Tag Archives: Platinum Group Metals

Stantec helps Generation PGM achieve Ontario regulatory milestone at Marathon

Stantec, a global leader in sustainable design and engineering and one of the largest environmental services firms in Canada, says it has assisted Generation PGM Inc and its Marathon palladium-copper project in becoming the first mine in Ontario’s history to obtain environmental approval following a Joint Review Panel.

The project, a platinum group metals (PGM) and copper mine development and milling operation near the Town of Marathon in north-western Ontario, recently received approval from the federal and provincial governments’ coordinated Environmental Approval (EA) process under the Canadian Environmental Assessment Act and Ontario’s Environmental Assessment Act. The project is the first mining project in Ontario to be assessed through a Joint Review Panel pursuant to the Canada-Ontario Agreement on Environmental Assessment Cooperation (2004).

Generation PGM is a wholly owned subsidiary of Generation Mining.

Stantec led and coordinated preparation of the Environmental Impact Statement (EIS) Addendum and various technical reports as part of a collaboration with Generation PGM and other consultants. The firm’s experts completed technical assessments for the EIS Addendum, responded to information requests from the panel and shared expertise at the public hearing held by the Joint Review Panel.

Stantec’s discipline leads presented their conclusions and recommendations regarding the project as expert witnesses at the hearing in the areas of hydrology, hydrogeology, air quality, greenhouse gases, acoustics and socio-economics. The firm also coordinated preparation of the EIS Addendum based on updates to existing baseline conditions, changes to regulatory standards and refinements to the project relative to the original EIS – which was submitted in 2012 and supported by True Grit Engineering Ltd (acquired by Stantec in 2018). Generation PGM also retained Stantec to support consultation with agencies and Indigenous communities, consider comments and traditional knowledge, and scope follow-up programs and environmental management plans.

Stantec’s Chris Powell, Senior Environmental Planner, said: “This is a big win for the Marathon project, and Stantec is thrilled to have been a part of this process to leverage our expertise in mining and environmental assessment for Generation PGM in their efforts to proceed to the next phase of the project. This critical minerals project will provide a lot of opportunity for the region and benefits to the local Indigenous community, Biigtigong Nishnaabeg. I’m proud of our team for the hard work and dedication to deliver on such an important project.”

The Joint Review Panel’s public review process included 10 months of written filings and a public hearing consisting of 19 oral hearing days. The panel received input from more than 50 individuals, including representatives from Indigenous groups, government agencies and interest groups. This Joint Review Panel process was among the largest regulatory hearings of 2022. To secure the panel’s approval, Generation PGM and Stantec collaborated with experts from Ecometrix, Knight-Piésold, Northern Bioscience and WSP, with legal support from Cassels.

Drew Anwyll, Chief Operating Officer of Generation Mining, said: “We greatly appreciate the work of the Stantec team, who significantly contributed through the EIS Addendum and the Joint Review Panel hearings. Stantec worked side-by-side with the Generation team and other consultants and advisors with a ‘one-team approach’. Stantec stewarded us through this and made this less of a process. We are extremely proud to be the first mine in Ontario to be approved through the Joint Review Panel.”

Stantec says it continues to highlight its strong environmental assessment expertise and presence in north-western Ontario, following the success of the Greenstone Gold Mine’s Hardrock Project Federal EIS Approval in 2018 and Provincial EA Approval in 2019. For the Marathon project, Stantec continues to assist Generation PGM with components of its ongoing baseline monitoring and regulatory permitting work, led from Stantec’s Thunder Bay office.

Generation PGM will now proceed to obtain the necessary permits for construction and operation of the mine. The Marathon property covers a land package of approximately 220 sq.km. The processing plant will operate at approximately 9.2 Mt/y of ore, produce approximately 87,000 t/y of copper concentrate, and employ up to 1,000 workers during construction and 375 workers during operation.

Sibanye-Stillwater to roll out Newtrax OptiMine Collision Avoidance System at Stillwater mine

Sibanye-Stillwater is to invest $17 million in OptiMine® Collision Avoidance System (CAS) technology to reduce accidents, injuries and fatalities at its Stillwater PGM underground mining operations in Montana, USA, Newtrax says.

