Tag Archives: sensor-based ore sorting

South Crofty pre-con, ore sorting test work implies improved project economics, Cornish Metals says

Cornish Metals Inc has received results back from TOMRA Sorting GmbH that indicate X-ray Transmission (XRT) sensor-based sorting could be a viable option for its South Crofty tin project in the UK.

The feasibility study on South Crofty, a iconic former producing copper and tin mine with first documented production history dating back to 1592, is advancing on schedule with a substantial amount of the study completed, Cornish Metals said. The mine was the last tin operation in Cornwall to close in 1998.

Metallurgical test work and heavy liquid separation (HLS) pre-concentration test work provided “excellent results”, the company said.

Conducted on samples from the 2023 metallurgical drill program across five mineralised zones (No. 4 Lode, No. 8 Lode, Roskear B/D Lodes, North Pool Zone and Dolcoath South), it represented the majority of the potential production areas in the first six years of the proposed mine life, according to Cornish Metals.

The XRT work came back with a 55% mass rejection and less than 3% metal loss (-50 mm – +15 mm size fraction), while the HLS testing saw a 50% mass rejection and lesss than 5% metal loss (-15 mm – +0.85 mm size fraction).

The XRT ore sorter test work of bulk composite samples was completed by TOMRA Sorting GmbH, with the HLS test work of bulk composite samples completed by Wardell Armstrong International.

Cornish Metals said: “The test work results confirm the upgrading potential of South Crofty mineralisation and enables continuation of the process design optimisation work to reduce the size of the mineral processing plant and materially lower capital costs, operating costs and environmental footprint.”

Richard Williams, CEO and Director of Cornish Metals, said the company expected the mineralisation at South Crofty to respond well to XRT ore sorting, but these results exceeded “our most optimistic expectations”.

He added: “We expect this result will have a positive effect on the project economics, allowing for lower power consumption and a smaller process plant and therefore lower capital and operating costs.”

In addition to ore sorting test work, the following feasibility study components have also been completed:

  • Headframe structural modelling and refurbishment;
  • Schedule and costing for the refurbishment and recommissioning of New Cooks Kitchen and New Roskear shafts;
  • Televiewer investigations and geotechnical rock testing to confirm known historical structural and rock mass property data;
  • Conceptual numerical modelling of the proposed underground mining methods and stope designs. Back analysis supports historical operating data. Ground conditions and excavation stability are expected to be very good;
  • Phase 1 of the metallurgical testwork program (mineralogy, physical competency, characterisation and gravity response test work). The gravity response results are very good and confirm previous operational results;
  • Concept engineering on paste backfill options and sighter test work; and
  • Ground investigations for the new mineral processing plant.

The following dtudy components are currently underway:

  • Mineral processing plant design, layout and capital cost study, incorporating the results of the metallurgical test work program reported today and potential future throughput expansions;
  • Underground mine design and optimisation using the latest South Crofty resource estimate published in September 2023;
  • A mine ventilation study, underground infrastructure design and hoisting analysis;
  • A feasibility study-level engineering design for the paste backfill plant;
  • Hydrogeology, environmental, social, marketing and closure studies; and
  • AMC Mining Consultants has been appointed to independently review and compile the feasibility study with initial gap analysis and site visits completed.

Innovating lithium ore sorting: HPY Technology teams up with Zhicun Lithium

HPY Technology says it has provided a customised ore sorting solution to Zhicun Lithium, assisting the company in achieving efficient and environmentally friendly pre-concentration of its spodumene-based orebody, saving energy and reducing carbon emissions during the mineral processing process.

Located in Yichun City, Jiangxi Province, Zhicun Lithium has large-scale production capabilities when it comes to battery-grade lithium carbonate, lithium hydroxide and rubidium cesium salts from lithium resources. According to 2021 data from the Asia Metal Website, Zhicun Lithium topped the national production in terms of battery-grade lithium carbonate. It has a projected output of 200,000 t/y in 2023.

HPY Technology, meanwhile, holds an 80% domestic market share in China and services over 100 mining customers worldwide, the company says. It specialises in developing and manufacturing sensor-based ore sorting machines.

In late 2022, as part of its expansion project, Zhicun Lithium enlisted HPY Technology to develop an efficient lithium ore sorting solution. The team tested ore samples provided by Zhicun, which were determined to be granite pegmatite spodumene. Using these insights and considering the ore properties and on-site production volume, the Insight Series ore sorting machine was deployed for pre-concentration and waste removal testing.

The use of sensor-based sorting technology, HPY Technology says, provides a way to accurately distinguish ore from waste rock by measuring properties such as colour, texture and density. This technological application not only enhances mining efficiency but also significantly reduces the environmental impact of mining activities by reducing waste and the inflow of tailings into the tailings pond, according to the company.

