Tag Archives: ore sorting

Modular Steinert KSS sorting plant heading to Novo’s Pilbara deposits

Novo Resources has advised that Phase 2 mechanical sorting trials of its Pilbara deposit bulk samples will commence from early December 2021 following the dispatch of a Steinert KSS 100F LIXT fine mechanical sorting unit, due to be commissioned at its operation in Western Australia over the next few weeks.

The sorter will be installed adjacent to the company’s Golden Eagle processing facility in Nullagine.

Fifty samples from four different deposits across the Pilbara, ranging in size from 800 kg to approximately five tonnes, will be crushed and screened into three size fractions prior to testing through the sorter. The bulk samples will be processed by the sorter to produce a concentrate for gold assay.

Once this second phase of testing is complete, expected around the June quarter of 2022, the next phase of the test work will involve relocating the sorter to the company’ Comet Well project in Karratha, Western Australia, and commencing proposed large-scale bulk sample sorting test work of 20,000 t, leading to potential commercialisation of mechanical sorting for Pilbara conglomerates, Novo said.

The sorter infrastructure, designed and constructed by OPS Screening and Crushing Equipment, is a fully modular and containerised turnkey plant deployable to any of Novo’s tenements in the future for test work and potential large bulk sampling and processing, according to Novo. The sorter includes feed and product transfer conveyors, allowing the sorter to produce gold-bearing concentrates in a single pass for further upgrading or downstream processing.

This trial of the sorter within the Golden Eagle processing facility area is a culmination of several years of test work conducted by Novo to determine the amenability of mechanical sorting to its 13,250 sq.km of tenements across Western Australia.

“Mechanical sensor-based sorting utilises X-ray technology, 3D colour laser and metal induction to identify gold-bearing material,” Novo said. “A high-pressure air jet ‘shoots’ these gold-bearing particles into a collection system to produce a concentrate for further downstream processing.”

Rob Humphryson, CEO and a Director of Novo, said: “Mobilising the mechanical sorter for Phase 2 field trials represents an important step in progressing this innovative technology. We are looking forward to observing sorter performance from field samples collected at Comet Well, Purdy’s Reward, Talga Talga and Egina ahead of larger-scale field trials at Comet Well and Purdy’s Reward scheduled for Q2 (June quarter) 2022.”

Evaluate ore sorting options at prefeasibility study stage, TOMRA’s Rutledge says

TOMRA Mining is making a case for its sensor-based ore sorting solutions to be evaluated earlier in the mining project evaluation phase, with Jordan Rutledge, Area Sales Manager, arguing that consideration of its use at the very beginning of flowsheet discussions can influence up- and down-stream equipment selection.

The company’s sensor-based ore sorting systems have spread across the mining sector, migrating from industrial minerals and diamond operations to base and precious metals.

Speaking at a sensor-based sorting seminar in Toronto, Canada, held late last month, Rutledge (pictured) said the use of the technology needed to be considered early in the mine development scope in order to leverage the most benefit for the operation.

“Sensor-based sorting should be considered in the flowsheet from the beginning and evaluated in prefeasibility studies to see if it is suitable for the project and will add value to the plant,” she said.

“In many cases, sorting works really well and, as we continue to go towards a green economy, the use of our resources is vitally important. In order to make the best use of them, sorting plays a critical role.”

Rutledge, an event organiser and presenter, joined 40 participants from across Canada at the seminar, which included representatives from miners such as Agnico Eagle, Capstone Mining and Cheetah Resources; from laboratories such as testing and certification company SGS and the Saskatchewan Research Council ; from engineering companies such as DRA Global, Primero, CIMA and Halyard; and students from the University of Toronto.

“The event highlighted the important role of sensor-based sorting technologies in green mining and their potential to unlock significant value in mining projects, as well as the possibilities of digitalisation for supporting customers and managing connected equipment,” TOMRA said.

Kutcho Copper outlines combined open-pit/underground plan for mine

Kutcho Copper Corp has outlined a plan to develop an open pit and underground operation at its copper and zinc project in northern British Columbia, Canada, with the publication of a feasibility study.

The results of the study highlight an 11-year mine life with metal production of 533 Mlb (241,765 t) of copper, 841 Mlb of zinc, 10.6 Moz of silver and 129,700 oz of gold at all-in sustaining costs of $1.80/lb ($3,969/t) of copper equivalent. It came with an initial capital cost of C$483 million ($388 million).