Newtrax and Sibanye-Stillwater have been working together since 2017 on various digitalisation projects to improve safety and productivity at Stillwater.

OptiMine increases safety and optimises underground mining operations, which align with Sibanye-Stillwater’s CARES values of commitment to safety, accountability, respect and sustainability, Newtrax says. These values support safe operations, allow growth, underpin business strategy and promote competitiveness and success.

This year marks the beginning of a new chapter with the mine-wide implementation of the new OptiMine Collision Avoidance System that links intelligent cap lamps to a warning system inside the cab of underground mobile equipment.

The system provides the vehicle operator with a virtual view of any pedestrians in the immediate area of the machine, along with an escalating warning system for both as the distance between them narrows.

This escalation transitions from a warning to vehicle intervention, where the vehicle automatically reduces speed and comes to a controlled stop should the system recognise the presence of any pedestrian wearing an intelligent cap lamp in the high-risk zone.

The same technology is also designed to improve the safety of vehicle-to-vehicle as well as vehicle-to-locomotive interactions and will be used as the digitalisation platform for real-time operations management, Newtrax, which is owned by Sandvik, said.

Jacques van Rensburg, Vice President and Group Head of Engineering, Sibanye-Stillwater, said: “Newtrax provides us with a safe, proactive and integrable solution to our operational needs. The OptiMine system integrates all the telemetry, tracking and proximity detection technology we need to run our operations safely, transparently and efficiently. And they are humble enough to leverage the global experience we’ve had with other collision avoidance systems globally, to make their system even better.”

Jean-Phillip Bouchard, Vice President – Americas, Newtrax, said: “Sibanye-Stillwater is a key customer for Newtrax. We are pleased to expand their current system and take on the challenge of developing and delivering OEM-agnostic intervention controllers to enable slow-to-stop control of all their equipment.”

Last year, Sandvik Mining and Rock Solutions, together with Newtrax, introduced what it said was the next generation of the OptiMine solution, which combines the Newtrax digitalisation offering with the existing Sandvik suite of digital process optimisation tools as one integrated OptiMine product.

Lifezone hydromet tech blueprint puts Kabanga Nickel in pole refining position

Kabanga Nickel is ready to put its ‘money where its technology is’ in the pursuit of production from a highly prospective nickel-copper-cobalt asset in Tanzania, according to Keith Liddell, Executive Chairman.

Having been granted access to a project that has had more than $290 million spent on it by previous owners such as Barrick Gold and Glencore between 2005 and 2014, including 587,000 m of drilling, the company is coming at the Kabanga project with a fresh set of eyes and a plan that aligns with the government’s in-country beneficiation requirements.

The outcome of this previous investment is an in-situ mineral resource of 58 Mt at 2.62% Ni, containing more than 1.52 Mt of nickel, 190,000 t of copper and 120,000 t of cobalt. This resource is in the process of being updated with the latest modelling software.

The Barrick-Glencore joint venture also outlined a mine plan in a draft feasibility study that looked to recover 49.3 Mt of ore at 2.69% nickel equivalent from the two primary orebodies – North and Tembo. Again, Kabanga is re-evaluating this strategy, having identified several opportunities to enhance project outcomes including a development plan that facilitates higher production rates and access to high-grade ore earlier in the mining schedule.

Yet, the biggest departure from the previous plans for Kabanga is the “mine to metal” concept that Liddell and Dr Mike Adams, Senior Vice President: Processing & Refining, have been marketing.

This is part of the reason why the Tanzanian Government signed a binding framework agreement with Kabanga Nickel earlier this year that resulted in a joint venture company called Tembo Nickel Corp (owned 84% by Kabanga Nickel and 16% by the Government of Tanzania) to undertake mining, processing and refining to Class 1 nickel with cobalt and copper co-products near the asset.

Unlike the plethora of smelter plans being drawn up in the likes of Indonesia and the Philippines – two other countries attempting to keep more ‘metal value’ in-country – Kabanga’s plan hinges on a hydrometallurgical refining route.

