Tag Archives: mining conveyors

Chute Technology improves the flow at Ulan operations

Chute Technology says its new coal and ore handling technologies, designed to overcome production-limiting factors at mines and bulk handling terminals throughout Australia, are proving their worth in service at the Ulan operations in New South Wales.

The technology packages are designed to eliminate potential bottlenecks, occupational health and safety issues and weak links in the production chain that can increase downtime and reduce output, Chute Technology says.

Typical issues include bin surging, bulk cleaning, spillages, blockages and reduced throughput rates, resulting in inefficient production.

According to Dennis Pomfret, Managing Director, Chute Technology, the company designed a customised chute to eliminate potential downtime for a specific section of the bypass system at the Ulan Surface Operations, which IM understands is owned by Glencore.

The new chute has dramatically reduced downtime since commissioning, according to the company, whereas the legacy arrangements were a source of multiple hours of lost production.

“The new chute allows Ulan Surface Operations to operate with a full feed rate of 2,000 t/h without any stoppages or blockages, so they can maximise their productivity and our profitability,” Pomfret said.

Chute Technology says it combines its decades of Australian and international practical engineering experience with advanced expertise in new flow enhancement and problem-solving technologies to produce modern answers to minerals and materials handling problems. The company provides audits and solutions extending from single issues at individual plants through to whole-of-process improvements extending from mines to port or point of resource use.

Pomfret said Ulan Surface Operations was looking to the future by investing in a solution designed to maximise productivity and eliminate unwanted downtime.

“We’re delighted that we could make Ulan Surface Operations’ bypass vision come to life, and it’s rewarding to see it working out in service,” he said. “Ulan Surface Operations is always looking to employ modern solutions that avoid problems in the first place, rather than cleaning up a mess after it occurs.”

Chute Technology performed an audit of current operations to gain a holistic view of current operations, before recommending the solution. The engineering audit determined that functionality of one known trouble spot, the bypass hopper and vibratory feeder, could be taken out of service and replaced with a simpler transfer chute with an in-built surge capacity.

The chute was designed in such a way that it could all be lifted and installed in one go, minimising installation downtime, the company said.

Chute Technology also designed and installed an adjustable surge control baffle device to control the height of material on the conveyor belt. The device acts like a trimmer on the end of the chute, where it trims the height of material during times of surge loading, to avoid belt overloading, side spillage and keep material heights consistent.

“We anticipate the surge control device will reduce spillage considerably, especially when taking into account the typical delays in conveyor stopping and starting sequences,” Pomfret said.

“A major consideration for the project was to design the new chute around the existing structures as much as possible, so that there was as little rework or modifications needed before installation.

“We also took into consideration that the drop height is almost 15 m. Ulan Surface Operations wished to retain their surge bin, floor structure, vibrating feeder and conveyor structures, so we designed around these as much as was possible. Additionally, the design was modular, so the installation took as little time as possible.”

Chute Technology says it selected an asymmetric chute to avoid belt mis-tracking issues, a “virtual skirtboard” to optimise the internal flow geometry and designed a single point of contact flow path so the material flow is constantly in contact with the chute from the head pulley to the receiving belt.

Pomfret concluded: “This project has been an excellent success, and we look forward to a long-term relationship with Ulan Surface Operations, as they look to maximise productivity and profitability.”

CR and KBSS collaborate on conveyor system deployments in the Pilbara

CR has announced a new partnership with KBSS to bring CR’s custom-made conveyor systems to the Pilbara of Western Australia.

KBSS is now CR’s Pilbara-based partner for mining conveyor systems, a company fully ISO accredited to Quality Management Systems, with, CR says, a reputation for delivering safe, reliable and cost-effective outcomes.

As part of the partnership, CR will be providing engineering and technical support, including on-site support, while KBSS will be looking after installation and maintenance services.

CR Business Development Manager, Paul Shankley, said: “When CR was searching for partners to bring our mining conveyor systems to the Pilbara, KBSS was the obvious pick. We both continually strive for Zero Harm whilst taking pride in bringing high-quality solutions to the global mining industry. CR are excited to collaborate with KBSS.”

CR’s mining conveyor systems are designed to maximise performance, minimise maintenance requirements and reduce total cost of ownership. Its range of conveyor components and accessories includes belt cleaning systems; belt stabilising kits; conveyor pulley lagging; conveyor skirting systems; and conveyor belt trackers.

The company said: “Our conveyor systems are designed for mines. They decrease lost product, reduce carry back, and minimise dust and spillage.”

Martin Engineering on resolving bulk material handling issues with flow aids

In order to achieve controlled and consistent flow on conveyors handling large volumes of bulk material, transfer chutes and vessels must be designed not just to accommodate – but to actually facilitate – the flow of the cargo they will be handling.

Unfortunately, because so many conditions can hamper effective cargo flow, engineering a conveyor and chutework that would handle every material situation is virtually impossible.

