65-t-payload capacity, this machine will be measured against the largest underground diesel-powered underground trucks for productivity, speed and cost. Interest is expected from major contractors and miners alike, with one of the bigger markets being the Australian underground hard-rock segment.

The prototype TH665B is currently completing factory testing, but it turned heads in Stockholm, with conference attendees witnessing a video of the machine in action on the company’s test track in California, USA.

Blending proven Sandvik design and advanced technology built around electric drivelines and battery systems, the TH665B will get its first mine site runout at AngloGold Ashanti’s Sunrise Dam gold mine in Western Australia. This trial is expected to prove its viability in a long ramp haulage application before commercial truck production commences in late 2023.

The Sandvik TH665B comes with an electric drivetrain that delivers 640 kW of continuous power, which equates to 858 horsepower

While displaying said video, Ager said the vehicle could haul a 65-t load up a 14.3% grade at 11.5 km/h. This, he said, was 30% faster than Sandvik’s 63-t diesel truck, the Toro TH663i, with which the TH665B shares a state-of-the-art cabin. An electric drivetrain that delivers 640 kW of continuous power, which equates to 858 horsepower, and significant torque, is behind such numbers.

Following the introduction of the Sandvik TH550B 50-tonne battery-electric vehicle at MINExpo INTERNATIONAL® 2021, last September, this latest vehicle launch shows, once again, how the company is betting big on its battery- and hybrid-electric loaders tackling the challenge of operating underground mines today and tomorrow.

Ager at the event outlined the three main drivers for the electrification move, namely: worker health, mine economics and sustainability. Sandvik’s battery-electric solutions, he said, hit all three criteria, providing safer, more productive and sustainable ways of moving the tonnes the industry needs to keep up with global commodity demand.

The primary driver for electrification came from ventilation and refrigeration constraints, followed closely by environmental, health and safety concerns over diesel exhaust emissions. At the same time, Ager said there was significant room for operating costs to fall with the adoption of battery-electric equipment given 40% of total mine operating costs were related to energy and ventilation, and electricity use was often cheaper than transporting and using diesel fuel underground.

Around the same time as MINExpo, Ager outlined that electric mining equipment could account for more than half of the company’s equipment sales in underground mining by 2030. In Stockholm, he added some colour to that statement.

The company’s generation three battery-electric vehicles have clocked up more than 500,000 operational hours with its Artisan™ battery packs and electric drivelines, with 22 active BEV units. This experience makes Sandvik an industry frontrunner, Ager said.

The machines out in the field include the 4-t-payload and 10-t-payload Artisan A4 and A10 LHDs, the Z40/Z50 (40 t/50 t payloads) haul trucks, the Toro™ LH514BE – an AutoMine®-compatible cable-electric loader, boosted with battery technology – plus the 18-t-payload battery-electric Sandvik LH518B LHD and 50-t-payload battery-electric TH550B truck.
This year will see the company officially release the LH514BE, which will be followed in 2023 by the TH665B and – judging from the preliminary nomenclature – a 15 t battery-electric and AutoMine-compatible LHD.

Three other battery-electric and AutoMine-compatible units are in the preliminary stages of development, scheduled for release in 2024-2025.

This comes on top of plans to electrify its full i-Series drilling line by 2030, drill rigs which tram on battery and plug into the grid while drilling/bolting.

Launches for the DD422iE-DC (development drill) and DS422iE (rock bolter) are expected in 2022, with the DL432iE (longhole drill) and the DT923iE (jumbo drill) coming to market between 2023 and 2026.

Since the rollout of the first battery-electric drill in 2016 – the DD422iE – 2.8 million metres had been drilled and 12,500 km had been trammed with these electric machines, Ager acknowledged.

It is not just product releases that are on the Sandvik roadmap, with Ager stating plans to develop different drivelines (battery-electric, hybrids, cable, battery-cable), quantify the value and beat the economics of conventional drivelines, expand into other applications such as narrow vein and narrow reef mines, and continue to develop 100% electrified, energy efficient mechanical cutting for soft- and hard-rock applications.

He also said the company would look to address the capital expenditure gap with diesel machines, aiming for cost parity from a total cost of operations perspective.