This isn’t a carbon copy of the high pressure acid leaching (HPAL) technology the industry is used to hearing about – most of the time for the wrong reasons. The hydrometallurgy Kabanga is talking about is more in keeping with the process Vale uses at Long Harbour in Canada, Adams pointed out.

“There’s hydrometallurgy and then there’s hydrometallurgy,” he told IM. “HPAL is incredibly different to the Lifezone hydrometallurgy we are proposing at Kabanga, which is dealing with sulphide concentrates. Our process is effectively 17% of the HPAL carbon footprint; HPAL has a much higher carbon footprint than smelting, let alone what we are proposing.

“Our technology comes with lower temperatures and pressures, and the materials of construction are nowhere near as exotic as HPAL. It is more economic and more environmentally friendly than both HPAL and smelting.”

The ‘Lifezone’ Adams mentioned is Lifezone Limited, a technology and development company established by Liddell to exclusively own and develop the patented rights to the Kell Process – a unique hydrometallurgical process. Although devised to treat platinum group metals and refractory gold ores without smelting or the use of cyanide, and with major energy savings, cost benefits and a significantly reduced environmental impact (CO2 and SO2) over conventional technologies, the Kabanga team is keen to draw from Lifezone’s experiences when it comes to devising the refining plan in Tanzania.

They and much of the South African platinum industry are looking at developments at Sedibelo Platinum’s Pilanesberg Platinum Mines (PPM) operation on the Bushveld Complex where a 110,000 t/y beneficiation plant employing the Kell Process is currently being constructed. This plant has the capacity to produce 320,000 oz/y of platinum group metals at the refinery end, with seven refined metal products set to be produced on site.

If Sedibelo, which Liddell is a shareholder of, can achieve such a feat, it will become the first South African PGM operation producing refined PGM, gold and base metal products on site. At the same time, this metal production would come with some 82% less energy consumption and the associated significant reduction in carbon emissions, plus improved recoveries and lower operating costs, than conventional off-site PGM smelting.

But, back to Tanzania, where the aim is to deploy hydromet technology with a specifically designed flowsheet to leach and refine the base metals. End products from the Kabanga refinery will be Class 1 nickel and cobalt metals with >99.95% purity readily saleable to customers worldwide, as well as A-grade copper cathode for the Tanzanian market, according to the company.

Not only is this different to conventional pyrometallurgical nickel sulphide smelting and refining – which, according to Liddell comes with around 13 t of CO2 emissions per tonne of Class 1 nickel metal, compared with the 4 t of CO2 emissions per tonne of nickel (Nickel Institute industry baseline numbers) with the Lifezone hydrometallurgical route – it also removes the need to transport and export concentrate long distances to European, North American or Asian smelters and refineries for further processing.

Such benefits and plans go some way to answering the questions around how Kabanga is holding a nickel-copper-cobalt asset that many battery metal investors and mining companies would be interested in.

Kabanga Nickel is putting Lifezone’s hydrometallurgy expertise to the test at the project in Tanzania

The majors might not be ready to offer up a plan featuring in-country beneficiation with new technology, but Kabanga and Lifezone are.

“As you know, the industry is very conservative – no-one wants to be first, they want to be second,” Liddell said. “As technology providers, we’re going to be first and second – first with the Kell Process plant in South Africa and second with the hydromet plant at Kabanga.

“We have ownership in those so, in effect, we are putting our money where our technology is. In a conservative industry, you have to do this.”

Liddell is right.

Take battery-electric vehicles or hard-rock cutting technology on the mobile equipment side of the mining business. The OEMs, to gain market traction, had to invest in the technology, build prototypes and mine-ready vehicles and then convince the miners to test them at their sites – most of the risk was held with the tech providers, not the miners.

While Lifezone will have to take on similar technology and financial risks for industry buy-in, all the billed benefits of its hydromet technology fit the mining industry ESG and productivity brief, making it a technology that has applications beyond Kabanga, Tanzania and nickel.

According to the company, it represents an architecture of several well-proven “breakthrough” hydromet process technologies – namely pressure oxidation of sulphide minerals, selective solvent extraction of metals and selective metal absorbents – that realise the value of all waste streams, both in-process and by constructing local, regional and global circular economies.