Even modest changes in moisture content can cause adhesion to chute or vessel walls or agglomeration at low temperatures, especially if the belt is stagnant for any period of time. Even during continuous operation, a bulk material can become compressed, and physical properties often change due to natural variations in the source deposits, suppliers or specifications, or if the material has been in storage. If left to build up, material can encapsulate belt cleaners and deposit harmful carry-back onto the return side, fouling idlers and pulleys, according to Martin Engineering. At worst, systems can become completely blocked by relatively small (and common) changes. To overcome these issues, a variety of devices collectively known as flow aids can be employed.

What Are Flow Aids?

As the term implies, flow aids are components or systems installed to promote the transport of materials through a chute or vessel, controlling dust and spillage. Flow aids come in a variety of forms, including rotary and linear vibrators, high- and low-pressure air cannons and aeration devices, as well as low-friction linings and special chute designs to promote the efficient flow of bulk materials. These modular systems can be combined in any number of ways to complement one another and improve performance. The components can be used for virtually any bulk material or environment, including hazardous duty and temperature extremes. One of the primary advantages is that an operation can obtain a level of control over the material flow that is not possible any other way.

When employing flow aids, it is critical that the chute and support components are sound and the flow aid be properly sized and mounted, because the operation of these devices can create potentially damaging stress on the structure, the company says. A properly designed and maintained chute will not be damaged by the addition of correctly sized and mounted flow aids.

It is also important that any flow aid device be used only when discharges are open and material can flow as intended. The best practice is to use flow aids as a preventive solution to be controlled by timers or sensors to avoid material build-up, rather than waiting until material accumulates and restricts the flow. Using flow aid devices in a preventive mode improves safety and saves energy, since flow aids can be programmed to run only as needed to control buildup and clogging.

Air cannons

One solution for managing material accumulation in chutes and vessels is the low-pressure air cannon, originally developed and patented by Martin Engineering in 1974. Also known as an “air blaster”, it uses a plant’s compressed air to deliver an abrupt discharge to dislodge the buildup. Cannons can be mounted on metallic, concrete, wood or rubber surfaces. The basic components include an air reservoir, fast-acting valve with trigger mechanism and a nozzle to distribute the air in the desired pattern to most effectively clear the accumulation.

The device performs work when compressed air (or some other inert gas) in the tank is suddenly released by the valve and directed through an engineered nozzle, which is strategically positioned in the chute, tower, duct, cyclone or other location. Often installed in a series and precisely sequenced for maximum effect, the network can be timed to best suit individual process conditions or material characteristics. The air blasts help break down material accumulations and clear blocked pathways, allowing solids and/or gases to resume normal flow. In order to customize the air cannon installation to the service environment, specific air blast characteristics can be achieved by manipulating the operating pressure, tank volume, valve design and nozzle shape.

In the past, when material accumulation problems became an issue, processors would have to either limp along until the next scheduled shutdown or endure expensive downtime to install an air cannon network. That could cost a business hundreds of thousands of dollars per day in lost production. Many designers proactively include the mountings in new designs so that future retrofit can be done without hot work permits or extended downtime. A new technology has even been developed for installing air cannons in high-temperature applications without a processing shutdown, allowing specially-trained technicians to mount the units on furnaces, preheaters, clinker coolers and in other high-temperature locations while production continues uninterrupted.

Engineered vibration

The age-old solution for breaking loose blockages and removing accumulations from chutes and storage vessels was to pound the outside of the walls with a hammer or other heavy object. However, the more the walls are pounded, the worse the situation becomes, as the bumps and ridges left in the wall from the hammer strikes will form ledges that provide a place for additional material accumulations to start.

A better solution is the use of engineered vibration, which supplies energy precisely where needed to reduce friction and break up a bulk material to keep it moving to the discharge opening, without damaging the chute or vessel. The technology is often found on conveyor loading and discharge chutes, but can also be applied to other process and storage vessels, including silos, bins, hoppers, bunkers, screens, feeders, cyclones and heat exchangers.

There is another innovative solution that prevents carry-back from sticking to the rear slope of a discharge chute. The live bottom dribble chute uses material disruption to reduce friction and cause tacky sludge and fines to slide down the chute wall and back into the main discharge flow. By addressing these issues, operators can experience a reduction in maintenance hours, equipment replacement and downtime, lowering the overall cost of operation.

Flow aid devices deliver force through the chute or vessel and into the bulk material. Over time, components will wear, or even break, under normal conditions. Most of these devices can be rebuilt to extend their useful life. Because clearances and fits are critical to proper operation, it’s recommended that flow aid devices be rebuilt and repaired by the manufacturer, or that the manufacturer specifically train plant maintenance personnel to properly refurbish the equipment.

