Tag Archives: Glencore

Chute Technology improves the flow at Ulan operations

Chute Technology says its new coal and ore handling technologies, designed to overcome production-limiting factors at mines and bulk handling terminals throughout Australia, are proving their worth in service at the Ulan operations in New South Wales.

The technology packages are designed to eliminate potential bottlenecks, occupational health and safety issues and weak links in the production chain that can increase downtime and reduce output, Chute Technology says.

Typical issues include bin surging, bulk cleaning, spillages, blockages and reduced throughput rates, resulting in inefficient production.

According to Dennis Pomfret, Managing Director, Chute Technology, the company designed a customised chute to eliminate potential downtime for a specific section of the bypass system at the Ulan Surface Operations, which IM understands is owned by Glencore.

The new chute has dramatically reduced downtime since commissioning, according to the company, whereas the legacy arrangements were a source of multiple hours of lost production.

“The new chute allows Ulan Surface Operations to operate with a full feed rate of 2,000 t/h without any stoppages or blockages, so they can maximise their productivity and our profitability,” Pomfret said.

Chute Technology says it combines its decades of Australian and international practical engineering experience with advanced expertise in new flow enhancement and problem-solving technologies to produce modern answers to minerals and materials handling problems. The company provides audits and solutions extending from single issues at individual plants through to whole-of-process improvements extending from mines to port or point of resource use.

Pomfret said Ulan Surface Operations was looking to the future by investing in a solution designed to maximise productivity and eliminate unwanted downtime.

“We’re delighted that we could make Ulan Surface Operations’ bypass vision come to life, and it’s rewarding to see it working out in service,” he said. “Ulan Surface Operations is always looking to employ modern solutions that avoid problems in the first place, rather than cleaning up a mess after it occurs.”

Chute Technology performed an audit of current operations to gain a holistic view of current operations, before recommending the solution. The engineering audit determined that functionality of one known trouble spot, the bypass hopper and vibratory feeder, could be taken out of service and replaced with a simpler transfer chute with an in-built surge capacity.

The chute was designed in such a way that it could all be lifted and installed in one go, minimising installation downtime, the company said.

Chute Technology also designed and installed an adjustable surge control baffle device to control the height of material on the conveyor belt. The device acts like a trimmer on the end of the chute, where it trims the height of material during times of surge loading, to avoid belt overloading, side spillage and keep material heights consistent.

“We anticipate the surge control device will reduce spillage considerably, especially when taking into account the typical delays in conveyor stopping and starting sequences,” Pomfret said.

“A major consideration for the project was to design the new chute around the existing structures as much as possible, so that there was as little rework or modifications needed before installation.

“We also took into consideration that the drop height is almost 15 m. Ulan Surface Operations wished to retain their surge bin, floor structure, vibrating feeder and conveyor structures, so we designed around these as much as was possible. Additionally, the design was modular, so the installation took as little time as possible.”

Chute Technology says it selected an asymmetric chute to avoid belt mis-tracking issues, a “virtual skirtboard” to optimise the internal flow geometry and designed a single point of contact flow path so the material flow is constantly in contact with the chute from the head pulley to the receiving belt.

Pomfret concluded: “This project has been an excellent success, and we look forward to a long-term relationship with Ulan Surface Operations, as they look to maximise productivity and profitability.”

Glencore-backed mine rehab pilot to showcase post-closure opportunities

A pilot project at a former operating coal mine in South Africa’s Mpumalanga province is showcasing how different industry stakeholders can work together to achieve common ESG outcomes, according to the partners involved.

The Mpumalanga Winter Wheat Pilot, launched in April this year, aims to show how remediated mine land and water can provide economic opportunities for households and the broader community once a mine is closed.

The pilot is trialling a variety of winter wheat at two sites including a rehabilitated mine site at the Umsimbithi-owned Wonderfontein mine and on nearby community land. Successful implementation will mean improved food diversity and security, added farm-based employment, and, over time, the possible introduction of new skills behind crop processing, the partners said.

The pilot is being executed by Melbourne-headquartered Business for Development in partnership with Glencore, Umsimbithi, ICMM Impact Catalyst and the MWCB.