It comes with higher metal recoveries, lower costs, lower environmental impact, a less complex flowsheet, shorter production pipeline and reduced value lockup for those companies employing it. This means metal production comes sooner, more metal is produced at a lower cost and with a lower footprint and less potentially payable metal is left in the waste stream due to a lack of viable processing options.

The main unit operations at Kabanga are likely to include aqueous pressure oxidation in an autoclave to dissolve the sulphides and remove the base metals; copper refining by SX-EW; iron removal to purify the solution for cobalt and nickel refining; cobalt refining by SX-EW; and nickel refining by SX-EW. This could result in 40,000-50,000 t/y of nickel metal as cathode, powder or briquette, alongside 8,000 t of copper cathode and 3,500 t/y of cobalt cathode or rounds.

The refinery blueprint – designed in a modular manner to bolt on additional process trains, according to Liddell and Adams – could see Tanzania become the multi-metals processing hub it has eyes on, processing material from across East Africa and retaining more value in-country. Down the line, it could align itself even closer with the battery metals sector by producing precursor products that gigafactories are calling out for.

Beyond Kabanga Nickel, Liddell sees potential for applying this hydromet concept at existing smelting operations to lower the footprint and operating cost of operations.

“The hydromet process uses anywhere between one fifth and one third of a smelter’s electricity input,” he explained. “You can replace a 50 MW electric smelter with a 10 MW hydromet plant. At the same time, the process allows refiners to get more metal out of the concentrate. This means the lower energy draw and increased revenues can pay back the money invested in a hydromet plant.”

For operations looking to incorporate more renewables, this reduced power draw is a major selling point.

Similarly, for countries like South Africa looking to retain or grow its metal production blueprint while weaning themselves off coal amid routine power blackouts, the concept stacks up.

“In South Africa, you could end up producing the same amount of metals off a much lower power base, and it’s then much cheaper to green up that electricity,” Liddell said.

The potential is vast, and Kabanga Nickel has an 18-month program currently ahead of it to start development.

This one-and-a-half-year plan follows the recent issue of a mining licence that allows the company to get on the ground – symbolised by the drill rig (pictured above) that is about to start turning on site.

Over this timeframe, the plan is to update the existing feasibility study numbers and bolt a refinery module onto it, explore avenues with metallurgical drilling to boost the concentrate grade and re-work the mine design to access the two orebodies simultaneously. The latter is one of the ways the team could access more value sooner in the production process.

All of this could set the company up to start production from Kabanga in 2024-2025, 1-2 years after the Kell Process goes live at Sedibelo’s operation and in time for a further run up in battery metals demand and, most likely, more governments legislating for in-country beneficiation.

Kabanga Nickel and Lifezone’s plans could end up being a future tried-and-tested blueprint.

Zimplats to boost PGM mine, concentrator output in Zimbabwe

Zimplats’ Board of Directors has signed off on several new projects at its platinum group metal operations in Zimbabwe, including the building of a new mine, expansion of its in-country processing capacity and the addition of a solar plant to augment power supplies.

The board approved an overall capital investment strategy with a budget of $1.8 billion to be implemented over a 10-year period beginning in 2021, with $1.2 billion already approved for implementation.

Zimplats, a member of the Implats Group, is focused on production of platinum group and associated metals from the Great Dyke in Zimbabwe. It currently operates four underground mines and a concentrator at Ngezi, while the Selous Metallurgical Complex, 77 km north of the underground operations, comprises a concentrator and a smelter.

These projects, including those that are currently in process of being approved, will concentrate on:

  • Maintaining current production levels through mine replacements and upgrades ($516 million);
  • Expanding production levels through growth projects, including the development of a new mine and increased processing capacity, which will boost nameplate capacity from 6.7 Mt/y to 8.8 Mt/y and in-country processing capacity to 380,000 t/y of concentrate, and the establishment of an abatement facility to mitigate sulphuric dioxide emissions emanating from the current and expanded smelting capacity ($969 million);
  • Refurbishing the mothballed base metal refinery, to further beneficiate converter matte ($100 million); and
  • Investing in a 185 MW solar plant to augment power supplies and enhance environmental, social and governance performance metrics to maintain Zimplats licence to operate ($201 million).