The Main deposit at Kutcho is designed to be mined primarily as a conventional shovel and truck open-pit operation, with a deeper remnant mined by underground longitudinal longhole open stoping (LLHOS) with cemented rock fill (CRF). The underground Esso deposit is also designed to be mined using LLHOS with CRF.

A total of 17.3 Mt is planned to be mined over an 11-year mine life, with 14.5 Mt coming from the open pit and 2.8 Mt from the underground mines. A steady-state crusher production rate of 4,500 t/d is expected be achieved by the end of the first year of operations.

After primary crushing at an average steady state rate of 4,500 t/d, an ore sorter using an X-ray Transmission (XRT) sensor would remove low-grade and waste material from the feed to the SAG and ball mills, followed by conventional flotation, regrind and dewatering circuits. Approximately 3,900 t/d of ore would report to the milling and flotation circuit after ore sorting. The XRT plan follows testing of Kutcho samples at TOMRA Sorting Mining facilities.

The project design includes an extensive progressive reclamation program, including the backfilling of the open pit and water treatment during operations and for the closure period.

The company also plans to use liquified natural gas for power generation as opposed to diesel, which will significantly reduce the generation of greenhouse gases and reducing the potential for fuel spills. This would see four 2.5 MW LNG generators plus one on standby used, with a 2 MW diesel generator providing occasional plant start-up assistance.

Vince Sorace, President & CEO of Kutcho Copper, said: “The feasibility study represents a major milestone for Kutcho Copper as we continue to advance the high-grade Kutcho copper-zinc project towards a development decision. The significant redesign and engineering of the project delivers a mine plan that is a predominantly open-pit mining operation with the concurrent development of two underground mines. The mine plan has resulted in a technically robust and capital efficient project with a minimised footprint.

“The results of the feasibility study highlight the attractive economics of the Kutcho project which are resilient at lower metal prices, very attractive at base case prices and exhibit significant leverage to rising prices as reflected in spot metal prices with a C$931 million after-tax NPV (7% discount) and a 41% internal rate of return. We believe that the results of the feasibility study mean that Kutcho Copper is now one of the most undervalued copper investment opportunities in North America.”

CRC ORE, CSIRO look at broadening pre-concentration tech applications

CRC ORE and Australia’s national science agency, CSIRO, have formed a Future Research Program to, they say, take CRC ORE’s most promising fields of research into new areas to broaden the impact on the Australian mining industry and economy.

This work will boost the sustainability of the mining industry by helping reduce energy and water consumption, generation of tailings and residues, the physical footprint of operations, as well as optimise the extraction of valuable minerals from resources, the companies said.

The Future Research Program, launched in September 2021, will ensure the work of CRC ORE and its research continues to benefit the Australian mining industry.

The program will expand upon CRC ORE’s foundation research into the development of ore pre-concentration technologies that can be deployed within the mine and ahead of the mineral processing plant. The new research scope will investigate ways to apply these principles further down the mining value chain, targeting smaller particle sizes and a wider range of ore types.

Focus areas will include:

  • Incorporating the principles of Selective Breakage into the design and operation of comminution circuits;
  • Optimising ore feed to coarse and fine particle separators to enhance their performance;
  • Step change reductions in energy and water intensity; and
  • Developing new options for sustainable management of waste material

CRC ORE’s former General Manager of Research and Innovation, Paul Revell, who is now overseeing the program at CSIRO, said, if successful, the research will increase the number of potential locations where pre-concentration can be deployed, providing a larger overall impact for the minerals industry.

“Our aim is to extend the resource base that pre-concentration can be applied to,” Revell said. “The pre-concentration technology developed through CRC ORE is currently best suited to structurally controlled, vein-hosted ores, however these only represent about one third of the resource base on average.

“A key ambition of the new program is, therefore, to initiate research into technologies that can pre-concentrate disseminated ores. This group of ore types can be difficult to pre-concentrate with contemporary mineral processing technology, however they host a significant proportion of valuable base and precious metals.”

Revell said some 3% of global direct energy consumption is used in the mining industry just in crushing rock, so if pre-concentration technology could be applied more broadly across the resource base, it would have a wider global environmental and economic impact.

“The opportunity is to develop more energy efficient crushing and grinding processes that are integrated with a pre-concentration capability, to remove as much barren material from the ore as possible prior to subjecting the remaining ore to energy and water intensive fine grinding and concentration processes,” he said. “We’re focusing on the largest energy consuming portion of the mining value chain.”