The company, at the same time, is planning to further its global capabilities to serve the electrified fleet throughout its entire life cycle, while building out battery optimisation expertise and developing global application knowledge to support customers in designing, planning and executing electric transition strategies.

Real equipment for the real world

This might look like a long ‘to-do’ list, but Ager’s colleague, Brian Huff, VP of Technology and Product Line for the BHEV business unit with Sandvik Mining and Rock Solutions, was able to outline several real-world wins from machine deployments later at the conference that showed how far the company has already come in addressing industry pain points.

Huff, a co-founder of Artisan Vehicle Systems, relayed some observations from field trials of the company’s LH518B and Z50 battery-electric vehicles, summing them up in series of snappy statements such as: “everything will be serviced, whether it was intended to be or not”; “battery cells are consumable, but the driveline is not”; “damage is expected, resilience and serviceability are required”; “isolation fault monitoring is more than shock hazard prevention”; “availability improves with each ‘opportunity’”; and – one of the more important ones – “operators prefer BEVs”.

“They take a beating and keep on working and, despite what people may think, these batteries are not fragile,” Brian Huff told delegates at The Electric Mine 2022 Conference earlier this month

Delving into specifics, Huff said real-world trials had proven the opinion that electric drivelines came with dramatically longer life and less maintenance. He also acknowledged batteries had become the new ‘consumable’ in this equation.

“Maintenance requires parts, but comes with very low labour,” he said, explaining that battery modules can be replaced underground and then rebuilt at the factory with new cells, making rebuilds both quick and painless. At the same time, refreshing the battery brought opportunities to use improved cells as they are developed – a reflection on the accelerated winds of change in the battery market.

Battling early market perceptions, Huff said these machines were far from “experimental”, having been used and proven to work at many hard-rock mines. “They take a beating and keep on working and, despite what people may think, these batteries are not fragile,” he said.

One of the new solutions to have come out from these real-world trials is the introduction of a new battery cage design that aids serviceability, Huff said. Coming with removable side covers, an improved locking system and structural design, this battery cage incorporates the company’s AutoConnect function, which, when combined with AutoSwap, facilitates quick battery swapping without the operator having to leave the cabin. The new cage would be available on the TH665B as well as other models, Huff said.

He then put some names and numbers behind earlier statements, highlighting a trial of a Z50 truck at Pretivm’s Brucejack gold mine in British Columbia, Canada, that saw more than 90% machine availability, exhibited speeds of 9.5 km/h on a 15% grade with a 42-t load, and observed battery swap times of less than 10 minutes. This added up to a 42% increase in tonnes hauled compared with a diesel-equivalent machine and a 22% boost in speed.

The trial at New Gold’s New Afton gold mine, also in British Columbia, saw a 56% mucking cycle time beat over a diesel-powered-equivalent, a plus-70% ramp speed improvement (on a 17% ramp), and decreases of 80% and 90% in energy use and heat generated, respectively.

Referring to another LH518B trial where the machine only clocked in a 74.9% availability, Huff was quick to highlight that all the problems/failures that caused the reduction in availability were correctible.

And, channelling his engineering DNA and the leading role Sandvik is willing to take in the industry’s pursuit of the zero emission, electrified mine, he reflected on all these real-world trials with: “a failure isn’t a failure, it is an opportunity to improve.”

Sandvik on the growth path with Artisan as mine electrification takes hold

Sandvik’s Artisan business unit is continuing to ride the battery-electric vehicle wave in mining, having just moved premises in California, USA, to expand its production and testing capabilities.

Based in Camarillo, Artisan has been on a steep growth trajectory since it was established just over a decade ago. Having initially manufactured machines for several OEMs in the mining sector, the company was acquired by Sandvik in 2019. It had revenues of $12.3 million and approximately 60 employees back in 2017.

Both of these numbers have accelerated in line with increased take-up – and an expansion – of its battery-electric solutions for mining since it became a business unit of Sandvik.

Artisan’s 4-t (A4) and 10-t (A10) battery-electric underground loaders have found their way into mines in Canada and the US, while its 50-t Z50 haul truck has found a home in mines in Canada, the US and Australia. One of the bigger deployments has been at the Barrick Gold majority-owned Turquoise Ridge underground mine in Nevada, USA.