The Insight Series, equipped with VIS HD dual-sided imaging, X-ray imaging, laser imaging and more, allows detection methods to be combined freely depending on various mine characteristics, costs and benefits. HPY Technology claims it offers the best detection combination solution based on the customer’s mine mineralisation properties.

The machines also leverage a multi-dimensional AI algorithm for fast image acquisition and high-resolution imagery, alongside time delay integration technology to avoid image distortion, offering a solid resistance to imaging interference.

The technology underwent a rigorous testing phase, first at the HPY testing centre, then at the mine site. The HPY engineering team provided swift and effective support throughout this phase, helping to achieve remarkable results that meet Zhicun Lithium’s technical specifications, it said.

With HPY Technology’s ore sorting machine, the results demonstrated a significant increase in ore grade, reaching over 2.5% Li2O, and an enrichment ratio exceeding two times.

Zhicun Lithium Group Co., Ltd. ore sorting results
Particle size: +10-60 mm
Processing capacity: 40-60 t/h
Raw ore grade: 1.27% Li2O
Waste rock grade: 0.6% Li2O
Concentrated ore grade: 2.63% Li2O
Rejection rate: 67%
Recovery rate: 68.35%
Enrichment ratio: 2.07

In 2023, HPY Technology plans to extend the use of the Insight Series to two more mining projects: one in a molybdenum mine in Luoyang, China, and the other in a gold mine in Tajikistan.

The company concluded: “This indicates a promising future for HPY Technology’s sensor-based ore sorting solutions, contributing to increased mining efficiency and sustainability.”

Peel Mining’s South Cobar preliminary flowsheet to factor in ore sorting

Peel Mining says positive results from ore sorting test work at the Southern Nights and Mallee Bull deposits, part of its 100%-owned South Cobar Project, in western New South Wales, Australia, provide encouragement for the inclusion of this pre-concentration technology into future process plant design.

So encouraged by this testing is Peel that it has engaged GR Engineering to integrate ore sorting technology into an updated processing plant technical report for the project.

At the same time as this, Peel announced that GR Engineering had recently completed a preliminary process plant technical report for South Cobar that considers crushing, grinding, gravity, flotation and cyanidation process stages for the recovery of gold, silver, copper, lead and zinc from the various mineralisation styles within Peel’s deposits.

Meanwhile, the recently received positive preliminary ore sorting test work results from work undertaken on diamond drilling samples shows there is potential for improvements in the flowsheet.

The ore sorting test work, completed in conjunction with ongoing metallurgical studies, was undertaken by Steinert and TOMRA.

Steinert ’s test work on Southern Nights mineralisation demonstrated strong recovery and upgrade potential with two size range samples returning, on average, circa-93% Zn, circa-91% Pb, circa-91% Ag, circa-87% Cu and circa-82% Au recoveries to an average of circa-54% of the feed mass (circa-46% of feed mass rejection) increasing the lead and zinc grades by 61% and 64%, respectively.

TOMRA’s test work on Mallee Bull mineralisation achieved significant waste mass reductions while maintaining very high copper recoveries (≥95% for the higher-grade breccia copper and massive sulphide copper samples), the company said. A lower grade breccia copper sample upgraded from 0.59% Cu to 1.05% Cu with 77% Cu recovery and 56% mass rejection, it noted.

“Positive results from ore sorting at Southern Nights and Mallee Bull deposits provide encouragement for the inclusion of this pre-concentration technology into future process plant design and, as a result, Peel has engaged GR Engineering to integrate ore sorting technology into an updated processing plant technical report,” the company said.

Peel’s Executive Director of Mining, Jim Simpson, said: “The completion of the processing plant technical report by mineral processing solutions experts GR Engineering is a critical first step in understanding the potential composition of the milling infrastructure required for the company’s development plans.

“The detail presented in the report by GR is impressive and the report will form the basis for ongoing preliminary studies for the refinement and improvement of the processing plant design as new information comes to hand.

“We are also very pleased with the potential of ore sorting as part of any future South Cobar project hub’s processing route with initial test work pointing to the amenability of both Southern Nights and Mallee Bull mineralisation to separation using 3D-XRT ore-sorting technology, allowing for the simultaneous rejection of barren or waste material whilst retaining the bulk of contained metal, and in the process, upgrading the value of the ore.”

Simpson added: “Apart from reducing the overall feed mass by the rejection of waste at early stage, other benefits of ore sorting include potentially upgrading lower-grade mineralisation and reducing the size of the processing plant offering potentially reduced capital, power, water and tailings storage needs.”

MineSense senses further mining commercialisation opportunities in 2021

MineSense, having continued the introduction of its transformative technology into mines in 2020, says it is well positioned to dramatically ramp up commercialisation of its sensor-based ore data and sorting solutions in 2021.