Revell said it was important to note that the program is initially small scale and aims to undertake preliminary research into these areas that others could then build upon.

The program will be run for an initial three years with the possibility for extension through continuing industry sponsorship and collaboration.

“We will explore opportunities to engage with the mining industry to build a self-sustaining and on-going applied research portfolio in this field to advance promising developments to commercialisation,” Revell said.

“We are fortunate to have CSIRO as a research partner who are supportive, share this vision, and have a depth of research capability and excellent facilities.”

The program will also support CRC ORE’s mission to help build a highly skilled workforce for the nation amid an ongoing skills shortage in the resources sector. It will initially support a number of Research Higher Degree scholarships, which will be fully funded and placed across several selected Australian universities.

“One of CRC ORE’s key objectives has always been to build research capacity across Australia, which it did very successfully during its government-funded term,” Revell said. “By taking this new seed research and offering higher degree students a Masters degree or a PhD, it will build capacity for the minerals industry as well as getting the work done. It’s a great outcome.”

CSIRO Mineral Resources’ A/Director, Dr Rob Hough, said CSIRO is looking forward to commencing activities within the Future Research Program, initiated in partnership with CRC ORE.

“The R&D focus areas align well with our existing initiatives and plans, which have significant potential to positively impact the Australian minerals industry,” Dr Hough said.

Hatch to move forward with process plant DFS for Magnetite Mines’ Razorback iron ore project

Magnetite Mines Ltd says it has appointed Hatch to complete the process plant section of the Definitive Feasibility Study (DFS) on its Razorback iron ore project in South Australia.

This, Magnetite Mines says, is an important contract award for the company and represents the largest component of the DFS expenditure and completes the appointment of major engineering roles.

Hatch’s scope builds upon the process plant design and AACE Class 4 Estimate that was completed as part of the prefeasibility study (PFS). This study supported the declaration of a maiden ore reserve of 473 Mt based on 12.8 Mt/y plant throughput and 2 Mt/y of high-grade concentrate. It also included plans to incorporate ore sorting technology.

Key areas of work for Hatch on the DFS include:

  • Designing a metallurgical test program to confirm comminution and processing properties;
  • Improving and defining the process flow sheet based on metallurgical results and optimisation reviews;
  • Developing the mechanical, piping, electrical, structural, and civil engineering to support an AACE Class 3 Capital Cost estimate; and
  • Providing construction and procurement input to develop the contracting strategy for execution.

At completion of this scope of work, Hatch will provide design deliverables and cost estimate, developed in line with the AACE guidelines for a Class 3 estimate (18R-97) for the process plant, Magnetite Mines says. The deliverables will be to a standard and level of detail that will allow Magnetite Mines to include them in a tender package to obtain proposals for a predominantly fixed price design and construct contract or an engineering, procurement and construction management contract on market terms for procurement of the process plant.

Claude D’Cruz, Director – Metals, Australia-Asia for Hatch, said: “Following the successful delivery of the previous study work, Hatch is very excited to continue our association with Magnetite Mines through to the DFS and to be able to apply our considerable magnetite processing experience to the development of Razorback.”

Magnetite Mines Limited Executive Chairman, Peter Schubert, said: “The PFS confirmed the process plant scope and the attractiveness of producing high-grade iron ore products at a competitive cost from the first stage of development of the company’s extensive iron ore resources. The DFS will undertake more detailed engineering and generate the tender packages for construction, supporting a decision to mine.

“This continues our strategy to carefully and systematically progress the project with the guidance of best-in-class technical consultants. We look forward to working with Hatch, as we develop Razorback into a successful operating iron ore business.”

Tungsten West set to bring Hemerdon tungsten-tin mine back into production

Tungsten West, the mining company focused on recommencing production at the Hemerdon tungsten and tin mine in Devon, England, has announced its intention to proceed with an initial public offering on London’s AIM market.

The company has conditionally raised £39 million ($53 million) before expenses, with plans to debut on the bourse on October 21 with a market capitalisation of approximately £106.2 million.

The net proceeds of the offer, together with the $49 million project financing from a fund managed by Orion Resource Partners, will be used to, among other things, execute the planned capital expenditure and corporate commitments of £44.6 million for improvement works at the Hemerdon Mine, bringing it back into commercial production.

Hemerdon is, Tungsten West says, the third largest tungsten resource globally, as well as being a previously producing mine that was operational from 2015-2018. Tungsten West purchased the Hemerdon Mine in 2019, and has since completed a bankable feasibility study that demonstrated an extensive reserve of approximately 63.3 Mt at 0.18% W and 0.03% Sn, as well as 37.4 Mt of saleable aggregate material. The company estimates that the life of mine is currently 18.5 years with the opportunity to extend this through future investment.