This article was provided to International Mining by Martin Engineering

Flexco to address conveyor splicing, cleaning, tracking and belt slippage needs at MINExpo

Flexco has announced its plans to exhibit at MINExpo 2021, held in Las Vegas, September 13-15, 2021, where it will be addressing splicing, cleaning, tracking and belt slippage needs.

In addition, Flexco will be introducing visitors to Flexco Elevate™ Belt Conveyor Intelligence™, a real-time belt cleaner monitoring system that, it says, harnesses the power of predictive analytics so mining operations can remotely gather critical insights that optimise belt conveyor productivity and heighten operational efficiencies.

Flexco, at the show, will be using a live, interactive dashboard to showcase how the wireless platform transfers data insights to an intuitive, cloud-based dashboard via edge technology, allowing remote monitoring of belt cleaners. Attendees will be able to see how belt cleaner challenges are communicated, analysed, and resolved using information gathered from sites across their operations.

Visitors will also be able to stop by the Flexco booth to learn how the company can help operations optimise their belt conveyors using some of our newest innovations in fastener technology.

Among those innovations is the Flexco® XP™ Staple Fastening System, which combines an enhanced applicator tool with the longest-wearing staple fastener and hinge pin on the market to produce a superior belt splice in the toughest mining applications.

Another product debuting at MINExpo under the Flexco line of mechanical fastening systems is the Super-Screw® Flexible Rubber Fastening System. Offered as part of a strategic partnership in North America with MLT Minet Lacing Technology, Super-Screw offers a faster and easier alternative to vulcanisation since it can be installed regardless of the location or accessibility of the conveyor belt and in any weather condition, the company says.

In an effort to tackle the fastest speeds, highest tonnage, and widest belts in the industry, Flexco will also be unveiling its newest belt conveyor products for carryback control. The MXS Extreme-Duty Secondary Cleaner complements its MXP Extreme-Duty Precleaner, with the duo acting as a total cleaning solution along the beltline in the most extreme mining applications, the company says. Handling belt speeds up to 10 m/s and belt widths from 1,050 to 3,000 mm, the rugged, oversized mainframes can withstand extreme pressures, while the built-in lift points and modular design make it easier to carry and install.

The unique design of the blades on the new MXD Diagonal and MXV V-Plows will also be featured at MINExpo. Capable of handling the harshest materials in the mining industry, these plows provide all the strength needed for belts with large tonnages. The design also ensures extra care has been taken to ensure the tail pulley is protected and material does not slip under the plow or jump over it, Flexco says.

In terms of maintenance tools, Flexco intends to introduce its new TUG™ HD® Belt Clamps, which are designed to secure the belt for repair, meeting the most stringent safety test standards.

Available in 6 (5.4 t) and 8 ton (7.3 t) versions, TUG HD Belt Clamps provide even tensioning across the entire belt width for ultimate strength. Modular components allow for increased versatility and portability.

New to this year’s show is also the Powered FSK™ Belt Skiver, a powered version of a manual skiver. Capable of removing belt top covers in a fraction of the time, the Powered FSK Belt Skiver is perfect for safe, easy skiving that produces a stronger splice, according to the company. The FSK is compact and easy to use anywhere on the job site, with a blade that is safely enclosed during skiving operations. Used on rubber-covered belts with top covers of 4.5 mm or more, the FSK Skiver provides skives from 1.5-9.5 mm deep in a single pass.

The booth will feature a full-size conveyor, as well as interactive displays to help attendees better understand the features and benefits of Flexco product solutions. Live demonstrations will also take place at the booth, with a focus on belt preparation, splicing, and rip repair for those interested in seeing the products at work.

Strike Resources adds Dynamic Drill and Blast, Lucas TCS to Paulsens East team

Strike Resources, after an extensive evaluation, has entered into Early Contractor Involvement Services Agreements with the preferred contractors to provide drill and blast, mining, crushing and screening services and civil works (including the haulage road and mine site) for its Paulsens East iron ore mine in Western Australia.

Dynamic Drill and Blast has been selected for the provision of drill and blast services, and Lucas Total Contract Solutions has been selected for the provision of mining, crushing and screening services, plus the civil works required for Paulsens East, including construction of the 18 km haulage road (from the mine site to Nanutarra Road), establishment of the Mining Operations Centre (MOC) and siteworks for the mining village.

Strike, which is developing a 1.5 Mt/y direct shipping iron ore operation, says it is working with both parties to finalise the detailed scope of services, schedules and formal contractual terms of engagement.

Dynamic, who worked with Strike to plan, licence and develop magazine and explosives storage facilities for the project in consultation with the Department of Mines, Industry, Regulation and Safety (DMIRS), said the contract is estimated to have a four-year initial term.

On top of this, Strike said the final objection on its proposed haulage road, Miscellaneous Licence (ML) L47/934, has now been withdrawn after the execution of an Access Deed with the underlying tenement holder. With the execution of this deed, the last outstanding ML related to Paulsens East is expected to be granted by DMIRS during the next two-to-four weeks.