More recently, the portfolio was broadened with an 18 t LHD called the LH518B. This machine is the first true collaborative design effort between Sandvik and Artisan, marrying Sandvik’s underground mining engineering expertise with the Artisan™ battery system and electric driveline to “best leverage the possibilities that the battery technology brings”, the companies say.

This machine’s first deployment will be at a gold mine in British Columbia, Canada, but Artisan has also booked several orders for it in Australia, one of these being for Kirkland Lake Gold’s Fosterville gold mine, in Victoria.

With a range of new battery-powered equipment in the pipeline, Artisan has moved into a larger facility in California that will help it build these new vehicles from the ground up.

“We’re definitely growing in Camarillo,” Artisan’s Vice President of Technology, Brian Huff, told IM recently. “The move to a larger facility comes at the same time we are ramping up a lot of hiring in terms of engineering and manufacturing personnel.”

Artisan’s new facility comes with a test ramp with a 20% grade and a whole area for mucking on the property (pictured above).

“This will allow us to do a lot more development testing in a short period of time, giving us an advantage in terms of validation testing and trials of new designs and tools,” Huff said.

The potential for speeding up Artisan’s time to market will be increasingly important as more mines replenish fleets with battery-electric equipment.

As COVID-19-related restrictions ease, expect the new testing facility – and the manufacturing plant – to be regularly frequented by mining companies eyeing these new solutions.

Tackling the big mine electrification questions

“There is consensus in the industry that once we start doing electrification, we will innovate much more in other areas of the mining space.”

If anyone in the mining sector thought electrification was not in their wheelhouse, Theo Yameogo’s words might make them think again.

Yameogo, Partner and National Mining & Metals Co-Leader at EY Canada, made such a statement during The Electric Mine Virtual Conference earlier this week. The event, organised by International Mining Events, brought leaders in the electrification space together to discuss the latest developments in the industry, of which there were many.

The stage was set for mine electrification reveals, and Henrik Ager, President of Sandvik Mining and Rock Technology (soon to be Sandvik Mining and Rock Solutions), did not disappoint, acknowledging that the company is currently working on development of what would be its largest underground truck: a battery-powered 65 t vehicle.

This was all part of the company’s aim to have a “full range electrified offering by 2022”, he said.

Azizi Tucker, Co-Founder and CTO of XING Mobility, was next up, providing an overview of the Taiwan-based company’s offering in his presentation: ‘Electrification from prototype to mass production’.

With a remit to provide commercial, industrial and specialty vehicle makers with modular, high power and safe battery and powertrain technologies, XING is making an entrance into the mining space at just the right time.

Tucker talked attendees through the elements that make the company’s IMMERSIO™ battery solutions ideal for the mining sector: “With the modular size and shape of our batteries, we can really suit any vehicles. We find this very popular with the original equipment manufacturers (OEMs) as they can utilise their existing chassis.”

The elimination of corrosion, ability to operate consistently in high-temperature environments, a variety of sealing techniques and the use of nickel-manganese-cobalt lithium-ion chemistry has allowed the company to provide the safe and enclosed battery solution miners are looking for.

He concluded by saying XING was in conversation with a variety of mining companies, mining OEMs and mine site operators about deploying solutions in the space.

Attendees were then treated to a demonstration of Tembo 4×4 e-LV’s Electric Cruiser via video during the session: ‘Green conversions: the Tembo 4×4 e-LV electric light utility vehicle platform’ (pictured below). They got up close and personal with the battery-electric utility vehicle as it travelled on- and off-road close to the company’s Netherlands HQ.

After a 15-minute demo showing off the Electric Cruiser’s attributes, Paul Smeters, Tembo 4×4 e-LV’s Marketing Manager, and Alexander Haccou, Tembo 4×4 e-LV’s Technical Director, joined the event to answer audience questions.

The inevitable query came up early during the live Q&A: have you tested this vehicle in an underground mine?

Haccou was prepared for this, explaining that Boliden’s Tara underground zinc-lead mine in Ireland was the first recipient of the company’s Electric Cruiser, and a unit had been operating there for a few years now observing many of the maintenance benefits battery-electric machines are becoming renowned for.

The Electric Cruiser has also been tested in Australia and Canada with the help of Tembo 4×4 e-LV partners in those regions, he added.

“We don’t use fast charging or battery swapping,” Haccou said in response to another question. “What we have seen in several mines is the daily amount of usage is less than the battery’s full capacity.”