The company’s solutions are focused on improving mine profitability by taking advantage of the maximum heterogeneity at the face to increase ore recovery and minimise waste processed, it says. “This profit improvement is even more critical as mines work to recover profits lost due to COVID-19 impacts in 2020,” it said.

MineSense started the year by closing a $25 million equity financing led by BDC’s Industrial Innovation Venture Fund to ramp up commercialisation and further expand operations globally.

It followed commercialisation at Teck’s Highland Valley Copper mine, with commercialisation of three new ShovelSense® systems at Copper Mountain Mining’s Copper Mountain mine, in British Columbia, Canada, in 2020. MineSense said it has been embedded into the mine’s operating practices and is included as an enabling technology in their latest NI 43-101 Technical Report.

In this report, Copper Mountain said the system’s primary goal is to direct the right material to the right destination; that is, ore to the primary crusher and waste to the waste dump.

It said the two-year evaluation period with MineSense hardware and software on three of its five loading units at Copper Mountain Mine had accomplished two objectives:

  • Selective recovery of economic copper ore from defined non-economic rock – approximately a 4% improvement; and
  • Selective rejection of non-economic rock from defined economic copper ore – approximately a 4% improvement.

MineSense’s global growth has been  supported by local field services teams who normally work at mine sites. COVID-19 presented new challenges including restricted site access, but the MineSense team overcame this, executing the first remote installations of ShovelSense systems this year.

“The flexibility and innovation by our field services and customer’s operations teams was instrumental for us in going live with multiple operating systems in Chile and Peru,” MineSense’s EVP Business Development, Claudio Toro, said.

The MineSense ShovelSense System improves orebody visibility bucket by bucket in real time during the loading process, according to the company. Trucks are then automatically diverted to the correct location, increasing value and revenue realised during the mining process. The technology also creates reductions of CO2 emissions per tonne of ore produced, consumption of processing chemicals and reagents, energy and water, while maximising metal recovery.

Frank Hoogendoorn, Chief Data Officer at MineSense, said: “We are excited to provide mines with new, data driven capabilities for sorting ore and waste. Our sensors and on-board machine learning based algorithms provide real-time bucket grades at the earliest point in the extraction processes, which enables mines to extract ore more precisely and optimise downstream processes at a resolution that previously was out of reach.”

To support mine site operations and their ore decision making, MineSense now provides 24/7 data room technical support for continuous monitoring of all elements of system performance. To track value creation, customers access their data through MineSense’s Client Portal. “This consists of data- rich visualisations of ore/waste diversions, real-time grade data and operational diagnostics,” the company says. “This information assists grade control engineers and metallurgists in mine planning, downstream operations, and overall reconciliation.”

MineSense President and CEO, Jeff More, said the mining industry was undergoing a transformation in technology and, “through its technological innovation, MineSense is able to build upon the digital and data ecosystem and create visibility where it didn’t exist before”.

TOMRA delves below ground with K+S sensor-based sorter delivery

TOMRA Sorting Mining has delivered its first underground sensor-based ore sorting solution to K+S Minerals and Agriculture at its rock salt mine in Grasleben, Germany.

The major salt producer looked to TOMRA, which it has a long-standing research and development relationship with, to replace an existing sorting system at the mine.

At the Grasleben mine, rock salt is extracted from an underground deposit that stretches across two states. It is processed into a wide range of products, from de-icing salt for winter road services, to food-grade table salts and lick stones for livestock and domestic animals.

“For K+S, consistently achieving certified and guaranteed high purity, compliant with the strict standards of the food industry, is a priority,” TOMRA said.

Sven Raabe, Technische Büro Mechanik, K+S Minerals and Agriculture, said: “The sorting of rock salt is complex and demanding due to its crystalline properties. This leads to strong fluctuations in the appearance of the material.”

TOMRA recommended using colour sorting technology for this installation, with Mathilde Robben, Key Account Manager at TOMRA Mining, saying the customised setup of light sources allows the system to “detect the difference in transparency of the different particles, ensuring the high quality of the rock salt”.

The team also advised installing the sorter in the underground mine, so, after the initial underground sorting stage, only the coarsely crushed rock salt undergoes further grinding and sieving above ground.

Mathilde Robben, Key Account Manager at TOMRA Mining

“Only the valuable product needs to be transported in the shaft, and the final result is high-quality, pure rock salt products in various grain sizes, which are ideal for this application,” TOMRA said. “Furthermore, waste rejects can be backfilled underground, avoiding storage and emissions on the surface.”

TOMRA conducted a demonstration of the proposed solution at its Demonstration and Test Center in Wedel, Germany. Raabe attended the test with colleagues from K+S’s technical team, Florian Lieske, Stephan Meiberg and Sven Lindner.