These projects, the company said, are expected to be funded by internally generated resources.

Tharisa kicks off Vulcan ultra-fine chrome recovery and beneficiation plant commissioning

Tharisa, the platinum group metals (PGMs) and chrome co-producer, has announced that cold commissioning of its Vulcan ultra-fine chrome recovery and beneficiation plant has commenced.

The timetable to completion of the new $55 million plant remains firmly on track with initial saleable production due before year end, it says.

Once fully commissioned, the plant is expected to see Tharisa Mine, in South Africa, materially increase its chrome recoveries from circa-62% to circa-82% resulting in increased chrome production of some 20% at low incremental unit operating costs.

The plant, which will process live tailings produced by the independent Voyager (pictured) and Genesis plants, will ensure further beneficiation of the company’s chrome production at the Tharisa Mine, while reducing unit output of carbon emissions, aligned with Tharisa’s recently announced decarbonisation plan, the company says.

The Vulcan plant has a nameplate capacity of 340,000 t/mth of tailings and involves “proprietary ground-breaking use of existing technologies in fine chrome recovery”, the company says. The board initially signed off its construction in 2019, appointing Wood as the engineering, procurement and construction management contractor in the process, with hot commissioning targeted for the December quarter of 2020. This timeline was impacted by COVID-19.

Some final elements of the construction process remain to be completed, yet Tharisa’s engineering team has commenced cold commissioning, with comprehensive testing of the entire circuit, to be completed prior to chrome tailings material entering the plant. Of the total capital expenditure, over 90% was procured locally in South Africa, with up to 1,000 contractors locally sourced and over 100 new permanent jobs created.

Vulcan is, Tharisa says, the first large-scale plant to produce chrome concentrates from chrome ultra-fines. The concept of Vulcan was developed by Arxo Metals Proprietary Limited, a wholly owned subsidiary of the company and housing Tharisa’s in-house R&D team, to extract the ultra-fine chrome from tailings.

With Tharisa Mine near Rustenburg having a 14-year open-pit life remaining, and a further 40 years underground, Vulcan will ensure maximum value extraction and beneficiation of the chrome ore, Tharisa says. The Tharisa Mine has 860 Mt in mineral resource containing 172 Mt in contained Cr2O3 and 42.8 Moz platinum group metals.

Internally funded by Tharisa, Vulcan recommenced construction in October 2020 after the lifting of restrictions by the South African government during the height of the first wave of the COVID-19 pandemic.

Phoevos Pouroulis, CEO of Tharisa, says: “Commissioning of the Vulcan plant perfectly exemplifies two Tharisa philosophies: challenging convention through innovation and delivering on our promise of maximising value through beneficiation of every cube mined.

“Vulcan provides the company with the ability to further beneficiate our product whilst staying on track to meet our decarbonisation targets, thanks to the dedicated work from Arxo Metals, that has not only delivered the Vulcan process but has also delivered further beneficiation opportunities, including metal alloys and PGM products using non-conventional methodologies.

“Vulcan is an important part of our sustainable growth strategy and ensures that Tharisa continues to drive sustainable returns for all of our stakeholders, while simultaneously pushing us even lower on the cost curve.”

South Africa’s hydrogen potential validated in Anglo American-led feasibility study

Anglo American, in collaboration with South Africa’s Department of Science and Innovation (DSI), the South African National Development Institute (SANEDI), Engie and Bambili Energy, has announced the results of a feasibility study to explore the potential for a hydrogen valley anchored in the Bushveld complex of South Africa, along the industrial and commercial corridor to Johannesburg and to the south coast at Durban.

The feasibility study, which was launched in March of this year, identifies three hubs – Johannesburg, extending to Rustenburg and Pretoria; Durban, encompassing the city itself and Richards Bay; and Limpopo province centred around Anglo American’s Mogalakwena platinum group metals (PGMs) mine (pictured) – with a fundamental role to play in integrating hydrogen into South Africa’s economy, and in establishing South Africa and its renewable energy resources as a strategically important centre for green hydrogen production, Anglo says.