“Once L47/934 is granted, and subject to DMIRS having no further issues with any technical or environmental aspects of the Mining Proposal, DMIRS is expected to approve the Mining Proposal for Paulsens East shortly thereafter,” the company said.

Strike also recently made an investment in acquiring a second-hand ore sorter, ancillary materials handling and control room equipment, together with conveyors that were recently sold at auction, resulting in a significant saving in project capital costs at Paulsens East.

“Strike is planning to use specialised ore sorters as part of its processing flowsheet, to assist with the optimisation of the production of high-grade lump ore from the mine,” it said. “To deliver the required throughput for the mine, a total of up to three ore sorters will be required.”

Further long-lead items secured include an order for 13 Ultra Quad Road Trains (comprising 13 prime movers and 52 trailers) for exclusive use on Paulsens East.

On the communications side, Strike has now entered into a contract with Telstra to commence works on establishing suitable communications infrastructure for the mine site and village. Due to the remote location, a dedicated microwave tower on site is required together with associated voice and data equipment. The construction of the tower and provisioning of the service will be critical for safe and effective communications during the construction and operational phase of the mine.

William Johnson, Managing Director for Strike, said: “With Campbells Transport already selected as its preferred haulage contractor, the company has now selected all of its key contractors for Paulsens East. The securing of further long lead time items together with the ore sorter and associated equipment are important steps as the company advances towards making a final investment decision on Paulsens East.”

Conveyor belt cleaner tension: the keys to optimal performance

While it is clear there is no single or ideal solution for conveyor belt cleaning and tensioner selection, Todd Swinderman* of Martin Engineering thinks companies need to put the due diligence hours in to make the optimal choice.

Conveyor belt cleaners have evolved over the last 50 years from mostly home-made designs to a wide variety of engineered solutions to suit virtually every application. The expectations have changed over time as the relationship between health, safety and productivity and clean belts have become more widely accepted. As development continues, a single solution to the problem of belt cleaning and tensioner design is unlikely to be found due to the numerous variables and conditions that affect belt cleaner effectiveness.

General requirements

A discussion about belt cleaner tensioners must include the basic approaches to belt cleaning, as the most effective approach is achieved through a combination of cleaner and tensioner designs. Industry has gravitated toward mechanical cleaners and tensioners because they are simple and economical. The most common mechanical belt cleaner designs present a blade or brush at various angles to the belt. Depending on the cleaner type and materials of construction, they can approach the belt at either a positive, negative or zero rake (Figure 1).

Figure 1 – Blade style cleaning angles

Regardless of the basic cleaning approach, maintaining the optimum range of contact pressure will result in the best balance between cleaning performance, cleaning element wear, belt wear and power requirements. CEMA Standard 576, ‘Classification of Applications for Bulk Material Conveyors Belt Cleaning’, provides a performance-based classification system for use in specifying belt cleaners.

Basic approaches to tensioning

There are two basic approaches to applying tension to the belt cleaner: linear and rotary (Figure 2). The blade’s angle of approach to the belt often dictates whether a linear or rotary tensioner is applied. The stored energy that creates the tensioning force most often comes from gravity, springs or actuators. CEMA defines the cleaning positions as Primary, Secondary and Tertiary (Figure 3). Most belt cleaners mounted in the primary position utilise a rotary style tensioner, while most belt cleaners mounted in the secondary or tertiary positions use linear style tensioners.

Figure 2 – Basic tensioning approaches
Figure 3 – CEMA-defined cleaning positions

Linear tensioners

Linear tensioners are most often applied where the compensation for wear is required in small increments, such as with hard metal-tipped cleaners located in the secondary cleaning position or with brush cleaners. The basic tensioner design approach is typically a carriage that constrains the support frame but allows linear movement along a guide or guides roughly perpendicular to the belt surface, with the support frame and blade design providing the cleaning angle. Some designs incorporate a relief ability for impact by splices or belt defects.

The advantages of linear tensioners include: 1) simple in design; 2) can be engineered to one setting for full blade wear; 3) access windows are easily incorporated within the mounting footprint; 4) can accommodate actuator deflection scales for accurate adjustment of cleaning pressure and; 5) delivers the ability to adjust for uneven mounting positions or asymmetrical blade wear.

The disadvantages of linear tensioners include: 1) the tensioner footprint can be large, restricting options for ideal belt cleaner installation; 2) there must be access to the far side for adjustment; 3) the guide mechanisms are subject to fouling from dust and corrosion; and 4) changing from bottom adjustment to top adjustment or providing for adjustment from one side complicates the tensioner design.

