Tag Archives: Newcrest

Life in Mining Dependent Countries on the up, ICMM report says

The International Council on Mining and Metals (ICMM) today launched a report which, it says, found that life in Mining Dependent Countries (MDCs) has improved significantly in the last 23 years.

The report analyses 41 social metrics grouped under 12 relevant United Nations Sustainable Development Goals (SDGs) and, across three quarters of these metrics, there has been significant progress made on socio-economic development. The metrics include neo-natal mortality, adult literacy, and access to electricity, with the findings showing the greatest progress has been made across health and well-being, access to quality education, clean water, sanitation and affordable clean energy. The countries with the biggest relative improvements include Bolivia, Botswana, Indonesia, Ghana, and Peru, the ICMM said.

“The research indicates that most mining-dependent countries, which are among some of the poorest in the world, continue to close the socio-economic performance gap with non-resource dependent countries,” the ICMM said. “However, governance matters. The research strongly suggests that the higher the quality of governance, the stronger the socio-economic progress observed in these countries. A stable, enabling environment has the strongest positive relationship with good socio-economic outcomes. The analysis indicates that countries that are more peaceful, have lower levels of corruption, and a vocal and active civil society with sufficient civic space are better able to translate natural resources into social progress. Having mining regulations and frameworks is an insufficient condition for good socio-economic outcomes and the analysis demonstrates that effective implementation is critical.”

ICMM’s Chief Executive Officer, Rohitesh Dhawan, said: “This report builds on the extensive research we conducted in 2018, challenging the notion that an abundance of natural resources in host countries damages economic and social progress. However, without strong resource governance and, most critically, effective implementation of mining regulations and frameworks, host countries are unlikely to feel the benefits of mining operations. The mining industry has a central role to play in this as a catalyst for change, supporting effective implementation of the frameworks needed to help deliver the UN SDGs.”

Orano’s Chief Executive Officer, Philippe Knoche, said: “Good governance contributes to a better sharing of economic benefits and a better acceptability of our activities. Uranium mining with its long-term operations plays a vital role in enabling clean energy. When produced responsibly, it contributes to the wealth of regions and countries. This is how Orano Mining sees its role as a responsible miner.”

Newcrest’s Chief People and Sustainability Officer, Lisa Ali, said: “Improving our performance as an industry – and working with governments, communities, civil society to do so – will help us to better contribute to sustainable growth and aid social progress.”

The Extractive Industries Transparency Initiative (EITI)’s Chair, Rt Hon. Helen Clark, said: “The findings of the report are encouraging, and align with the EITI’s Principles, which state that the prudent use of natural resource wealth should be an important engine for sustainable economic growth. High standards of governance, transparency and accountability are a necessary condition, without which the developmental benefits of the resource sector will continue to be elusive. We, therefore, encourage governments and companies to consider how they can improve efforts towards transparency, including through implementation of the EITI Standard.”

The Natural Resource Governance Institute (NRGI)’s President and Chief Executive Officer, Suneeta Kaimal, said: “In the wake of the pandemic, mineral-rich developing countries face rising poverty, increased corruption risks and growing debt. Good governance by countries and companies – disclosing critical information, ensuring open public dialogue, and promoting evidence-based decision making – is crucial to enabling sustainable, equitable recovery for citizens and a greener planet. ICMM can leverage its collective power to help producer countries harness growing demand for minerals associated with the energy transition, develop new models for benefit-sharing, reinforce lessons learned about good governance, and ultimately transform potential into prosperity.”

The analysis from this report can be used as a baseline of the status of socio-economic progress in MDCs prior to the COVID-19 pandemic, the ICMM said. As countries look to rebuild to an even stronger position, the importance of understanding the linkage between effective resource governance and social progress will become increasingly important.

The report, ‘Social Progress in Mining-Dependent Countries: Analysing the role of Resource Governance in delivering the UN Sustainable Development Goals (SDGs),’ builds on the research undertaken in ICMM’s 2018 study, ‘Social Progress in Mining-dependent Countries.’

NextOre’s magnetic resonance tech up and running at First Quantum’s Kansanshi

Australia-based NextOre is onto another ore sorting assignment with its magnetic resonance (MR) sensing technology, this time in Zambia at First Quantum Minerals’ Kansanshi copper mine.

NextOre was originally formed in 2017 as a joint venture between CSIRO, RFC Ambrian and Worley, with its MR technology representing a leap forward in mineral sensing that provides accurate, whole-of-sample grade measurements, it says.

