Tag Archives: fossil-free steelmaking

Anglo American and Salzgitter to explore iron ore’s role in low-carbon steelmaking

Anglo American has signed a memorandum of understanding (MoU) with Salzgitter Flachstahl to collaborate on the decarbonisation of the steelmaking industry by exploring ways to reduce carbon emissions.

Salzgitter Flachstahl manufactures a range of steel products optimised for their particular application and is the largest steel subsidiary in the Salzgitter Group, Anglo explained.

The two companies intend to conduct research into feed materials, including iron ore pellets and lump iron ores, suitable for use in direct reduction (DR) steelmaking based on natural gas and hydrogen, a significantly less carbon intensive production method than the conventionally used blast furnace process. The collaboration may also explore developing broader hydrogen technologies.

Peter Whitcutt, CEO of Anglo American’s Marketing business, said: “We have set ambitious targets to help address climate change by reducing our greenhouse gas emissions, including achieving carbon neutrality across Anglo American’s operations by 2040.

“While steel is a critical building block of our modern lives, and itself a critically needed material for the energy transition, the steel industry is a significant producer of carbon dioxide. That’s why we are committed to collaborating with industry-leading players like Salzgitter Flachstahl to develop strategies that capitalise on the premium quality properties of our products to help drive emissions reduction across the entire steelmaking sector.”

The MoU reinforces Anglo American’s existing commitments to the steelmaking industry, ensuring it continues to provide high-quality iron ore products that help drive efficiency and minimise emissions while new technologies are developed to achieve lower carbon steelmaking, the company said.

It also builds on the long-standing relationship between the two companies and provides a platform to explore opportunities for emissions abatement in the context of the sustainable energy transition.

Salzgitter, as part of the European steel industry, has been developing new steelmaking technologies to reduce its carbon footprint under its SALCOS® (Salzgitter Low CO2 Steelmaking) project. The project is targeting a switch from the use of blast furnace production based on coal to wholly DR steelmaking.

Ulrich Grethe, Chairman of the Management Board of Salzgitter Flachstahl GmbH and member of the Group Management Board of Salzgitter AG, said: “With this project we continue to progress important milestones on the way to low CO2 steel production. In driving our SALCOS technology concept forward, we aim to decarbonise steel production as efficiently and quickly as possible. We are delighted to be partnering with Anglo American, our long-standing major supplier of high-grade ores, for joint reflection and potential projects.”

DR steelmaking depends on high-quality iron ore feedstock, or further beneficiated feedstock from the same locations.

SSAB, LKAB and Vattenfall start up world’s first pilot plant for fossil-free steel

SSAB, LKAB and Vattenfall have celebrated the start-up of their HYBRIT pilot plant as part of a project to produce fossil-free sponge iron.

Sweden Prime Minister, Stefan Löfven, started up the plant together with Isabella Lövin, Minister for Environment and Climate and Deputy Prime Minister in Sweden, Martin Lindqvist, President and CEO of SSAB, Jan Moström, President and CEO of LKAB, and Magnus Hall, President and CEO of Vattenfall, today.

The achievement comes just over two years since ground was broken to mark the start of the pilot plant build for fossil-free sponge iron (direct reduced iron/hot briquetted iron) with financial support from the Swedish Energy Agency.

At the plant, HYBRIT will perform tests in several stages in the use of hydrogen in the direct reduction of iron ore. The hydrogen will be produced at the pilot plant by electrolysing water with fossil-free electricity. Tests will be carried out between 2020 and 2024, first using natural gas and then hydrogen to be able to compare production results.

The framework for HYBRIT also includes a full-scale effort to replace fossil oil with bio oil in one of LKAB’s existing pellet plants in Malmberget, Sweden, in a test period extending until 2021. Preparations are also under way to build a test hydrogen storage facility on LKAB’s land in Svartöberget in Luleå, near the pilot plant.

The HYBRIT initiative has the potential to reduce carbon dioxide emissions by 10% in Sweden and 7% in Finland, as well as contributing to cutting steel industry emissions in Europe and globally. Today, the steel industry generates 7% of total global carbon-dioxide emissions, according to the companies.

“With HYBRIT, SSAB, LKAB and Vattenfall aim to create a completely fossil-free value chain from the mine to finished steel and to introduce a completely new technology using fossil-free hydrogen instead of coal and coke to reduce the oxygen in iron ore,” they said. “This means the process will emit ordinary water instead of carbon dioxide.”

SSAB, LKAB and Vattenfall plot HYBRIT pilot production pathway

SSAB, LKAB and Vattenfall are taking another important step in their fossil-free steelmaking journey with preparations now underway for the construction of a demonstration plant on an industrial scale for its HYBRIT initiative.

The companies have also started consultations for deciding on placement of this demo plant in Norrbotten, Sweden.