Rotary tensioners

Rotary tensioners utilising an actuator are principally designed using a lever arm or an elastomeric element that is concentric with the belt cleaner support shaft. They apply a blade-to-belt contact surface determined by the actuating force and linkage geometry. The energy source delivers a force to the lever arm which rotates the shaft and forces the belt cleaner blade(s) against the belt surface. Rotary designs tend to be compact and, in most cases, the actuator(s) can be mounted at any orientation, which provides options for installing the belt cleaner in the optimum position.

Counterweight tensioner

At one time the most common rotary tensioner was a counterweighted lever arm, with its position adjusted to apply the design cleaning force to a blade or blades that contact the belt. A counterweight can be mounted on one end of the shaft or both. Usually, the initial installation would have the arm angle set so that at the midpoint of the blade wear the arm would be horizontal, thus roughly averaging the design cleaning force over the life of the blade (Figure 4).

Figure 4 – Typical counterweight tensioner

The primary advantage of the counterweight design is that it is self-adjusting by gravity. The disadvantages of the counterweight design are: 1) the lack of damping which allows the blade and therefore the weight to bounce when struck by a splice, strongly adhered material, like ice or a defect in the belt. The unexpected movement of the counterweight can represent a safety hazard and uncontrolled bouncing can result in belt top cover damage; 2) the counterweight tensioner takes a significant amount of space; and 3) if the counterweight arm cannot be mounted horizontally there is a reduction in the force applied to the blade, because the effective lever arm is shortened.

Rotary lever arm and actuator tensioners

Rotary adjustment of the belt cleaning blade can be accomplished in several ways. The support frame is almost always in a fixed location but free to rotate. The required tensioning forces can be applied by many types of actuators, such as: springs, fluid cylinders, electric actuators or from torque stored in an elastomeric element. Rotary tensioners are often used with elastomeric blades, where the change in blade height and thickness as it wears is significant (Figure 5).

Figure 5 – Rotary tensioner types

The advantages of rotary tensioners are: 1) a compact design; 2) a single tensioner mounted on one side of the conveyor can often be used for a range of blade styles and belt widths; 3) they can be designed to minimise the number of times the tensioner has to be adjusted during the life of the blade; and 4) many types of actuators can be used.

The disadvantages of rotary tensioners are: 1) there can be a safety hazard if the support frame is mounted too far from the pulley and the cleaner pulls through; 2) the mounting location of the axis of rotation is critical for proper blade cleaning angle; 3) the constant force output by some actuators can result in a wide variance in cleaning pressure and blade life over time; and 4) when a tensioner is required on both ends of the support frame, it is often difficult to access the drive side of the conveyor for mounting and adjustment.

Other factors

The importance of proper installation should not be overlooked for the proper performance of the belt cleaner. Slight variations in the location of the support frame relative to the belt can cause significant issues with the effectiveness of the blades and can result in support frame bending. Most manufacturers provide detailed instructions for the location of the support frames and tensioners, which must be followed for optimal function.

To be effective, belt cleaners should be frequently inspected and maintained. In practice, the design of the conveyor structure and location of the drive and other equipment makes service difficult. Consideration in the design stage for easy access and ergonomic location of the cleaners for inspection and service will pay dividends in reducing carryback, maintenance time and potential exposure to injuries.

To maximise blade effectiveness and minimise rapid wear, the recommended adjustment protocols should be followed. Studies have shown that there is a critical cleaning pressure range for various types of cleaners and blade types. These studies demonstrate that over-tensioning the belt cleaner does not necessarily improve the cleaning effect, but often results in increased belt and blade wear as well as higher power consumption.

The future of cleaner tensioning

As technology continues to advance, suppliers are beginning to integrate an increasing level of functionality in belt cleaner designs. One such innovation is a belt cleaner position indicator that can monitor the blade and estimate remaining service life based on the current hourly wear rate. Able to retrofit directly to existing mainframes, the device is capable of sending a notification to maintenance personnel or service contractors when a cleaner requires re-tensioning or replacement.

This capability brings a number of benefits. Inspection and service time is reduced, as maintenance personnel no longer need to physically view the cleaner to determine the tension or wear status. It also reduces the time workers need to spend near the moving conveyor, helping to minimise the potential for accidents. By relying on data – not human judgement – to maintain the appropriate tension for optimal cleaning performance and monitor blade wear, the indicator maximises service life and reports with certainty when a blade is nearing the end of its useful life, delivering a greater return on cleaner investment. Replacement orders can be scheduled for just-in-time delivery, reducing the need to stock parts inventory, and installation can be scheduled for planned downtime instead of on an emergency basis.

Taking the technology a step further is another patent-pending device that combines the position indicator with an automated tensioner. This novel powered assembly incorporates sensors that constantly monitor blade pressure and adjust its position to maintain optimal cleaning tension. Maintenance personnel no longer need to visit each cleaner and manually re-tension. Instead, the tasks are performed automatically, reducing maintenance time while maximising the usable area of every cleaner. Analytics provide an unprecedented view and understanding of belt cleaner performance, with real-time data available remotely via a specially designed app.