Demonstrated at mining rates of 4,300 t/h, per conveyor belt, the technology comes with no material preparation requirement and provides grade estimates in seconds, NextOre claims. This helps deliver run of mine grade readings in seconds, providing “complete transparency” for tracking downstream processing and allowing operations to selectively reject waste material.

Having initially successfully tested its magnetic resonance analysers (MRAs) at Newcrest’s Cadia East mine in New South Wales, Australia, the company has gone onto test and trial the innovation across the Americas and Asia.

More recently, it set up camp in Africa at First Quantum Minerals’ Kansanshi copper mine where it is hoping to show off the benefits of the technology in a trial.

The MRA in question was installed in January on the sulphide circuit’s 2,800 t/h primary crushed conveyor at Kansanshi, with the installation carried out with remote assistance due to COVID-19 restrictions on site.

Anthony Mukutuma, General Manager at First Quantum’s Kansanshi Mine in the Northwestern Province of Zambia, said the operation was exploring the use of MRAs for online ore grade analysis and subsequent possible sorting to mitigate the impacts of mining a complex vein-type orebody with highly variating grades.

“The installation on the 2,800 t/h conveyor is a trial to test the efficacy of the technology and consider engineering options for physical sorting of ore prior to milling,” he told IM.

Chris Beal, NextOre CEO, echoed Mukutuma’s words on grade variation, saying daily average grades at Kansanshi were on par with what the company might see in a bulk underground mine, but when NextOre looked at each individual measurement – with each four seconds representing about 2.5 t – it was seeing some “higher grades worthy of further investigation”.

“The local geology gives it excellent characteristics for the application of very fast measurements for bulk ore sorting,” he told IM.

Mukutuma said the initial aim of the trial – to validate the accuracy and precision of the MRA scanner – was progressing to plan.

“The next phase of the project is to determine options for the MRA scanner to add value to the overall front end of processing,” he said.

Beal was keen to point out that the MRA scanner setup at Kansanshi was not that much different to the others NextOre had operating – with the analyser still measuring copper in the chalcopyrite mineral phase – but the remote installation process was very different.

“Despite being carried out remotely, this installation went smoother than even some where we had a significant on-site presence,” he said. “A great deal of that smoothness can be attributed to the high competency of the Kansanshi team. Of course, our own team, including the sensing and sorting team at CSIRO, put in a huge effort to quickly pivot from the standard installation process, and also deserve a great deal of credit.”

Beal said the Kansanshi team were supplied with all the conventional technical details one would expect – mechanical drawings, assembly drawings, comprehensive commissioning instructions and animations showing assembly.

To complement that, the NextOre team made use of both the in-built remote diagnostic systems standard in each MRA and several remote scientific instruments, plus a Trimble XR10 HoloLens “mixed-reality solution” that, according to Trimble, helps workers visualise 3D data on project sites.

“The NextOre and CSIRO teams were on-line on video calls with the Kansanshi teams each day supervising the installation, monitoring the outputs of the analyser and providing supervision in real time,” Beal said. He said the Kansanshi team had the unit installed comfortably within the planned 12-hour shutdown window.

By the second week of February the analyser had more than 90% availability, Beal said in early April.

He concluded on the Kansanshi installation: “There is no question that we will use the remote systems developed during this project in each project going ahead, but, when it is at all possible, we will always have NextOre representatives on site during the installation process. This installation went very smoothly but we cannot always count on that being the case. And there are other benefits to having someone on site that you just cannot get without being there.

“That said, in the future, we expect that a relatively higher proportion of support and supervision can be done through these remote systems. More than anything, this will allow us to more quickly respond to events on site and to keep the equipment working reliably.”

Matrix aims to replace steel componentry at Newcrest’s Cadia block cave

Matrix Composites & Engineering has secured a contract with Newcrest Mining to develop a “high-tech solution” for its Cadia gold mine in New South Wales, Australia.

Under the scope of the works, Matrix will use its expertise in advanced materials technology to develop a composite replacement for steel componentry within the miner’s block caving operations at Cadia.

The scope of works for product development, with a contract value of up to approximately A$500,000 ($380,701), will commence immediately and is planned for completion in October 2021. If the development work is successful, it is intended Matrix would manufacture the full-scale solution at its facility in Henderson, Western Australia, for supply directly to Newcrest.