It runs from April 2021 to January 2022, with the program set to scale and support more than 14,300 smallholder farming families. These farming families support 57,000 people residing in the Mpumalanga province, a region providing more than 80% of South Africa’s coal resources.

“A key strength of the pilot is the combination of each partner’s skills and insights – MWCB’s knowledge of the region’s water and land constraints; ICMM’s mine closure knowledge; Business for Developments’ on-the-ground experience in developing agriculture programs linked to market; Glencore’s commitment to sustainably transitioning their mine sites; and Impact Catalyst’s knowledge of South Africa’s regulations and government requirements – enabling the team to develop a realistic strategy to transition the region both environmentally and economically,” the partners said.

On completion in December, key operational learnings will be shared with the South African Government on how Mpumalanga can transition from mining (which accounts for 29.8% of provincial GDP) – through the creation of new jobs, skills, investments and a more equal, resilient local economy.

Following this, Business for Development will look at developing the required systems, including expanded distribution and markets for the wheat, to replicate the program on other sites.

Glencore showcases automated longwall advancements at Oaky Creek

Glencore has highlighted the advances it has made in longwall automation at its Oaky Creek underground coal mine in Queensland, Australia, during a visit from the Federal Minister for Resources and Water, Keith Pitt.

The minister met production crews and was given a demonstration of the mine’s automated longwall, the company says.

Using ‘ExScan’ laser technology developed by CSIRO’s Centre for Advanced Technologies, Oaky Creek has become the first coal mine in Australia to fully automate its underground longwall operation, according to the company.

ExScan technology (picture courtesy of CSIRO) has a laser scanner and associated software capable of generating real time 3D maps of tunnels, walls and cavities underground where global positioning systems cannot penetrate, CSIRO says. These maps can be used for locating, steering and navigating equipment and vehicles.

At Oaky Creek, an above-ground control centre operates the longwall using 3D scans of the mining area recorded by ExScan sensors and transmitted to the surface.

The minister also saw how Glencore’s coal business is leading the way on land rehabilitation and emission reduction, the company says.

To date, Oaky Creek has achieved 132.8 ha of certified rehabilitation and, in the last year, cut emissions by up to 840,000 t of CO2-e by using methane emissions for electricity generation.

“That is roughly equivalent to greenhouse gas emissions avoided from 182,683 passenger vehicles driven for one year,” it says.

Ian Cribb, Chief Operating Officer for Glencore’s coal business in Australia, said: “Glencore has a world-class coal business in Australia and we welcomed the opportunity to show Minister Pitt some of the leading practices we have implemented, particularly around safety and gas management.”

MEDATech launches profit, emissions forecasting software for fleet electrification

Ontario-based MEDATech has launched what it says is the “Deswik of underground fleet electric vehicle electrification” with its Electric Vehicle Fleet Optimization Software (EV-FOS).

Built in MATLAB, MEDATech’s tool for simulation, data acquisition and industrial software development, EV-FOS approaches battery-electric vehicle (BEV) optimisation in mines from the practical (vehicle) side. Its goal is to ensure that the transition to electrification is profitable as well as good for the environment, MEDATech says.

The launch of the software, just in time for MINExpo 2021, in Las Vegas, comes after four years of development in collaboration with McMaster University’s Bauman Lab for Electrified Powertrain Research.

The software is, the company says, essential to building a mine electrification plan that is both optimal and practical, based on technology that is available today.

The Collingwood, Canada heavy-equipment design/build engineering company has trialled EV-FOS with major miners like Glencore, Newmont and Torex Gold, with the software conclusively proven to reduce CO2 emissions and help save cost, according to the company.

“EV-FOS is very precise,” MEDATech President, Rob Rennie, says. “The alternative to using our software is developing your own calculations or guessing. With millions or tens of millions of dollars hanging in the balance, it makes sense to invest in something that yields accurate forecasts.”