After several questions related to an active thermal management system for batteries had come up in previous sessions, Nicolas Champagne’s entrance to the virtual event proved timely.

His presentation, ‘Battery thermal management system using a highly advanced dielectric fluid’, homed in on the use of a dielectric fluid with specific features to allow direct cooling of the battery electrochemical cells.

Champagne, Formulation Team Manager of the R&D department for TOTAL Lubricants, revealed results from use of the fluid in bench tests and simulations at the battery pack level, extrapolating what these results could mean for battery-powered vehicles in the mining sector.

He said the company is in discussions with at least one mining customer about deploying its fluid on a battery-powered vehicle.

After previous sessions had discussed the potential for fast charging and battery swapping, Champagne made clear that TOTAL Lubricants’ solution would prove beneficial in all battery-powered applications throughout the mining sector.

 

Following a lunch break, it was the turn of Epiroc’s Anders Hedqvist (Vice President of R&D, underground) and Franck Boudreault (Electrification Transformation Lead, underground) to deliver a scoop (pun intended).

The pair, during their presentation, ‘From one generation to the next – learnings from zero emission mining’, took it in turns to provide updates.

Boudreault revealed the company’s plan to create battery-electric conversion kits for not only Epiroc diesel-powered equipment out in the field but other OEMs’ machines, before Hedqvist disclosed the company’s in-development battery-electric 18 t LHD would be trialled at LKAB’s Sustainable Underground Mining (SUM) project in Sweden. Epiroc has already delivered a diesel-powered Scooptram ST18 to be trialled in autonomous mode at the SUM project.

It was Yameogo, a mining engineer with much experience operating in underground mines in Canada, that provided the event’s big picture talk in his presentation, ‘Will electrification spark the next wave of mining innovation?’

He talked up the need for industry collaboration between miners, OEMs and service providers in not only electrifying equipment and operations, but also other types of technology.

“That type of collaboration and co-creation framework will actually help mining companies also think about innovation and other items part of electrification and equipment, in general,” he said.

The focus narrowed slightly to open-pit electrification during Dr Bappa Banerjee’s talk, ‘An electric future for mine haulage’. Dr Banerjee, General Manager of Mining Equipment for Wabtec, emphasised from the off that there was no one-size fits all solution to going electric in this sector.

“It’s becoming clear to us…that perhaps it will be a combination of technologies that really help us get to a solution that is feasible,” he said.

This solution, he said, depended on the mine application and haulage scenario, underlining the need for technology flexibility.

In his presentation, Dr Banerjee pitted a diesel-powered haul truck with 2,500 horsepower (1,864 kW) as his baseline solution against a hybrid solution with a 2,500 hp diesel engine and 200 kWh battery as one alternative, and all-electric truck platforms equipped with trolley assist (with 800 kWh battery) and stationary charging (1,200 kWh battery).

The energy cost versus productivity outcome he showed proved his earlier point about different applications suiting different solutions, with varied results depending on if these trucks were deployed on downhill, uphill or flat hauls.

GE Transportation, since merged with Wabtec, has previously demonstrated a battery-diesel hybrid solution on a Komatsu 830E-1AC and Wabtec has plans to release trolley solutions for Komatsu 830E-5 and 930E-5 haul trucks in 2021, so this analysis includes hard industry data.

Dr Banerjee concluded on the decision-making aspect of going electric: “These are not just point in time decisions we have to make regarding the CAPEX and where we are in the lifecycle of the mine, but decisions across decades sometimes.

“Perhaps the best way to approach this would be to start with a technology that is more flexible up front or has more options.”

Brian Huff, Vice President of Technology for Artisan Vehicle Systems, a Sandvik Mining and Rock Technology business unit, used his presentation to reinforce that battery-powered solutions were the way forward in the underground environment.

‘Rethink the machine, not the mine’ was the title of his presentation and Huff stayed true to it from the off: “The basic message is that this is not as hard as you think it is. There is a real big change coming to the mining industry, but it may not be as difficult as you think to accomplish a conversion to battery-electric equipment.”

Similar to Hedqvist’s mention of the newfound freedom available to engineers when designing these next generation battery-electric machines, Huff explained that Artisan’s generation three BEV blueprint started with a battery-electric driveline and built from there.