The contract aligns with Matrix’s strategy to increase penetration of its advanced materials technologies into operations and brownfields projects, the company said. It follows a recent agreement with Woodside Petroleum to provide technology development services, using the company’s expertise in advanced materials technology, composite materials and advanced manufacturing.

Matrix Chief Executive Officer, Aaron Begley, said the advanced composite solution has applications for other companies in the mining sector and potentially in the oil and gas space.

“We are pleased to be working with Newcrest and look forward to delivering on this project to replace steel with an innovative composite product that will introduce new technology to make the block caving process safer and more efficient,” Begley said.

“While the scope of this contract for product development is modest, it demonstrates further progress in our strategic pivot from targeting greenfields capital expenditure work to locally-based brownfields operating expenditure in the oil and gas and resources sectors.

“We are optimistic that successful delivery of this project has the potential to unlock larger scale contracts with Newcrest and other blue-chip resources companies.”

ColdBlock and Nucomat partner to automate mineral sampling prep process

Two technology companies that take laboratory efficiency and workplace safety to a new level have pooled their expertise to help automate one of the more labour intensive and risky elements involved in the mineral sampling process.

The combination of the ColdBlock Digestion 3rd Generation Product Line and Nucomat’s Compact Sample Preparation Unit will enable an automated process of “raw sample in, analysis-ready sample out at unprecedented speed and level of operator safety” for labs dealing with mineral samples, according to Nick Kuryluk, CEO of ColdBlock Technologies.

Ahead of a CEMI-hosted webinar to discuss the combination, IM put some questions to Kuryluk and Michael Van de Steene, Software Team Lead at Nucomat.

IM: Since unveiling the ColdBlock Digestion solution back in 2015 at the annual PDAC Convention, what has happened to the technology in terms of speeding up the sampling process for mining companies? I think back then, you were claiming the technology delivered fast digestion rates of between 10 and 15 minutes. Have you managed to speed this up even more?

NK: Since 2015 when we unveiled the technology at PDAC, we have focused on developing a solid evidence generation package that validated the performance of the technology in both the academic setting and the real-world setting through mining organisations and commercial laboratories.

The performance parameters that were validated include 1) high return on investment (ROI), 2) elevated workplace safety, and 3) high analytical accuracy and precision.

  • 1) The Amira Global P1196 project included SGS, Freeport McMoRan, New Gold, Centerra Gold and Newcrest. This project demonstrated that ColdBlock delivers similar analytical measurements to fire assay for gold determination and similar analytical measurements to hotblock for base metal determination (ie copper and iron determination). However, it was further validated that the ColdBlock process can be performed in minutes compared to hours and the cost savings were substantial (average of 50% cost savings vs fire assay for gold application);
  • 2) In regard to workplace safety, we eliminated the use of lead for gold determination (commonly used in fire assay) and, thus, eliminated potential lead contamination for workers and lead waste. For base metal applications, we reduced the use of hydrofluoric acid and perchloric acid in the digestion process, both of which are harmful reagents; and
  • 3) We have now published several papers. The body of work consistently demonstrates the high accuracy and precision in the recovery of elements in both mining and environmental samples. In 2019, the Geological Survey of Canada presented their work comparing ColdBlock to both microwave and hotblock for environmental applications (soils and sludges). It was demonstrated that ColdBlock improved precision from 12.9-1.3% with a 60% time saving.
The ColdBlock Digestion mechanism

The speed of our digestion system remains the same, however, it is unmatched when compared to conventional methods. We can digest sample materials for gold analysis in minutes compared to hours with fire assay. We can also digest sample materials for base metal analysis in minutes compared to hours with hotblock.

IM: Is Nucomat competing in the same sample preparation field as ColdBlock? Where do the two companies’ solutions overlap?

MVdS: Nucomat and ColdBlock Technologies manufacture complementary technologies that will take laboratory efficiency and workplace safety to a higher level.

NK: ColdBlock delivers solutions in optimising laboratory efficiency, productivity and safety:

  • Sample digestion system based on focused short-wave infrared radiation and a cooling zone;
  • Consumables and accessories;
  • Ancillary product solutions; and
  • Laboratory services in method development.

MVdS: Nucomat provides lab automation solutions for sample preparation, handling and testing for quality control laboratories. Our systems aim to control the sample preparation burden for 24/7 applications. These automated systems offer unique advantages compared to manual sample preparation, such as:

  • Operator safety;
  • Traceability and repeatability;
  • Gravimetric accuracy;
  • Validated results; and
  • Web-based remote control.