The mine already has the majority of its infrastructure in place, with previous owner Wolf Minerals Ltd having invested over £170 million into the development of the mine and its processing facilities, which include an open-pit mine, mineral processing facility and mine waste facility, the company says. With a substantial amount of existing infrastructure, the development costs associated with re-starting the mine are estimated to be £44.6 million. This existing infrastructure also means that the rebuild is only expected to take 12 months, with parts of the restart project already underway.

Having acquired the mine out of a receivership process, Tungsten West completed a significant amount of work to enable it to understand and address the issues historically experienced by Wolf Minerals, including a 6,113 m geological exploration drilling program and several technical studies. The company has identified the past issues experienced by Wolf Minerals that required rectifying.

“One of the main issues was a poor mineral process route design, with several items of equipment, particularly in the front end of the plant, causing plant downtime and hindering the recovery of the tungsten and tin minerals,” Tungsten West says. “Tungsten West has therefore designated a material proportion of its rebuild costs to modifying and updating the front-end of the processing plant. This will include replacing the existing crushing circuit with new duty and standby primary jaw crushers and secondary cone crushers.”

In addition, the introduction of X-ray Transmission ore sorting, which the company previously carried out tests on with TOMRA Mining in Germany, substantially reduces processing costs by rejecting around 70% of the ore fed to the sorters, it says.

Further upgrades to the plant commenced by the previous operator will be completed, including the dense media separation feed stockpile where 24 hours of surge capacity will be installed, decoupling the front-end of the plant from the concentrator circuit.

“Through these actions, the company expects plant operating time to improve from circa-53% under previous operatorship to the industry standard of circa-81% under Tungsten West,” Tungsten West says.

Tungsten West has identified further opportunities for by-product cash flow through the production and sale of aggregates. A new aggregate plant will be fed with ore sorter rejects and with the waste streams from the processing plant. The business plan is to sell to local aggregate consumers, such as GRS, providing them with a stable, long-term and sustainable source of these materials.

The company says it has implemented a number of initiatives to ensure a minimal impact on the surrounding environment and local community. These include optimising the plants low frequency noise to ensure minimal environmental impact and a fully cash funded £13.2 million restoration bond.

Max Denning, CEO of Tungsten West, says: “With the proposed £39 million raise announced today, and the £36 million funding package from Orion, we will be fully funded for the development of Hemerdon back into production. We look forward to welcoming new investors into this compelling business and working with all our stakeholders to ensure that the newly reinvigorated Hemerdon mine is a beacon of mining excellence in the UK.”

Vast sees path forward at Manaila with help of TOMRA’s XRT ore sorting solution

Vast Resources says it is continuing to evaluate the recommencement of production at its Manaila polymetallic mine in Romania and, as part of this process, has been working with TOMRA to assess the suitability of X-ray Transmission (XRT) ore sorting technology to optimise the mine’s production profile.

The assessment has demonstrated, to date, that by installing an XRT machine at the plant to pre concentrate ore at the pit, the technology would be highly effective for three main reasons:

  • A reduction in transportation costs as improved mass reduction would significantly reduce the material being transported from the mine to the processing plant;
  • A reduction in processing costs due to reducing the throughput at the plant; and
  • Higher-grade product being delivered to the plant.

It is anticipated that processing and transportation costs could be reduced by up to 55%, according to Vast.

“This cost reduction could have a dramatic impact on the mine’s financial performance,” the company says.

Samples from both types of mineralisation at Manaila, massive sulphide and disseminated sulphide, were sent to the TOMRA Test Centre in Wedel, Germany, to ascertain improved mass reduction and grade upgrade potential. Both mineralisation types showed amenability to the XRT process with metal content recovery on the massive sulphides at 95.4% for copper, 93.6% for lead and 95.2% for zinc in 71% of the mass, the company explains. The disseminated sulphides returned a metal content recovery of 84.2% for copper, 67.2% for lead and 84.4% for zinc in 35% of the mass.

The combined results show that 93.1% of copper, 82.2% of lead and 92.4% of zinc metal could be recovered in 45% of the mass when mining the polymetallic ore on a ratio of three tonnes disseminated sulphide to one tonne of massive sulphide, being the typical historical ratio of mining at Manaila.