Nine key pilot projects have also been identified across these hubs and are recommended to be prioritised by developers. They span the transport, industrial and construction sectors.

Following the publication of the feasibility study results, Anglo says it will work with South Africa’s DSI and the other partners on the implementation of relevant projects, as well as continue to progress its own company-led initiatives towards development of the hydrogen economy.

Anglo is already investing in renewable hydrogen production technology at its Mogalakwena PGMs mine and in the development of hydrogen-powered fuel cell mine haul trucks (FCEVs) – the world’s largest to run on hydrogen.

Natascha Viljoen, CEO of Anglo American’s PGMs business, said: “The opportunity to create new engines of economic activity through hydrogen has been validated through this feasibility study with our partners. As a leading producer of PGMs, we have for some years been working towards establishing the right ecosystem to successfully develop, scale-up and deploy hydrogen-fuelled solutions. These include investing in innovative ventures and enabling technologies, as well as forging wide-ranging collaborations across industry, to fully harness the transformative potential of green hydrogen for our economy in South Africa.”

Zest WEG carrying out EC&I works at Anglo Platinum’s Mogalakwena CPR plant

Zest WEG is installing a range of electrical control and instrumentation equipment at Anglo American Platinum’s Mogalakwena mine in Limpopo province, South Africa, working closely with engineering group DRA Global.

The construction is taking place within the Mogalakwena mine’s existing North Concentrator Plant, around various plant areas. The Electrical Control Instrumentation (ECI) package is being led by Eben Kleynhans, E&I Electrical Project Engineer from DRA.

According to Calvin Fisher, Electrical and Instrumentation Construction Proposals Manager at Zest WEG, the Zest WEG work is being conducted for the mine’s Coarse Particle Rejection (CPR) plant, and will be completed in the second half of 2021.

“In addition to applying the highest level of workmanship and professionalism, we are carrying out the project in line with our client’s Mining Charter requirements on local procurement,” Fisher says. “This means that over 70% of people involved in our scope of work will be drawn from local communities, and we are sourcing a significant level of our supplies from local businesses.”

Equipment to be installed includes three 2 MVA transformers, stepping down from 11 kV to 550 V, and a 630 kVA mini substation for lighting and small power requirements. Containerised motor control centres (MCCs), complete with variable speed drives (VSDs), an HVAC unit, cable racking, cables, lighting and small power also form part of the scope of supply. In addition, two back-up generators will be installed – one of 630 kVA capacity and the other 330 kVA.

“The three new containerised MCCs and VSD sets will be placed on plinths near the CPR feed tank, CPR process water area and CPR building and a steel roof structure erected over the containers,” he says. “The new transformer bay will be constructed next to the MCC, also with a roof over the transformer.”

About 70 km of cable will be laid – ranging from low voltage to medium voltage cable – as well as 3,300 terminations and almost 2.5 km of cable racking. The various structures that Zest WEG will install require some 9 t of steel. The instrumentation to be installed will comprise about 170 instruments including flow transmitters, pressure gauges, level switches, temperature gauges and density transmitters. There will also be around 250 lights installed, mainly outdoors.

Fisher notes that the electrical installation specialists are typically among the last contractors on a project, and must be quite flexible to accommodate certain modifications that may have been required in the civils, structural and mechanical work completed beforehand.

“Wherever necessary, we work closely with the client to implement the plan smoothly while meeting their need for safe access to the equipment being installed, to allow maintenance to be readily conducted,” he says.

In addition to the installation contract, Zest WEG is supplying some of the actual items of equipment for the expansion project, including WEG motors and containerised generators. The electrical installation work is expected to take about six months.

“We are proud of the high level of quality that we bring to projects like this, where we apply our successful model of procurement to support our clients in meeting their critical local expenditure targets,” he says. “This also allows Zest WEG to make a valuable contribution to uplift local companies wherever we can.”

Delta Drone to run UAV surveying, mapping at Anglo’s Mogalakwena

Australia-based drones-as-a-service provider, Delta Drone International Ltd, is expanding its enterprise mining operations after being appointed by Rustenberg Platinum Mines Limited, a subsidiary of Anglo American Platinum, to provide surveying and mapping services at the Mogalakwena PGM mine in South Africa’s Bushveld Complex.