Automated tensioner

Conclusion

While manufacturers continue to improve belt cleaner effectiveness, it has become clear that there is no single or ideal solution for belt cleaning and tensioner selection. Safety of personnel and the belt itself is an important consideration when selecting a tensioner. Ease of inspection and maintenance is critical for belt cleaner effectiveness, so the tensioner must allow for quick and safe service.

The selection of a belt cleaner should be based on the duty rating of the cleaner as provided in CEMA Standard 576 and then the appropriate cleaning system selected. The system should be selected based on life cycle cost and not just the initial price. The investment for effective belt cleaning is justifiable on direct cost reduction (clean-up costs), extended component life (often 25-40%) and reduced exposure to injuries, which is directly related to reduced clean-up frequency.

*R Todd Swinderman is CEO Emeritus of Martin Engineering

Addressing unsafe work practices around mining conveyors

Due to their size, speed and high-horsepower drive motors, conveyors pose a number of risks to personnel working on or near them. In addition to all the physical danger zones, when an injury occurs, ‘fault’ is often attributed to injured workers’ actions or inactions. However, safety experts point out that injuries generally occur due to a series of factors.

“Accidents are typically a result of a complex combination of probabilities, rather than a single unsafe act,” Martin Engineering Process Engineer, Daniel Marshall, observed. “Except for the unsafe act, it can be said that the accident would not have occurred if there was a safer design, better maintenance or less pressure for production.”

Assessing the risk of a conveyor

A thorough risk assessment by trained professionals is the ideal way to bridge the gap between workers and managers when the rules need review, to identify hazards and implement controls to reduce risks.

“A belt conveyor is a powerful machine with thousands of moving parts,” Marshall continued. “These moving components might severely injure a worker and can produce that injury in a fraction of a second.”

A typical conveyor belt moves at a relatively constant speed, commonly running between 0.5-10 m/s. At the very minimum, a worker who inadvertently touches a running conveyor belt – even with world-class reaction time and total focus on the danger of a conveyor – will come in contact with at least one carrying idler, and the potential is there to hit return idlers, chute uprights, stringer supports, pulleys and drives. The results are often disastrous.

Working around a moving conveyor

It has been estimated that two thirds of the fatalities involving conveyor belts take place while the belt is moving, usually because of a worker becoming entangled or crushed by moving equipment. Most of these take place when maintenance or housekeeping is being done on or around an energised conveyor.

Conveyor service should be performed only when the belt is properly locked, tagged, blocked and tested

These fatalities are generally caused by two compounding practices. The first is performing maintenance without thoroughly locking, tagging, blocking and testing the conveyor. Another unsafe practice is touching a moving conveyor belt with a tool or implement of any kind. When these two choices are combined, the results are usually severe and often fatal. Even working on a conveyor that is turned off, but not locked out, can lead to tragedy.

Workaround and shortcuts

“An intelligent and creative worker will often invent or discover ways to expedite certain functions or make work easier,” Marshall said. “Unfortunately, some of these shortcuts bypass safety hardware and/or best practices, putting the worker in harm’s way.”

The most common of these workarounds involves the “improper locking out” of a conveyor system, Martin Engineering says. The purpose of a lockout is to de-energise all sources of energy, whether latent or active. Failure to properly lockout can exist in many forms – varying from disregarding lockout requirements, to working on a moving conveyor, to improperly stopping the conveyor. An example would be pulling the emergency stop cord and assuming that the conveyor is de-energised.

Another common workaround involves entering a “confined space” without following established procedures. A confined space is any enclosure that is large enough and configured so that an employee can enter and perform assigned work, has limited or restricted means for entry or exit and is not designed for continuous employee occupancy. Very specific rules apply to workers when dealing with confined spaces. Failure to follow those rules can result in increased danger or death, Martin Engineering says.

Other potential unsafe behaviors include crossing a conveyor in a risky manner. Conveyor belts are often lengthy systems bisecting a production facility. Workers may be required to cross a conveyor line to get to an area in need of service or maintenance. To save time, a worker is likely to step over or cross under a conveyor.

“Crossing under” offers multiple hazards, according to the company. If any of the worker’s body parts come in contact with the moving conveyor, it will either act like a grinder and abrade the skin or pull the worker toward rolling components. Crossing under also places the worker at risk from falling objects.

Taking a shortcut by crossing over or under a conveyor can lead to injury

“Crossing over” a conveyor without using a designed and designated crossover structure comes with dangers, as well. There is a high potential for a slip and fall. If lucky, the worker may fall on the ground; if not, the worker will fall onto the conveyor belt. If the conveyor is in operation, the worker may be carried downstream. This can result in contact with the conveyor structure and rolling components or being thrown off the conveyor at the discharge. The safe approach to crossing a conveyor is to use a designated crossover or cross-under point engineered for that purpose, Martin Engineering says.