NK: Together, ColdBlock and Nucomat have joined forces to deliver a powerful solution offering a substantial ROI, elevated workplace safety and throughput while achieving high analytical accuracy and precision.

IM: How will this tie-up between the companies work? Will Nucomat be providing the automation solution for ColdBlock’s technology? How does this relate to the Amira Global P1196A project and delivering the ColdBlock 3rd Generation Product Line?

NK: This collaboration will deliver the integration of the ColdBlock Digestion 3rd Generation Product Line with Nucomat’s Compact Sample Preparation Unit (pictured below in a three reagent configuration). The combined technologies will provide an automated system capable of rapid acid dispensing and digestion. An optional making up to mass feature is also being considered. When combined, these features will enable a process of raw sample in, analysis-ready sample out at unprecedented speed and level of operator safety.

The details of the commercial framework are in progress. The integrated product line will first be offered through the Amira Global Project P1196A initiative. This will be delivered in Q2 (June quarter) 2021. The commercially available product will also be delivered through direct sales and a channel distribution model, which is targeted for Q3 (September quarter) 2021.

IM: What is the end goal of the collaboration?

NK: The end goal of the collaboration is to deliver a powerful solution to today’s challenges of sample preparation and to meet the current needs of the laboratory environment.

The aim is also to address a segment of small and mid-size laboratories that are looking for automated solutions but cannot justify the risk and ROI on a large full-scale automation system.

We aim to deliver:

  • High ROI, including high efficiency/productivity;
  • Elevated workplace safety; and
  • High analytical accuracy and precision.

IM: Is the agreement a reflection of the need to provide more environmentally sensitive sample digestion technologies that are automated to the mining and metals industry? Will the collaboration speed up the development of such a solution?

NK: The agreement is a reflection of both ColdBlock and Nucomat working together to respond to the current needs of the laboratory environment and to deliver a powerful and sustainable laboratory solution.

ColdBlock and Nucomat deliver solutions that are already proven in the marketplace. As such, this collaboration will speed up the development and commercialisation of the integrated solution.

With respect to gold application as an alternative to fire assay, we eliminate the need to use lead as part of the digestion process. So compared to fire assay, we eliminate lead waste and we eliminate lead contamination to workers.

IM: Where in the mining and metals space do you see the most demand or opportunities for deploying such a solution? Do you already have a trial lined up for the solution?

NK: The applications of our technologies are in the following spaces:

  • Mining and minerals applications such as precious metals (namely gold), base metals (such as copper, zinc, iron and nickel) and rare earth elements;
  • Metals and alloys;
  • Environmental; and
  • Other industry applications.

ColdBlock and Nucomat are working together with Amira Global to recruit participants for the Amira Global P1196A project that will see the delivery of ColdBlock’s third-generation product line with Nucomat’s automation solution. This includes both mining organisations and commercial laboratories.

Participating prospects currently come from Canada, USA, South America and Australia.

ColdBlock Technologies and Nucomat will be taking part in a CEMI-hosted webinar titled, ‘The Integration of ColdBlock Digestion with The NUCOMAT Automation System’ on December 2.

Newcrest leverages Eriez HydroFloat tech to help boost Cadia output

Having installed the first full-scale HydroFloat™ cells for the recovery of coarse composited copper and gold at Newcrest’s Cadia Valley operation in New South Wales, Australia, in 2018, Eriez is about to help the miner boost output at the operation.

Today, the Newcrest Board approved two projects moving to the execution phase, being Stage 2 of the Cadia Expansion project and the Lihir Front End Recovery project, in PNG.

The Stage 2 Cadia Expansion project primarily comprises the addition of a second coarse ore flotation circuit in Concentrator 1 (graphic above), using Eriez’s HydroFloat technology, and equipment upgrades in Concentrator 2.

These changes are expected to see plant capacity go from 33 Mt/y to 35 Mt/y, while life of mine gold and copper recoveries could increase by 3.5% and 2.7%, respectively. Alongside this, the company was expecting a A$22/oz ($16/oz) drop in its all-in sustaining costs.

An increase in throughput capacity in Concentrator 2 from 7 Mt/y to 9 Mt/y will be achieved through crushing, grinding, cyclone, pumps and flotation upgrades; while the installation of the second Coarse Ore Flotation circuit on Concentrator 1 and additional upgrades to Concentrator 1 will facilitate an increase in throughput capacity to up to 26 Mt/y, the company said.