MEDATech EV-FOS optimises BEV energy usage for new and existing mines, and is as useful for mine development as it is for production. The software can compare BEV fleets versus diesel fleets in terms of life-of-mine vehicle costs, CO2 emissions, fuel and ventilation costs, as well as vehicle maintenance. It also shows the difference in cost and production values between fast charging, battery swapping and on-board charging.

EV-FOS also calculates optimal BEV type, battery size and charging infrastructure for any given mine. It shows effectiveness in dollars per tonne by the level, by the year, for fast charging, for battery swapping and for diesel, MEDATech says.

“Measuring cost in dollars per tonne and in total CO2 reduction are the big dividends,” Rennie says. “That includes labour, capital costs, operation costs and ventilation costs for mines designed for electric operations. It compares these figures to operational and ventilation costs for mines designed only around diesel power, for an equivalent production requirement.”

Master Drilling’s Mobile Tunnel Borer heads to Anglo’s Mogalakwena mine

Master Drilling is readying its Mobile Tunnel Borer (MTB) technology for a contract at Anglo American Platinum’s Mogalakwena mine in South Africa.

The company, which revealed the news during its interim results presentation, said on-boarding for this project deployment was underway, with the start of “decline excavation” due by the end of the year.

Anglo American Platinum said in its own interim results recently that it was working on feasibility studies on the future of Mogalakwena, with completion of these studies expected at the end of 2021. Decisions on the pathway forward are expected shortly after this, however, one of the current key milestones at the asset includes progressing an underground exploration decline.

Master Drilling Executive Director, Koos Jordaan, said during the presentation that the contract with Anglo American Platinum is for a “turnkey operation” with Master Drilling providing capabilities in terms of construction, logistics and project management, in addition to its normal excavation services.

The MTB is a modular horizontal cutting machine equipped with full-face cutter head with disc cutters adapted from traditional tunnel boring machines. Unlike these traditional machines, it is designed to work both on inclines and declines, with the ability to navigate around corners and construct 5.5 m diameter decline access tunnels.

One MTB unit was previously scheduled to carry out a 1.4 km project at Northam Platinum’s Eland platinum group metals operation in South Africa, however this was cancelled in March 2020 due to the pandemic. This deployment followed testing of an MTB unit in soft rock at a quarry just outside of Rome, Italy, in 2018.

Alongside news of this latest MTB deployment, Master Drilling said in its results that it was studying the potential to deploy two of these MTB units in tandem for twin-decline access as part of the technology’s second-generation developments.

“We can already see the benefit of utilising two of these machines to do a twin-decline access to an orebody,” Jordaan said.

Looking to vertical developments, Master Drilling reported that it had received shareholder funding approval from the Industrial Development Corporation for the latest work on its Shaft Boring System (SBS), designed to sink 4.5 m diameter shafts in hard rock down to 1,500 m depths.

IM witnessed the main cutting mechanism of what was previously billed as being a 45-m long, 450-t machine at the back end of 2019.

The company has since said it will introduce a “smaller scope system” as part of its introduction to the industry.

While busy on the latest slimmed down design of the SBS, Master Drilling has signed a letter of intent with a prospective South Africa project that could see a machine start sinking activities in the first half of 2022, Jordaan said.

Outside of these developments, Master Drilling reported on several contract awards across the globe, including a three-year raiseboring extension with AngloGold Ashanti in Brazil, a joint venture agreement with Besalco Construction to work on Codelco’s Chuquicamata copper mine, an executed contract with Glencore’s Raglan mine in Canada, an agreement with Zimplats in Zimbabwe and a “long-term contract” on the Khoemacau copper-silver project in Botswana.

PYBAR sets records at Glencore’s Black Rock mine with Sandvik DL432i longhole drill

The introduction of PYBAR’s new Sandvik DL432i longhole drill in October 2020 has led to month-on-month improvements in drilling productivity at the Black Rock copper-lead-zinc mine, in Queensland, Australia.

Versatile and compact, the Sandvik DL432i is a fully mechanised electro-hydraulic top hammer longhole drill, designed for large-scale mining. The Sandvik iSOLO drilling control system allows the client (Glencore in this case) to provide electronic drill plans on a USB, which is plugged straight into the drill. The operator then lines the drill up on the survey markings and selects the required drill design, with the remainder of the drilling taken care of by the iSOLO software.