Andrew Prelea, Chief Executive Officer of the Vast Resources, says: “These results clearly underpin our view that Manaila is economically viable, and the management team are considering various mine plan scenarios of bringing Manaila back into production.”

The 138.6 ha Manaila-Carlibaba exploration licence contains a JORC 2012 compliant measured and indicated resource of 3.6 Mt at 0.93% Cu, 0.29% Pb, 0.63% Zn, 0.23 g/t Au and 24.9 g/t Ag with inferred resources of 1 Mt at 1.1% Cu, 0.4% Pb, 0.84% Zn, 0.24 g/t Au and 29.2 g/t Ag. Comprising the Manaila polymetallic mine (currently on care and maintenance) and the Carlibaba extension project, Vast intends to establish a larger mining and processing facility at Manaila-Carlibaba which would eliminate the need for costly road transport of mined ore to the existing processing facility located at Iacobeni, around 30 km away.

Preliminary studies by the company indicate the potential for a new open-pit mine to exploit mineral resources to a depth of some 125 m below surface, and to simultaneously develop a smaller higher-grade underground mine below the open-pit mineral resources.

TOMRA XRT ore sorting test work delivers the goods at Kutcho’s copper-zinc project

Higher head grades and recoveries, a reduction in run-of-mine material reporting to the milling and flotation circuit, a smaller tailings management facility, and lower power and water demand are just some of the benefits to have come out of ore sorting test work at Kutcho Copper’s copper-zinc project in British Columbia, Canada.

Recent bulk sample test work was conducted to determine the effectiveness of using ore sorting technology from TOMRA Sorting Mining to improve the processed grade and reduce the mill feed tonnage of mineral resources at the project.

ABH Engineering Inc and TOMRA were commissioned to undertake this work to establish the amenability of Kutcho’s Main and Esso deposits to ore sorting using an X-ray Transmission (XRT) sensor. Two phases of test work, including a representative 0.75 t bulk sample derived from drill core, were undertaken at TOMRA Sorting Mining in Germany under the supervision of ABH Engineering.

“The ore sorting process helps concentrate the metals of commercial interest from the Kutcho deposit, which are principally associated with high density sulphide minerals,” Kutcho explained. “Rocks are individually scanned, and low grade (low density) waste material is selectively diverted away from downstream processing using compressed air jets. Preliminary test work on the sensitivity of the ore to a XRF sensor was also undertaken.”

The bulk sample tests conducted on a production-scale XRT ore sorter indicate that approximately 17% of the ROM material will be <12.5 mm in size and would therefore bypass the ore sorter and report directly to the milling and flotation circuit. Of the >12.5 mm feed, some 15% of the material reporting to the ore sorter was detected by the XRT sensors as being low grade or waste and will be rejected by the ore sorter, thereby reducing run-of-mine material reporting to the milling and flotation circuit by 13%. The overall recovery of metal (copper, zinc, silver and gold) reporting to the ore sorter is in the order of 99% (ie less than 1% of the metals of interest will be rejected by the ore sorter), Kutcho said.

Pre-sorting of the run-of-mine material by the ore sorter has the potential to reduce milling and flotation operating costs corresponding with the 13% rejection of low-grade material, it says. The commensurate increase in the head grade of the ore reporting to the flotation circuit has the potential to also result in improved metallurgical recoveries in the flotation circuit.

Additionally, it is anticipated that potential savings in capital and operating costs related to the smaller milling and flotation circuit will offset the costs associated with the ore sorter, according to the company. Savings will also be achieved by a reduction in the size of the tailings management facility. The optimally sized ore sorter reject waste material could be used as cemented rock backfill in the underground mines at both the Main and Esso deposits, resulting in further potential cost savings, Kutcho said.

Environmental benefits accruing to the project because of the introduction of ore sorting technology include a lower power and water demand, and a smaller tailings management facility, the company concluded.

Earlier this month, Kutcho said in a feasibility study progress report that it was considering open-pit mining for the majority of the Main deposit at Kutcho, allowing the company to capitalise on the high-grade, near-surface mineralisation, resulting in lower operating costs than underground mining. The remainder of the Main deposit and all the Esso deposit will continue to be evaluated assuming underground extraction by longitudinal longhole open stoping, it said.

The ore sorting test work was also being incorporated into the feasibility study design.