The objective of the joint venture HYBRIT project is to develop the world’s first fossil-free, ore-based steelmaking process. The by-product of using fossil-free electricity and hydrogen in steelmaking, instead of coke and coal, will be water, instead of carbon dioxide. The partners believe the initiative has the potential to reduce Sweden’s total carbon dioxide emissions by 10%, hence the reason the Swedish Energy Agency has granted financial support for the project.

The plan is for construction of the demonstration plant to start in 2023, with the goal of taking the plant into operation in 2025.

“The intention is to be able to demonstrate full-scale production with a capacity of just over 1 Mt/y of iron per year, ie 20% of LKAB’s total processing capacity at Malmberget and almost half of the production capacity of SSAB’s blast furnace in Luleå,” the company said. “The goal is to be first in the world to produce fossil-free steel as early as 2026.”

HYBRIT is now starting an investigation into the selection of a location for the demonstration plant. Parallel consultations are being launched at two sites in Sweden: the Vitåfors industrial estate in Gällivare Municipality, where LKAB has mining operations, and the Svartön industrial estate in Luleå, where facilities including SSAB’s steel mill and LKAB’s ore port are located.

“The purpose is to consult and conduct an open dialogue about the location and design of the plant ahead of the upcoming selection of the site and permit application,” the companies said. “Consultation with government agencies, organisations and the public will begin in June and conclude in September 2020.”

The choice of location will have a major impact on future competitiveness and climate benefits, according to the partners, with investment decisions made once the authorisation procedure and other investigations have been completed.

HYBRIT’s pilot phase will run in parallel with the demonstration phase. In Luleå, the pilot plant for fossil-free steel will be fully constructed during the summer, and preparations are also under way to initiate construction of a temporary hydrogen store to test the technology for storing hydrogen in caverns, the partners said.

Martin Pei, Chief Technical Officer at SSAB and Chairman of HYBRIT, said: “We want to build the plant in Norrbotten. There’s good access to fossil-free electricity and competence here, as well as close collaboration with academia and the community. A demonstration plant for fossil-free iron production would also be positive for growth and jobs in the region, as well as contributing to a major climate benefit.”

Markus Petäjäniemi, Senior Vice President Market and Technology at LKAB, said HYBRIT is an important piece of the “jigsaw puzzle” in a green transition, in which we want to “climate-optimise” the whole chain from mine to finished steel by the year 2045.

“We want Norrbotten to be a world-leading arena for innovation and a centre of knowledge for the global mining and minerals sector,” he added.

HYBRIT hydrogen storage facility finds financial backing

SSAB, LKAB and Vattenfall have agreed to invest SEK150 million ($15.2 million) on construction of a storage facility for hydrogen at the HYBRIT pilot plant for fossil-free steel.

The funding, which comes on top of the Swedish Energy Agency’s close to SEK50 million pledge, is an important step towards the goal of fossil-free iron and steel production, the HYBRIT joint venture partners said.

The HYBRIT initiative began in 2016. By using fossil-free electricity and hydrogen instead of coke and coal in steel production, the emissions will be water instead of carbon dioxide. The initiative has the potential to reduce Sweden’s total carbon dioxide emissions by 10%, according to company estimates.

The plan is to build the new hydrogen gas storage facility 25-35 m below the ground surface on LKAB’s land in Svartöberget, Sweden, close to the pilot plant currently under construction on SSAB’s site in Luleå. Construction of the 100 cu.m storage facility is expected to start in 2021 and it will operate from 2022-2024. It is expected to be a pressurised hydrogen gas storage facility in a bedrock cavern with a steel lining as a sealing layer.

The implementation study for the HYBRIT initiative showed large-scale storage of hydrogen gas can play an important role in Sweden’s future energy system. As well as acting as a buffer to ensure an even flow to the steel production, a large-scale hydrogen gas storage facility would offer a better opportunity to balance the electricity system with a greater proportion of weather-dependent power generation, and enable a competitive production cost for the fossil-free steel, according to the project partners.

Magnus Hall, Vattenfall’s President and CEO, said: “I am very pleased that we, as partners, are step by step developing our joint fossil-free steel project, and the support from the Swedish Energy Agency is important.

“Now, with the support of the community, we are investing in the next piece of the jigsaw puzzle for a value chain in which hydrogen gas plays a decisive role in the success of the initiative and the development of competitive fossil-free electricity generation in Sweden.”

Martin Lindqvist, SSAB’s President and CEO, said the investment in a storage facility for fossil-free hydrogen gas is “an important building block in achieving our goal of a fossil-free value chain from ore to finished steel”, with Jan Moström, LKAB’s President and CEO, adding that he was pleased the project could make use of parts of the company’s former ore port facility for the experiment.