Since arriving on site, a specialised pump has been installed on the DL432i, allowing AMC (a subsidiary of IMDEX) to add a Bore Hole Stabiliser™ to the water circuit while drilling to improve hole integrity in the soft ground conditions. This technology, combined with Sandvik’s iSOLO drilling control software, has been key to PYBAR’s production success at Black Rock to date, the contractor said.

“The ground conditions at Black Rock have put Sandvik’s iSOLO drilling control system to the test, and the technology has proven itself with flying colours,” PYBAR said. “After several months of on-site refinement of the automated drilling system, the drill can now operate with minimal operator input.”

This has led to month-on-month increases in production drilling rates with a record month in March, closely matched in April, according to PYBAR. This, in turn, has meant a significant increase in available production fronts resulting in increased tonnes and improved overall project performance.

Trials of automated drilling for complete firing patterns will begin shortly at Black Rock to enable drilling to take place during firing and shift change, as well as free up the operator to assist with other tasks around the mine, PYBAR said.

The transition to further automation has the potential to significantly maximise both productive drilling time and overall performance for the project, it added.

Vale, Glencore, Newcrest and others join BluVein’s next gen trolley charging project

Seven major mining companies have financially backed BluVein and its “next generation trolley-charging technology” for heavy mining vehicles, with the industry collaboration project now moving forward with final system development and construction of a technology demonstration pilot site in Brisbane, Australia.

BluVein can now refer to Northern Star Resources, Newcrest Mining, Vale, Glencore, Agnico Eagle, AngloGold Ashanti and OZ Minerals as project partners.

Some additional mining companies still in the process of joining the BluVein project will be announced as they officially come on board, BluVein said, while four major mining vehicle manufacturers have signed agreements to support BluVein controls and hardware integration into their vehicles.

BluVein, a joint venture between EVIAS and Australia-based Olitek, is intent on laying the groundwork for multiple OEMs and mining companies to play in the mine electrification space without the need to employ battery swapping or acquire larger, heavier batteries customised to cope with the current requirements placed on the heaviest diesel-powered machinery operating in the mining sector.

It is doing this through adapting charging technology originally developed by Sweden-based EVIAS for electrified public highways. The application of this technology in mining could see operations employ smaller, lighter battery-electric vehicles that are connected to the mine site grid via its ingress protection-rated slotted Rail™ system. This system effectively eliminates all exposed high voltage conductors, providing significantly improved safety and ensures compliance with mine electrical regulations, according to BluVein. This is complemented with its Hammer™ technology and a sophisticated power distribution unit to effectively power electric motors and charge a vehicle’s on-board batteries.

BluVein has been specifically designed for harsh mining environments and is completely agnostic to vehicle manufacturer. This standardisation is crucial, BluVein says, as it allows a mixed fleet of mining vehicle to use the same rail infrastructure.

While underground mining looks like the most immediate application, BluVein says the technology also has applications in open-pit mining and quarrying.

It is this technology to be trialled in a demonstration pilot in a simulated underground environment. BluVein says it plans on starting the trial install early works towards the end of this year for a mid- to late-2022 trial period.

The BluVein project will be managed by the Canada Mining Innovation Council (CMIC).

Anglo set to complete thermal coal exit with Glencore Cerrejón transaction

Anglo American looks set to complete its exit from thermal coal, having agreed to sell its 33.3% interest in the Cerrejón joint venture, in Colombia, to Glencore for around $294 million.

Glencore and BHP currently each also hold a 33.3% interest in Cerrejón, with Glencore intending to acquire both Anglo American’s and BHP’s interests for $588 million in total, thereby assuming full ownership of the asset upon completion.

Cerrejón is one of the largest surface mining operations in the world and mines high-quality thermal coal for the export market. It moves 550 Mt/y by 100% truck and shovel equipment, using more than 300 trucks.