Anything in a worker’s line of travel is a potential “obstruction”. These can range from piles of spillage, items lying on the walkway or work areas, as well as low overheads. An obstruction can cause several hazards, the most obvious being the opportunity for a trip or fall. If the obstruction is in the middle of the walkway, a worker will have to go around it. If that revised path brings the worker closer to a conveyor, this decision places the worker closer to the hazards of the conveyor.

Neglected safety and control mechanisms

“Emergency stop pull cords are the last line of defence if the belt needs to be stopped quickly in response to an entrapment or impending equipment failure,” Marshall said. “The reaction time when such an event occurs is usually extremely brief, so workers need a way to stop the conveyor as fast as possible. In addition, the belt will not halt immediately and must coast to a stop. If the cord is broken, the switch is not working or the system is disabled, workers have lost the one final tool they have to protect themselves.”

The multiplying effect of unsafe practices

Often an accident occurs due to a combination of several poor work practices. A Mine Safety and Health Administration (MSHA) Fatalgram from 1999 in the USA recounts an event that caused a fatality at a mine when a worker entered an unguarded area alone, near an operating conveyor that was not locked out. The worker’s clothing then became trapped in the conveyor’s operating tail pulley. Four unsafe practices and two unsafe areas combined to produce a catastrophic event. Any individual factor may have led to injury or even death, but the combination essentially sealed the worker’s fate.

In a 2003 study, ConocoPhillips Marine found a correlation between fatalities and unsafe practices. The study showed that for every fatality there are an estimated 300,000 unsafe behaviors.

The research also quantified lost-time accidents, recordable injuries, and near misses. These are independent variables, so the numbers do not mean that lost day incident number 31 will be a fatality. But they do indicate that there is a statistical probability of a fatality for every 30 lost workday incidents. As a result, statistically speaking, an effective way to reduce fatalities is to reduce unsafe behaviors.

The most effective way to reduce fatalities is to minimise unsafe behaviors

“While even one unsafe practice has the statistical potential to lead to serious repercussions, conveyor accidents are rarely the result of a single action,” Marshall concluded. “More often, they result from a combination of company culture and unwise decisions. If workers can eliminate these unsafe practices and minimise their presence in danger zones, their chances of avoiding an accident will improve considerably.”

BEUMER Group provides further customer support with Smart Glasses

BEUMER Group, a designer and manufacturer of overland and pipe conveyors, has tackled the need to address machine malfunctions and standstills as soon as possible by developing the BEUMER Smart Glasses.

BEUMER Customer Support technicians use these specialised glasses to take a “virtual look over the shoulder” of a customer’s service technician to solve the problem together, with the digital solution reducing travel times and costs.

“With the BEUMER Smart Glasses, our customers can get in live contact with our service experts anywhere and at any time,” Christopher Kirsch, Team Leader of BG.evolution, said.

The Smart Glasses originated from the university location of Dortmund, with BEUMER Group bringing this digital innovation into the group to address customer needs.

Together with their colleagues from BEUMER Customer Support and the Department for Research and Development in Beckum, the employees in Dortmund made this digital solution ready for the market.

“From October 2018 to January 2019, long-term tests were carried out with various customers, including one with live testing with a long-term customer from the building materials industry,” Kirsch said. “We were successful in concluding this phase.”

Kirsch explains the rationale for commercialising such a product: “If a machine suddenly breaks down, the problem must be solved as fast as possible.”

The company expanded on this: “If the users are not in a position to handle this by themselves, the BEUMER Group sends their globally located technicians to prevent longer downtimes. In addition to service technicians, Customer Support also provides qualified telephone support for troubleshooting, which is available 24/7.

“However, it can be challenging to successfully communicate complex problems quickly and clearly over the phone. Imagine if the customer had the opportunity to have a BEUMER technician take a quick and easy look at the problem at any time – on-site support, without actually being there. The BEUMER Smart Glasses make it possible.”

The employee at the machine puts on the glasses and starts the BEUMER Support app via voice command. The employee transmits a service number and a pin code to the hotline, and the connection with image and sound is established, with the BEUMER technician receiving the same image as the customer.

The technician can directly give instructions and display all relevant information in the field of vision. The employee has both hands free to follow the instructions of the expert and carry out the necessary actions. Faults can be solved quickly and precisely – at any time, BEUMER Group says.

Scrapetec keeps conveyor belts on track with newest component

Scrapetec has added to its range of conveyor components with the new PrimeTracker belt tracker, which, it says, eliminates problems associated with conveyor belt systems, including misalignment, abrasion and belt damage.