The contract, secured via Delta Drone’s Rocketmine brand, will see it manage end-to-end mine surveying and mapping services at the mine, including blast monitoring and inspection services. The 2021 contract is expected to generate some A$120,000 ($87,919) in revenue.

Mogalakwena’s PGM production increased by 11% year-on-year to 308,400 oz in the June quarter, owing to higher concentrator throughput, and no COVID-19 impact on production, Anglo American Platinum reported today.

Anglo American to collaborate on ‘hydrogen valley’ study in South Africa

Anglo American has announced a collaboration agreement to complete a feasibility study to develop a “hydrogen valley” anchored in the platinum group metals-rich Bushveld geological area in South Africa.

Spearheaded by South Africa’s Department of Science and Innovation (DSI), the collaboration agreement also includes energy and services company ENGIE, the South African National Development Institute (SANEDI) and clean energy solutions provider Bambili Energy.

The proposed hydrogen valley will stretch approximately 835 km from Anglo American’s Mogalakwena platinum group metals (PGMs) mine (pictured) near Mokopane in Limpopo province in the north of South Africa, along the industrial and commercial corridor to Johannesburg and to the south coast at Durban.

This collaboration follows the launch in 2020 of the South African Hydrogen Society Roadmap, aimed at integrating hydrogen into the economy by capitalising on the country’s PGM resources and renewable energy potential to revitalise and decarbonise key industrial sectors. The study will be conducted by ENGIE Impact and will identify tangible opportunities to build hydrogen hubs and explore the potential for green hydrogen production and supply at scale.

Natascha Viljoen, CEO of Anglo American’s PGMs business, said: “The transition to a low carbon world is an opportunity to drive the development of cleaner technologies, create new industries and employment, and improve people’s lives. Anglo American was an early supporter of the global potential for a hydrogen economy, recognising its role in enabling the shift to greener energy and cleaner transport. Our integrated approach includes investing in new technologies, supporting entrepreneurial projects and advocating for policy frameworks that enable a supportive long-term investment environment for hydrogen to deliver that potential.”

The regional PGMs industry will be central to such a hydrogen valley, with PGMs playing an important role both in Polymer Electrolyte Membrane electrolysis used to produce hydrogen at scale and in fuel cells themselves, Anglo says.

Anglo American is already investing in renewable hydrogen production technology at its Mogalakwena PGMs mine and in the development of hydrogen-powered fuel cell mine haul trucks – the world’s largest to run on hydrogen.

Dr Phil Mjwara, DSI Director-General, said: “The Department’s hydrogen valley partnership with Anglo American, Bambili Energy and ENGIE is an example of leveraging investments made in the Hydrogen South Africa Programme to create mechanisms for the uptake of publicly financed intellectual property. The hydrogen valley is among the projects that will be implemented in partnership with the private sector to support the Platinum Valley Initiative, which is aimed at supporting small, medium and micro enterprises to take advantage of opportunities in the green economy in support of a just transition.”

The public-private partnership is aligned to the South Africa Government’s Economic Reconstruction and Recovery Plans, with science, technology and innovation playing a key role in supporting the country’s plans to revitalise its economy.

Sebastien Arbola, ENGIE Executive Vice President in charge of Thermal Generation and Energy Supply activities, said: “ENGIE is delighted to be part of the hydrogen valley study. We are keen to share our knowledge and expertise encompassing the entire hydrogen value chain to accelerate hydrogen solutions’ deployment in South Africa and beyond. We already have a demonstration project under way to supply the hydrogen for the world’s first hydrogen mining truck being developed by Anglo American at the Mogalakwena PGMs mine.”

Zanele Mavuso Mbatha, CEO Bambili Energy, said: “The initiative to develop the South African hydrogen valley and the collaboration between Bambili, Anglo American, ENGIE and the South African government is significant as it will build material public awareness, confidence and support for the hydrogen economy. This collaboration is illustrative of Bambili’s view that a public-private partnership is critical in the development of this industry in the South African economy.”