Steinert XRT ore sorter testing shows promise at Northern Minerals rare earth project

Northern Minerals Ltd has progressed its ore sorting project enhancement initiative with the commissioning and testing of the Steinert sorter system, and is now producing ore sorted material and converting this to a 30% total rare earth oxide (TREO) concentrate in its’ Browns Range beneficiation plant in Western Australia.

Northern Minerals’ CEO, Mark Tory, said: “The construction, commissioning and testing of the ore sorter circuit marks another milestone in the development of the Browns Range project.

“The positive bulk sample tests confirm the effectiveness of the ore sorting circuit on the Wolverine ore to significantly increase the head grade to the mill which is expected to result in higher production rates and lower operating costs for a full-scale operation at Browns Range.

“It’s also pleasing to see the initial ore sorting tests the Banshee ore showing promise which, if shown to be effective in future tests, has potential to significantly increase the Browns Range mineral resource estimate.”

He added: “Being able to test and operate the ore sorting circuit in conjunction with the pilot beneficiation plant is providing extremely valuable data that you just can’t get from small bench-scale tests and this will feed into our feasibility study for a potential commercial scale heavy rare earth operation at Browns Range.”

The ore sorter system was constructed during 2020 and 2021 and commissioned in June 2021. The sorter that was installed is a 2-m wide Steinert sorter that uses X-ray Transmission (XRT) and laser detectors to identify rare earth mineralisation.

The sorter has been run over two test campaigns, which included 41 test runs processing 5,300 t of ore from the run of mine stockpiles largely coming from Wolverine ore, and five test runs on Banshee ore that was bulk sampled from a surface costean that provided 285 t of Banshee ore.

The tests have confirmed that simultaneous sorting of two size fractions is possible on the sorter, allowing a single machine to sort both sortable size fractions (10 mm-25 mm and 25 mm-75 mm), Northern Minerals says. The sortable fraction (>10 mm material) of Wolverine ore can be successfully sorted (90% TREO recovery in 50% of the mass) and, when combined with non-sortable fines, achieves a 45% grade increase to the mill and over 95% TREO recovery when feeding a 0.9% TREO ore.

The sorter system is now being run to produce feed for the beneficiation plant and 4,479 t of Wolverine ore have been processed through the ore sorter circuit to the end of August. Processing of the Wolverine ore sorted material in the beneficiation plant has resulted in better recoveries in the magnetic separation plant and flotation plant compared with feeding unsorted ore, the company says. A bulk sample of 50 t of 30% TREO rare earth concentrate has being produced for test work by facilities identified with likely future capability and capacity to process the heavy rare earth xenotime concentrate produced at Browns Range.

Bulks sample tests have highlighted some key factors to consider for ore sorting that cannot be determined at bench scale using vendor equipment in laboratory settings. Understanding the impact of these factors is critical to including an ore sorting circuit in a full-scale processing facility.

Initial sorting tests of the Banshee ore have shown that the highly oxidised surface material contains a large fines fraction and that the grade of the sortable fraction (ie >10 mm) can be doubled recovering more than 60% of the TREO in 25% of the mass. An additional bulk sample is being extracted from deeper in the costean and three diamond drill holes are being drilled for further test work.

The bulk ore sorting test work is a key input for the full-scale beneficiation plant feasibility study currently underway, which will also leverage off the substantial technical, operational and economic data from the R&D test work at the Browns Range Pilot Plant since 2018, the company says.

Element 25 targets Butcherbird upgrade with STEINERT KSS ore sorters

Element 25 Ltd has acquired two STEINERT 2-m-wide KSS ore sorters fitted with multiple sensors that are now installed at its Butcherbird manganese project in Western Australia.

The sorters will be used to upgrade the high-quality manganese concentrate for export markets, STEINERT says.

The Butcherbird operation has a proven and probable manganese ore reserves of 50.55 Mt at an average grade of 10.3% Mn for 5.22 Mt of contained manganese.

Element 25 plans to use the STEINERT KSS sensor-based sorters to upgrade the washed feed material to an average grade of >32% Mn, STEINERT says.

The miner has already shipped its first consignment of ore and the second is scheduled to be loaded at Port Hedland, in Western Australia, in late August. Current annual production is estimated at 365,000 t of manganese ore concentrate with a 40-year mine life for Stage 1 of the operation.

Element 25 previously said Butcherbird is ideally placed to feed potential demand, with advanced flowsheet development work undertaken in 2019 and 2020 confirming a simple, unique, ambient temperature and atmospheric pressure leach process for Element 25 ores which, when combined with offsets, will target the world’s first Zero Carbon Manganese for EV cathode manufacture.