“Stage 1, which is already in execution, was designed to maintain production continuity at Cadia through the development of PC2-3 (the next cave development) and increase the processing capacity to 33 Mt/y,” Newcrest said. “Stage 1 comprises an upgrade to the materials handling system and debottlenecking of the Concentrator 1 comminution circuit.”

The rate of ore mined from Cadia is expected to vary over time according to draw rates, cave maturity and cave interaction as further caves are developed, according to Newcrest. From the 2027 financial year onwards, life of mine Cadia mining rates are generally expected to be in the range of 33-35 Mt/y, with an average of 34 Mt/y used for financial evaluation purposes, the company said. Higher mine production rates may be possible, subject to further studies.

At throughput rates of 34 Mt/y, gold recovery improvements from Stages 1 and 2 are expected to achieve LOM gold recoveries of 80.3% and LOM copper recoveries of 85.2% compared to Stage 1 baselines of 76.8% for gold and 82.5% for copper.

The estimated capital cost for Stage 2 is A$175 million, A$5 million lower than the October 2019 estimate, according to Newcrest, which added that timing for delivery remains on schedule, with completion expected late in its 2022 financial year.

The Lihir Front End Recovery project, meanwhile, primarily comprises the installation of flash flotation and additional cyclone capacity, as well as cyclone efficiency upgrades, to improve grinding classification and reduce gold losses through the flotation circuits, Newcrest said.

The flash flotation and cyclone upgrades target the following process improvements:

  • Implement flash flotation to reduce mineral fines generated from overgrinding and send the higher-grade concentrate stream to the autoclaves; and
  • Improve cyclone efficiency to achieve a reduction in unliberated coarse mineral particles entering the cyclone overflow, which are not recovered in conventional flotation.

This is projected to result in LOM gold recoveries increasing by 1.2% and incremental LOM gold production increasing by 244,000 oz. It came with an estimated capital cost of A$61 million.

Mining-focused consortium delves into mine closure ‘transition’

The University of Queensland’s Sustainable Minerals Institute (SMI) has published the first six project reports of the Social Aspects of Mine Closure Research Consortium.

Researchers at SMI’s Centre for Social Responsibility in Mining (CSRM) led the mine closure-related projects, which, they say, examined Indigenous employment opportunities, public participation and government engagement processes, integrating social aspects into industry partners’ closure planning, governance and regulation and mining as a temporary land use.

“The consortium is a multi-party, industry-university research collaboration established to conduct research that challenges accepted industry norms and practices and demands new approaches that place people at the centre of mine closure,” SMI said.

CSRM Director Professor, Deanna Kemp, said publishing the reports contributed significantly to the mine closure literature and provided stakeholders with the latest information.

“In the consortium’s first year of operation, we focused on establishing data and knowledge to inform subsequent research. This strategy is evident in the diversity of projects undertaken,” she said.

“A core theme has been around ‘transition’; that is, viewing closure not merely as an end-point of mining, but as a transition to a post-mining future in which social change continues long after a mine ceases to be productive.”

She said the consortium was now developing its 2020 research plan, “which will build on this solid foundation and deliver on our consortium partners’ priorities”.

Major mining companies such as Anglo American, BHP, MMG, Newcrest, Newmont, OceanaGold and Rio Tinto are consortium members, with the work sitting under the SMI’s Transforming the Mine Life Cycle strategic research program as one of three research themes (transitioning through closure).

Under the ‘Indigenous groups, land rehabilitation and mine closure: exploring the Australian terrain’ project, two challenging areas at the interface of mining and Indigenous communities in Australia are being addressed.

This includes, one, the persistent lack of direct employment of Indigenous landowners on mines operating on their land; and, two, increasing expectations that mining companies engage local communities in closure planning and closure criteria setting as a prerequisite for relinquishment.

“The approach taken seeks to build on one of the greatest assets Indigenous people possess; their attachment to and knowledge of their land,” the SMI said.

In the ‘Integrated mine closure planning: A rapid scan of innovations in corporate practice’ project, the study aims to identify novel approaches used by consortium member companies to integrate social dimensions into closure planning.

Identifying these approaches promotes knowledge exchange between the companies and provides direction for future research and innovation for mine closure performance, according to the SMI.