Anglo, earlier in the year, agreed to demerge its thermal coal operations in South Africa to a new holding company called Thungela Resources Limited, with the latest agreement on Cerrejón marking the completion of its thermal coal exposure.

Mark Cutifani, Chief Executive of Anglo American, said: “Today’s agreement marks the last stage of our transition from thermal coal operations. During that transition, we have sought to balance the expectations of our wide range of different stakeholders as we have divested our portfolio of thermal coal operations, in each case choosing the exit option most appropriate for the asset and its distinct local and broader circumstances.”

Both transactions are subject to a number of competition authority and other regulatory approvals, with completing expected in the first half of 2022.

Glencore said on the transactions: “Based on our long-term relationship with Cerrejón and knowledge of the asset, we strongly believe that acquiring full ownership is the right decision and the progressive expiry of the current mining concessions by 2034 is in line with our commitment to a responsible managed decline of our coal portfolio. Production volumes are expected to decline materially from 2030.”

Glencore’s CSA mine set to use Epiroc ST14 Battery LHD

Glencore is to introduce a new battery-electric LHD from Epiroc at its CSA copper mine in Cobar, New South Wales, as it looks to reduce diesel emissions and energy costs, plus improve operator safety and productivity performance at the operation.

The ST14 Battery loader will be one of the first of its kind to be used anywhere in the world, Glencore said, with the mine’s operators set to start using it later this month.

These 14 t payload battery-electric loaders have also been used at Agnico Eagle’s Kittila gold mine in northern Finland as part of the SIMS project, while LKAB is looking to use one of the units at its main Kiruna iron ore mine for production and in the Konsuln test mine, both in Sweden. Boliden, meanwhile, has been testing an ST14 Battery at its Kristineberg underground copper-zinc mine in the country.

In the Americas, Vale is set for the delivery of four Scooptram ST14 Battery loaders at its Canada underground mines as part of a 2020 agreement with Epiroc, while Codelco, in 2020, said it would soon start testing one of these units in Chile.

CSA is one of Australia’s deepest underground mines and produces about 50,000 t/y of copper in concentrates. The battery-electric loader is set to transport thousands of tonnes of ore and waste per day, operating at a depth of almost 2 km underground, Glencore said.

“The copper we produce at CSA Mine is a key enabler of the low carbon economy, and is an essential commodity that goes into electric vehicle batteries and renewable energy technologies like wind turbines and solar panels,” Peter Christen, General Manager of Glencore’s CSA Mine, said.

“We are committed to reducing emissions across our own operations and our investment in the ST14 Battery Loader is an important step in the broader transformation of mining in a low carbon future.”

Antamina leveraging MineSense’s in-shovel ore sorting technology

The largest mine in Peru, Antamina, has started using MineSense’s ore sorting technology as it looks to increase ore loading accuracy at the joint venture operation.

MineSense’s ShovelSense technology provides significant value to mine operators by identifying ore and waste, and classifying ore at the earliest stage possible in the mining process, the extraction face, using X-ray Fluorescence sensors, the Vancouver-based company says.

It has proved this technology out at multiple mine sites in North America, including Teck Resources’ Highland Valley Copper operations and Copper Mountain Mining Corp’s namesake mine, both of which are in British Columbia, Canada.

Enrique Parades Rivero, Mine Manager at Antamina Mine, stated at the recent Comasurmin 2021 conference that Antamina “plans to know what ore grades the mine is processing to the millimetre,” and this ore characterisation data is provided by MineSense’s ShovelSense technology. This technology, MineSense says, enables mines to generate more metal to increase profitability and improve operations, while optimising sustainability performance.

In terms of loading equipment, Antamina reportedly operates seven P&H 4100XPC electric shovels, four Hitachi EX5600-6 hydraulic shovels and two Cat 994F wheel loaders. Some of this loading equipment is interacting with the first fleet of electric drive 372 t class 798 AC Cat trucks in the country, which Ferreyros, the Caterpillar dealer in Peru, recently successfully put into operation.

The Antamina copper/zinc mine is owned 33.75% by BHP, 33.75% by Glencore 33.75%, 22.5% by Teck and 10% by Mitsubishi.