Robert Andrén, Director General of the Swedish Energy Agency, said large, complex and expensive leaps in technology need to be taken for the sake of the climate, to achieve the goal of zero net emissions.

“Large-scale storage of hydrogen gas will be an important piece of the jigsaw puzzle for a fossil-free value chain for steel manufacturing, but also in a future electricity system with an increasing proportion of weather-dependent power,” he said.

In June last year, SSAB, LKAB and Vattenfall, the HYBRIT initiative partners, started the construction of a unique pilot plant in Luleå. Work also began recently on the reconstruction of a pellet works in Malmberget to replace fossil fuel with bio oil, with the aim of manufacturing fossil-free pellets.

The pilot plants for fossil-free steel production will be used from 2021 to 2024, and the partners are already looking into the possibility of scaling up the manufacturing by building a demonstration plant in 2025, three years earlier than previously planned, to produce fossil-free steel from iron ore for commercial use. The aim for 2035 is to sell fossil-free steel on a broad scale.

HYBRIT partners to speed up fossil-free steelmaking plans

The partners of the HYBRIT project, LKAB, SSAB and Vatenfall, have said they could move up their plans to build a fossil-free steelmaking demonstration plant by three years, to 2025.

Writing in Swedish daily newspaper Dagens Nyheter, the Presidents and CEOs of the three companies, Martin Lindqvist (SSAB), Jan Moström (LKAB) and Magnus Hall (Vattenfall), said they were ready to step up their work for fossil-free steel production and to move up plans to reduce carbon dioxide emissions.

The aim of HYBRIT, which is supported by the Swedish Energy Agency, is to develop a process for fossil-free steelmaking by 2035.

In 2018, the Swedish Energy Agency announced it would contribute funding amounting to more than SEK500 million ($54 million) towards the pilot-scale development of an industrial process, with three owners, LKAB, SSAB and Vattenfall, each contributing a third of the outstanding capital for the project.

Back in April, the partners said construction of a biofuel-based pelletising plant would shortly begin at LKAB’s Malmberget site, in Sweden. This “world-unique test facility”, a key component of the HYBRIT initiative, will see fossil fuels replaced with biofuel to achieve fossil-free production of iron ore pellets.

In the opinion piece in Dagens Nyheter, the company heads said: “We are ready to increase efforts from our side, but if we are to achieve success, society and lawmakers must do the same.

“We are already looking into the possibility of building a demonstration plant in 2025, three years ahead of plan, so that we can immediately thereafter produce iron ore-based, fossil-free steel for commercial use.

“The goal is to be selling fossil-free produced steel on a broad scale by 2035,” they said.

The three companies highlighted four important preconditions for this rapid transition to succeed:

  • “We need large volumes of fossil-free electricity. According to our calculations, the transition to HYBRIT requires the equivalent of about 10% of Sweden’s current electricity consumption. There will also be demand for electricity from other companies and consumers. We will need continued good access to fossil-free electricity with a high level of delivery reliability, competitive pricing and initiatives to create greater flexibility, eg through opportunities to store energy. This work must not be delayed. We are prepared to assist in these efforts;
  • “The public sector in Sweden must get involved and share the risk. Investing in groundbreaking technology such as HYBRIT is often risky, time-consuming and associated with major investments. At the same time, the projects bring great social benefit in the form of increased research, competence and opportunities to achieve climate goals. The Swedish government’s proposal to double the Industrial Evolution initiative over three years is good, but it needs to be secured for a long time to come. A fund is also needed at the EU level, and there may also be a need for support in being able to write off and scrap old plants (so-called stranded assets) in favour of new, sustainable technology;
  • “As a society, we cannot afford to keep emitting greenhouse gases. The EU trading system for emission allowances is currently being revised, and as a result, the costs of carbon dioxide emissions are rising. The system should be designed from 2020 to benefit the most climate-efficient methods from quarrying in the rock to finished steel. The system needs to be developed even after the upcoming trading period. Sweden and the rest of the EU also need to strive to change other parts of the world ahead of similar systems. Bold, sustainable solutions must not be prevented because parts of the world have a lower level of ambition and therefore carry on using old technology; and
  • “Effective, appropriate permit testing in Sweden is required so that work on the transition is not significantly delayed or stopped completely, not least so that sufficient electricity can be obtained now that we have the opportunity to move up the demonstration phase. It can sometimes take 10 years to obtain an environmental permit or a concession to lay an electrical cable or to upgrade the grid. The Swedish government is planning some measures, but more work is needed.”

The three concluded: “Steel is an amazing material. It builds communities, is hard-wearing and can in principle be recycled an infinite number of times.

“But recycled steel will not be enough. In line with social development, population growth and increasingly higher standards of living all over the world, demand will increase for new steel made from iron ore. Therefore, sustainable solutions are needed; solutions that contribute not just to solving climate change, but to social development.”