“We found that the companies are at various stages of integrating environmental, social and economic factors into planning (at all stages of the mine lifecycle),” it said.

The ‘Participatory processes, mine closure and social transitions’ project examines the fact that, in closure planning, the focus of public participation is on identifying and managing the changes brought about by closure.

The project will ask: “What participatory processes contribute to a smooth transition to a post-mining future? How can public participation contribute to a positive socio-economic legacy of mining?”

Undertaken as part of the Social Aspects of Mine Closure Research Consortium, this project will address these questions.

The SMI said: “Researchers found few studies documenting the specific application of participatory processes to mine closure. Even fewer provide analysis to glean broader insights beyond time- and context-specific details.”

This project was designed as an exploratory, desktop study to ascertain what is known and documented about participation in mine closure. It is intended to provide an overview of key principles and to function as a repository of case studies to support future research, according to the consortium members.

The ‘Government engagement: insights from three Australian states’ project sought to establish current state priorities for socially responsible mine closure and smooth regional post-mining transitions in the Australia state jurisdictions of New South Wales, Queensland and Western Australia.

It concentrated on priorities that are not yet evident in legislation and cultivating state authorities’ interest in the work of the consortium, according to the SMI.

“The project aimed to: better understand current and emerging expectations and role of Australian governments in ensuring attention to social aspects of closure; identify government strategies for improving the ‘afterlife’ for mining communities and regions; articulate regulator roles in protecting the public good and ensuring a positive socio-economic legacy of mining; facilitate two-way communication between the consortium and governments and identifying ways for government departments to connect to the consortium’s work.”

The project, ‘Mining as a temporary land use: industry-led transitions and repurposing’, showed that post-mining land use and associated economies have become a priority issue in mine lifecycle planning.
This scoping project starts from the position that reconceptualising mine ‘closure’ may enhance the industry’s contribution to sustainable development, the SMI said. It reframes mining as a “temporary land use”.

“The primary focus of this research is on identifying examples of post-mining repurposing of land and related economic transitions that are being led by industry,” the SMI said. “Transitions led by state or other actors (eg civil society groups) provide additional inspiration for industry-led opportunities. Our findings provide an initial repository of cases that different parties can refer to in making decisions about post-mining futures.”

Lastly, the ‘Social aspects of mine closure: governance & regulation’ project extends previous CSRM work on closure regulation and closure bonds.

The project partners reviewed mining regulations across 10 jurisdictions around the world, with the objective being to build a knowledge base of how regulators are approaching social aspects of closure. This involved collating, organising, and characterising over 40 acts, regulations, and policy documents.

“We found that no jurisdiction had passed regulation specific to social aspects of closure and all tended to focus on biophysical aspects of closure,” the SMI said. “Social aspects of mining received attention in relation to approvals, but not generally for closure.”

The evidence gathered in this project can be mobilised to support subsequent work, according to the partners, who suggested a collaboration between industry, government, and other stakeholders to develop model regulations that account for a variety of perspectives and reflect realistic operational parameters.

You can find out more about the projects by clicking here.

Sandvik showcases digital mining developments in Brisbane

Last week, close to 300 leaders from the mining, construction and quarrying industries from Australia, Japan and Indonesia met in Brisbane, Australia, for a two-day summit, hosted by Sandvik, to showcase best practice examples of digitalisation.

The Digitalization in Mining event, on December 3-4, allowed Sandvik to demonstrate its latest digital offering and introduce participants to the latest innovations across its product portfolio, including process optimisation with OptiMine®, information management through My Sandvik digital services and autonomous operation with AutoMine ̶ together with the latest equipment in underground and surface drilling, loading and hauling, crushing and screening and the rock tools management system.

During the event Sandvik also announced two product launches: AutoMine Access API, which gives mines the power to connect non-Sandvik equipment to AutoMine, and its first Stage V compliant underground loaders for hard-rock mining applications.

Jim Tolley, Vice President, Sales Area Australia Pacific, Sandvik Mining and Rock Technology, said digitalisation is helping companies to grow and optimise their operations. “Our partners were keen to join us at this event because they know that digitalisation has a critical part to play in making their mines sustainable for the future.”

Day one of the event featured speakers from mining companies across Australia, as well as leaders in mining technology, process optimisation and automation. They explained the benefits their organisations have gained by implementing automation and process optimisation solutions, as well as the accompanying change in mindset, according to Sandvik.