Anglo American Platinum’s modernisation drive to continue into 2021

Anglo American Platinum says it is looking to deliver the next phase of value to its stakeholders after reporting record EBITDA for 2020 in the face of COVID-19-related disruption.

The miner, majority-owned by Anglo American, saw production drop 14% year-on-year in 2020 to 3.8 Moz (on a 100% basis) due to COVID-related stoppages. Despite this, a higher basket price for its platinum group metals saw EBITDA jump 39% to R41.6 billion ($2.8 billion) for the year.

As all its mines are now back to their full operating rates, the company was confident enough to state PGM metal in concentrate production should rise to 4.2-4.6 Moz in 2021.

Part of its pledge to deliver more value to stakeholders was related to turning 100% of its operations into fully modernised and mechanised mines by 2030. At the end of 2020, the company said 88% of its mines could be classified as fully modernised and mechanised.

There were some operational bright spots during 2020 the company flagged.

At Mogalakwena – very much the company’s flagship operation – Anglo Platinum said the South Africa mine continued its journey to deliver best-in-class performance through its P101 program.

Rope-shovel performance improved to 26 Mt in 2020, from 15 Mt in 2019, while drill penetration rates for big rigs increased from 15 m/h, to 16.7 m/h. Alongside this, the company said its Komatsu 930E truck fleet performance improved to 298 t/load in 2020, from 292 t/load in 2019.

These were contributing factors to concentrator recoveries increasing by two percentage points in 2020 over 2019.

During the next few years, the company has big plans to further improve Mogalakwena’s performance.

In 2020, the mine invested R500 million in operating and capital expenditure, which included commissioning a full-scale bulk ore sorting plant, coarse particle rejection project and development of the hydrogen-powered fuel-cell mining haul-truck (otherwise referred to as the FCEV haul truck).

First motion of the 291 t FCEV haul truck is still on track for the second half of 2021, with the company planning to roll out circa-40 such trucks from 2024.

Anglo Platinum said the bulk sorting plant (which includes a Prompt Gamma Neutron Activation Analysis and XRF sensor-based setup, pictured) campaign at the Mogalakwena operation is due to end this quarter.

The company’s hydraulic dry stacking project is only just getting started.

This project, which involves coarse gangue rejection before primary flotation for safer tailings storage facilities, is expected to see a construction start in the June quarter, followed by a campaign commencement and conclusion in the September quarter and December quarters, respectively.

On another of Anglo Platinum’s big technology breakthrough projects – coarse particle rejection for post primary milling rejection of coarse gangue before primary flotation – the company plans to start a campaign in the December quarter of this year and conclude said campaign by the end of the March quarter of 2022.

The company also has eyes on making progress underground at Mogalakwena, with a hard-rock cutting project to “increase stoping productivity and safety” set for Phase A early access works this year. This project is set to involve swarm robotics for autonomous, 24/7 self-learning underground mining, the company said.

Lastly, the company’s said the digital operational planning part of its VOXEL digital platform had gone live at Mogalakwena. VOXEL is expected to eventually connect assets, processes, and people in a new digital thread across the value chain to create a family of digital twins of the entire mining environment, the company says. Development is currently ongoing.

Looking back to 2020 performance at the Unki mine, in Zimbabwe, Anglo reflected on some more technology initiatives related to R26 million of expenditure for a digitalisation program. This included installing underground Wi-Fi infrastructure, as well as a fleet data management system to track analytics on primary production equipment. The company says these digital developments will enhance real-time data analysis, improve short-interval control and overall equipment effectiveness.

To step up mechanisation of its PGM operations at Amandelbult, Anglo American Platinum is also investing in innovation.

This includes in-stope safety technologies such as split panel layouts to allow buffer times between cycles, creating safer continuous operation and reduced employee exposure; improved roof support technology and new drilling technologies; a shift to emulsion blasting from throw blasting; and safety enhancements through fall of ground indicators, 2 t safety nets, LED lights, and winch proximity detection.

Meanwhile, at the company’s Mototolo/Der Brochen operations, it is working on developing the first lined tailings storage facility at Mareesburg in South Africa to ensure zero contamination of ground water. The three-phase approach adopted for construction of this facility will be completed this year.