“Major parts of the frame can be removed to facilitate swapping…[and you can have] double to triple the power density of the machine (compared with the diesel-powered equivalent) to improve performance,” he said.

He moved on to tackle the usual range anxiety question head on, displaying a video of a 13 km haul on a one-in-seven grade. Within this, he showed that the ability to swap batteries during the uphill haul meant there was no loss in haulage productivity when compared with the a similar payload diesel-powered machine.

The time losses related to battery swapping – around six minutes per swap with the Z50 – were more than offset by the increased haulage speed, according to Huff. “It is about 10% faster on the climb,” he said when comparing the BEV unit with a conventional diesel truck.

Productivity could be further boosted with the introduction of Artisan’s patented AutoConnect system. Fitted on the company and Sandvik’s newest 18 t payload LH518B LHD, this system allows the battery swap to be completed in well under five minutes, according to Huff. IM understands an AutoConnect retrofit option could allow the Z50 haul truck to match that swap time.

Add to this productivity benefit, decreases in operating cost and total cost of ownership, and it is hardly surprising Barrick recently signed off on a trial of four of these Z50s at its Turquoise Ridge joint venture gold mine in Nevada.

Safety, cost, maintenance, productivity and even battery life; you name it, The Electric Mine Virtual Conference discussed it.

The good news is a second dose of electrification talk is only four months away, with The Electric Mine 2021 conference taking place on March 15-16, 2021, in Stockholm, Sweden.

Sandvik and Artisan reveal new 18 t battery-electric LHD

Sandvik Mining and Rock Technology has matched its decades of engineering expertise with Artisan Vehicle Systems’ 18 years of innovative powertrain technology and battery system expertise to come up with the new 18 t payload LH518B battery-electric loader.

Sandvik acquired Artisan last year, in the process gaining 10 years of mining battery-electric vehicle (BEV) deployment experience. The latest BEV loader, which comes on top of Artisan’s 4 t and 10 t capacity loaders – plus its 50 t payload truck – is the first true collaborative design effort between the two companies.

The LH518B from Sandvik has been designed from the ground up, entirely around the loader’s Artisan™ battery system and electric driveline to best leverage the possibilities that the battery technology brings, Sandvik says.

“It was not enough to replace some components or redesign only a part of the equipment: the designers were compelled to rethink the whole machine,” Sandvik said.

The most powerful 18 t loader ever built, according to Mike Kasaba, Managing Director of Artisan, a Sandvik Mining and Rock Technology business unit, the new LH518B can fit in a 4.5 x 4.5 m tunnel and features independent front and rear drivetrains, allowing high payload capacity while keeping a low overall height, Sandvik says.

This low overall frame height of 2,565 mm – significant lower than other machines in its class – provides “for better manoeuvrability in low back height applications while increasing stability”, Kyle Hickey, VP of Engineering for Artisan, said at the Innovation in Mining virtual event on September 29.

“The use of smaller diameter tyres in the rear is an example of how this machine has been optimised for the application,” he added.

The LH518B is equipped with three 2,000 Nm permanent magnet motors, 450 kN of tractive effort, can operate at speeds up to 30 km/h and has 560 kW of continuous power output (peak power output of 660 kW).

“With no torque converter, transmission or engine to rev up, the loader is fast and agile,” Sandvik says. This means it can travel at a speed of 12 km/h fully loaded on a 20% grade ramp.

In practice, changing the loader battery is easy and quick, thanks to the patented AutoSwap feature, Sandvik says.

This self-swapping system for the Artisan battery pack has been developed to offer a minimum amount of manual handling. According to Sandvik and Artisan, changing the battery only takes about six minutes, and it can be done in a passing bay or old re-muck bay with no need for overhead cranes or external infrastructure.

“The new AutoConnect feature, available for the first time on the LH518B, is making swapping even easier and faster by automatically connecting and disconnecting the battery pack to the machine,” Sandvik says. “Aside from unplugging and plugging in the charger, the operator doesn’t need to leave the cabin, which saves minutes on the swapping procedure and decreases effort and risk in the swapping process.”

This is aided by a stability system, within the Artisan battery system, that allows the battery to be dropped off at any location without any prepared infrastructure, according to Hickey.