The following presentations set the program for the day, followed by a panel discussion:

  • Shaping the Industry Digital Ecosystem (Sandvik);
  • Holistic Perspective, Focusing on Productivity, Safety and Optimised Machine Performance (Byrnecut);
  • Developing the Mine of Tomorrow (Barminco Ltd);
  • Machine Learning  ̶  Keeping it Real with Case Studies from across the Mine Value Chain (PETRA Data Science);
  • Capturing Opportunities for Digital and other Product Technology Solutions (Rio Tinto);
  • Automation Technology to Improve Efficiency and Consistency in Longwall Development Operations (Glencore);
  • Direction of Technology and Automation (Newcrest); and
  • Data Privacy, Rights and Control (Sandvik).

Pat Boniwell, Managing Director, Byrnecut Australia, said the industry will improve productivity, safety and optimise machine performance through a more “fundamental understanding” of the individual processes that make up our operations.

“New technology, automation, data transfer and analysis will all assist us in increasing the utilisation of our resources,” he said. “Data is essential, but if it is not being looked at then we are just gathering data for the sake of it. We need to continue to increase the levels of engagement between all stakeholders.”

He concluded: “We are doomed to failure unless we take our people with us and are prepared to question and be challenged.”

PETRA CEO, Penny Stewart, meanwhile, homed in on machine learning, which, she said, powers “digital twin prediction, simulation and optimisation to increase mine productivity, efficiency and yield, by showing engineers and supervisors how to reproduce their ‘best performance’ 24 hours a day, seven days a week”.

She added: “PETRA’s MAXTA™ Suite digital twin applications provide platform agnostic software-as-service operational decision support across the mine value chain ̶ from resource engineering through to processing plant set point optimisation.”

Day two of the event began with a presentation on sustainability by Henrik Ager (pictured), President, Sandvik Mining and Rock Technology, explaining how critical it is for long-term performance.

“Driving productivity and greenhouse gas efficiency together is going to be key for us at Sandvik, improving productivity and greenhouse gas efficiency will be the best way for us to add value for our customers,” he said. “My view is that the more we link our sustainability targets to normal business targets and find ways to combine them to achieve a common good, the better chance we have to deliver on them.”

Also, during the second day, delegates had the opportunity of a virtual visit to several Sandvik customers, including: Northparkes Mine (Australia), Resolute Mining Syama mine (West Africa), RedBull Powder Company (New Zealand) and Aeris Resources Tritton mine (Australia).

Harry Hardy, General Manager Customer Accounts, Applications Engineering and Marketing, Sandvik Mining and Rock Technology, Sales Area APAC, said the company often gets asked for reference cases and data to illustrate the value and payback of digital solutions. “Over the two days of the conference, our customers were able to share their own experiences and quantitatively demonstrate how our solutions have helped increase their productivity, reduce their production costs and increase their safety.”

Newcrest rolling out GE Mining collision avoidance system at Lihir

Newcrest Mining’s Lihir gold operation in Papua New Guinea is, this month, due to go live with a full installation of GE Mining’s collision avoidance system (CAS).

This follows the CAS being fitted to equipment in the Telfer open-pit mine (Western Australia) and the gradual installation of units at Lihir. Since installation 12 months ago at Telfer, vehicle-to-vehicle collisions have reduced by 33%, Newcrest said in its recently-published sustainability report.

Proximity detection technology has been progressively rolled out across the company following incidents at its operations involving collisions or near misses between vehicles and other vehicles, vehicles and pedestrians, and vehicles and infrastructure.

Supported by Newcrest’s Executive Committee, a working group comprising representatives from Newcrest’s Group Safety, Technology & Innovation, Group Supply, and key stakeholders from each of its sites, developed a strategy to deploy the technology and identified solutions suitable for use in surface and underground mining, supplied by GE Mining and Newtrax Mineprox, respectively.

Newcrest started implementing GE Mining’s CAS at Lihir back in October last year. Around 1,500 employees were to be protected in addition to up to 250 vehicles.

In addition to the GE Mining contract, Telfer and Gosowong (Indonesia) underground operations have awarded tenders to Newtrax to deploy Mineprox on the mobile mining fleets. Contractor mobilisation at Telfer commenced in September 2018.

And there could be more contract awards on the way.

Newcrest said: “Given the anticipated automation and teleremote system programme of works at Cadia (New South Wales), the business has adjusted the criteria for its proximity detection solution and is expected to award a contract soon.”