Thorsten Koth, Sales and Distribution for Scrapetec, explained: “For optimum performance of a conveyor system, it is critical that the belt always runs straight on the conveyor, without sideways movement. Our new PrimeTracker belt tracker has been designed to automatically guide a conveyor belt back into the correct straight-line position, to prevent costly downtime and component replacement.”

One advantage of the Scrapetec PrimeTracker is that it is always operates in the idling position, unless there is sideways movement of the belt, Koth said. This system corrects misalignment immediately by guiding the belt back into the correct position, with no damage or abrasion to the belt or tracker, he added.

“This is unlike conventional belt trackers that slide over the belt surface causing possible abrasion and belt damage – rather than adopting free rotation,” he said. “Conventional belt trackers, with tapered edges, never idle and are always in a braking mode.

“What’s also notable, is the cylindrical shape and pivot bush that allow this belt tracker to swing and tilt during operation and to always be in full contact with the belt. Added to this, the Scrapetec PrimeTracker has the same peripheral speed over the entire surface of the belt, where traditional crowned rollers have different speeds at the centre and edges of the system.”

Other advantages include easy installation, low maintenance requirements and protection of belt edges and structure of the conveyor belt, according to Scrapetec. A strong corrugated EPDM rubber hose protects this system from dust and sand, while the rubber pivot offers soft suspension of the tracker shaft, ensuring extended service life of the system, the company added. This system can be installed in front of every return pulley, above and below the belt.

Kinder Australia keeps conveyors on track with K-Commander

Kinder Australia believes its K-Commander® series can alleviate many of the issues that come with conveyor belt misalignment, keeping operations on track while minimising downtime.

As the company explains, a poorly tracked conveyor belt can lead to a number of productivity and safety issues.

Damage to the conveyor belt itself as well as the conveyor structure is a major problem. As the belt misaligns, the edge of the conveyor belt is at risk of becoming torn. The conveyor structural damage is also highly likely, which is a significant safety risk. Replacement of both is extremely costly and will require interruption in production and added labour, Kinder says.

Another issue that can come as a result of belt misalignment is material spillage. As well as the cost of product wastage, excess material can increase the risk of personnel slipping, tripping, falling over and becoming entangled. Material spillage can also damage idlers and cause conveyor rollers to seize.

The ideal scenario whereby a conveyor belt tracks ‘true’ in the centre, involves idlers and pulleys being aligned, levelled and square to centre line prior to loading the belt, Kinder explains. “It should be pivoting and rotating freely when the belt experiences any mis-tracking behaviour.” Other options include fixed tracking solutions without a rotating structure.

In order to install any one of the K-Commander series, the belt needs to be monitored to identify problem areas that cannot be solved by making adjustments.

A poorly tracked conveyor belt can lead to a number of productivity and safety issues, according to Kinder Australia

The K-Commander Exceed Series is an all-direction belt tracking solution featuring flexible 360° rotational capability, with its separate axial and rotational function allowing for the double axis pivot bush, the company says.

The K-Commander Exceed Series P has been designed with two key stages:

  • The first focuses on the inner shell which contains the shaft and an engineered pivoting bush allowing the axial movement of the tracker. The inner shell is protected by a flexible EPDM rubber boot; and
  • The second stage focuses on the roller bearings, which allows the rotational movement of the tracker. The roller bearings connect the inner shell and the outer shell, and are protected by a labyrinth seal.

“The installation of the K-Commander Control Series is only for the return side, being the most critical surface of the belt in order to maintain belt alignment,” Kinder says. “The unique engineered action of the central ball and socket link is encased in a rubber covered steel tube. This protects the internal mechanics and ensures that the belt runs true.”

The K-Commander Direct Series is a pivoting base style, available in both trough and return applications that automatically provide belt centring. The outboard servo rollers cause the idler frame to pivot as they contact the belt edge and this swivel action causes the belt to realign automatically, the company explains.

To further aid belt tracking, Kinder Australia offer rubber lagged rollers (trough and return) as an option. The results are better tracking performance (especially in heavy-duty applications), increased roller durability against the constant scuffing nature that roller shells in trackers experience and increased belt training response, the company says.

“Made of highly wear-resistant polyurethane, the K-Commander Tracking Discs fit both flat and vee return rollers as well as selected troughing rollers,” Kinder says. “Ideally, they are located in pairs prior to the tail pulley to help align the conveyor belt, so eliminating spillage from mis-tracked belts. They can also be installed after the feed area on troughing sets to help keep the belt aligned. They are easy to install with a split on one side to slip over the roller – no need to remove the roller.”

Finally, the K-Commander Guide Series INV is an all-purpose conveyor belt alignment idler suited to short centred or reversing conveyor applications. The two inverted vee rollers put pressure onto the belt, promoting centralised belt training. The universal frame adjusts to all types of mounting structures and is installed just after the head pulley, or prior to the tail pulley, Kinder explains. They are suitable for reversing belts and are available for all belt widths, according to the company.