Kasaba said the LH518B is the “only battery loader capable of dropping off and picking up its own battery”. This process of tramming between battery swaps is enabled by the LH518B having a small on-board battery that remains in place at all times, according to Hickey.

Brian Huff, VP of Technology for Artisan, explained during the event that the LH518B is built for automation and will be available in the future with AutoMine integration.

The LH518B will be available to customers in North America this year, followed by select other areas in 2021, he added.

Sandvik concluded on the subject of BEVs: “Currently, Sandvik is expanding the battery-electric vehicle loader and truck offering and prepares to enter new market areas, which will happen in phases and model by model. When the battery loaders and trucks are introduced to new markets, Sandvik will be ready to offer full product support and aftermarket services for its customers.”

Included in this is the company’s Battery as a Service offering which IM understands will help miners adopt these new battery-electric vehicle solutions, which currently come with a higher capital cost than the diesel equivalent.

Sandvik to show off newest battery-electric loader next week

Sandvik Mining and Rock Technology is set to announce details of its new battery-electric LHD at its Innovation in Mining Virtual Event next week, Brian Huff, has confirmed.

Speaking on ‘The Next Generation of Battery-Electric Vehicles’ event on Tuesday, Huff, Vice President of Technology at Artisan Vehicle Systems, a Sandvik Mining and Rock Technology Business Unit, said a new machine would be announced on September 29 at the virtual event. He later confirmed the loader in question would be on show.

Not too many details were given away about this new BEV, but Huff confirmed it would be “another machine to fill out our weight class” and host, Martina Lundgren, said the loader represented the first joint project between Artisan and Sandvik since Sandvik acquired Artisan in 2019.

In addition to announcing this news, Huff also confirmed that “there will be a larger class…haul truck intended mainly for the Australian market” coming from the company in later years.

As it stands, the company’s largest payload battery-electric haul truck is the Z50 50 t machine (pictured), which has been trialled at the Barrick Gold-owned Turquoise Ridge gold mine, in Nevada, USA.

Artisan Vehicles reflects on its mission to ‘make vehicles that change the world’

California-based Artisan Vehicles has confirmed a statement from Sandvik that it is to be taken over by the Finland-based company and has now explained why it feels the partnership will set a new course for the mining industry.

“In Artisan’s main conference room, there is a simple, but powerful message displayed prominently in the centre of the main presentation wall. Cut through a half inch thick aluminium plate are the words “Our Mission: To Make Vehicles That Change The World”, Artisan said.

“When we started in 2010, we were focused on commercial trucks. But in that same year, Artisan was approached by an innovative mining company that needed help with a big business problem. That problem was getting to a deeper and very rich orebody using an existing underground mine site. Their plan was to access this orebody without spending the huge sums spent by everyone else (more than $100 million) in customary ventilation infrastructure.

“Our solution was to eliminate diesel fumes with zero emission battery-powered loaders and haul trucks.”

Mike Kasaba, Artisan CEO, reflected: “The business case was so compelling that I quickly realised that this was the way for Artisan to achieve its mission.

“Not only did this mean a cleaner environment for underground workers, but also lower costs and a better return on investment for our customers. It was truly a rare opportunity to transform an industry with a cleaner, more powerful alternative to diesel while also saving money by lowering overall costs.”

Fast forward eight years, Artisan has installed its technology in underground mining vehicles that are now deployed in several countries around the world. Some fleets have been in operation for more than five years, making Artisan the most experienced mining OEM using battery-electric technology, Artisan said.

“Now Artisan is taking a giant leap forward in its mission to change the world.”

Kasaba said: “In picking a partner, our criteria is simple.

“We want a partner that has set the standard of today so that together we can set the standard for tomorrow. I am absolutely certain that we have selected the right partner.”

Brian Huff, Artisan’s Chief Technology Officer, added: “With our technology and Sandvik’s experience and worldwide reach, I know we are going to change the world. Sandvik’s expertise in machine design, coupled with our expertise in electric powertrains and battery technology, will set a new course for the global mining industry.”

Artisan calls itself an original equipment manufacturer of zero-emission, battery-powered mining vehicles.

“Artisan’s underground mining loaders and haul trucks are designed from the ground up to include the best thinking in vehicle engineering and to maximise the performance of its high-powered, highly-reliable, field-proven battery-electric powertrains.”