“The tests were very well prepared,” Raabe said. “The on-site team quickly developed a feel for our product. The uncomplicated adaptation of the program to the different material qualities also convinced us.”

He added: “An important factor in our purchasing decision was the positive test result achieved with the system, using transmitted light to obtain more efficient separation. This has the added benefit of resource conservation. It is possible to react quickly and individually to changing situations during dismantling. We expect this to be more effective, and the ease of use of the system was also convincing.”

Following this experience and the results of the test, K+S placed the order for TOMRA’s solution, with installation planned for September 2020. The negotiations were conducted via video conference due to COVID-19-related travel restrictions and lockdowns.

The order was entered in TOMRA’s production plan and the Factory Acceptance Test was conducted on September 23, with the sorter transported to the Grasleben mine. It was put in position underground at the mine on September 30.

Robben concluded: “This is the first solution we provide for underground sorting, which raises specific challenges due to the dimensions and weight limitations of the mine shaft. In this project we also had to contend with the difficulties created by the COVID-19 pandemic.

“I am very pleased that we have been able to meet K+S’s requirements and deliver on schedule.”

Vimy senses Angulari gold-uranium project boost following TOMRA XRT trial

Ore sorting test work from TOMRA Sorting Australia has Vimy Resources thinking about higher grades, lower capital and operating costs, and the production of precious metals at its majority-owned Angulari uranium-gold deposit in Australia’s Northern Territory.

The ASX-listed company, which has defined an inferred mineral resource estimate of 26 Mlbs of U3O8 (0.91 Mt at 1.3% U3O8) at Angulari, already thought the deposit, part of the Alligator River project, had potential to fit into the first quartile of the global uranium cost curve, but now it has eyes on further improving its cost position.

An ore sorting proof of concept trial conducted by TOMRA using its COM X-ray Transmission Tertiary system factored in a 41.5 kg sample that was obtained from mineralised material collected from drill core that Cameco Australia drilled in 2011 and 2016.

The trial on this material saw the uranium concentrate grade increase from 1.2% to 2% U3O8 (70% increase) with high U3O8 recovery. Alongside this, the sample gold concentrate grade increased from 0.7 g/t to 1.1 g/t (47% increase). On the latter gold work, Vimy said: “This warrants further investigation given no gold processing or recovery test work has been undertaken to date.”

The test work also showed that gold mineralisation is spatially coincident with the uranium mineral resource within the sample.

Some 13.5 kg of this 41.5 kg sample was not sorted due to the high uranium grade, which provides additional upside in future trials, Vimy noted. Other potential by-products were also identified, including platinum and palladium.

All of this bodes well for cutting the capital and operating costs that Vimy was unable to disclose to investors as part of its December 2018 scoping study on the project.

A higher feed grade from ore sorting would likely result in lower operating costs, the company said.

Meanwhile, smaller hydrometallurgical plant circuits would likely be required for the same level of production. Coupled with a potential reduction in acid-consuming phases in the concentrate, ore sorting has the potential to lower reagents (and water) usage and costs on a per lb U3O8 produced basis, noting that expected reagent use is already low, Vimy said.

“A smaller plant would result in a lower overall disturbance footprint with commensurate approvals and capital cost benefits,” it added.

Mike Young, CEO of Vimy, said, “The results of the TOMRA ore sorting trial at the Alligator River project’s Angularli deposit have exceeded our expectations. The high-grade nature of the deposit, coupled with the ore sorting outcomes, enhances the prospect of Angularli’s potential future development as a low-cost uranium operation.

“Our next step is to progress the upgrade trials and investigate the potential for the recovery of high value by-products associated with the uranium mineralisation at the Angularli deposit.”

The Angularli deposit is located in the King River-Wellington Range tenement group which is managed in a joint venture (Vimy 79%: Rio Tinto 21%) with Rio Tinto Exploration Pty Ltd, a wholly owned subsidiary of Rio Tinto Ltd.

Northern Minerals lays the groundwork for Steinert XRT ore sorter installation

Northern Minerals is set to commission a Steinert sensor-based ore sorter for use at its Browns Range rare earth pilot plant, in northern Western Australia, after gaining the relevant regulatory approvals for installation of the machine.

The ore sorting equipment concentrates ore prior to the beneficiation circuit by selecting ore and rejecting waste based on X-ray Transmission. This has the potential to double the feed grade and reduce production costs, according to the company.

Both the Western Australian Office of the Environmental Protection Agency and the Department of Water and Environmental Regulation have now cleared the installation and commissioning, with construction commenced on the structural and mechanical equipment (pictured). Commissioning is scheduled for mid-2021.

The total capital investment for the procurement, installation and commissioning of the ore sorter is budgeted at A$5.9 million ($4.3 million), Northern Minerals said.

Previous trials of ore sorting technology at Browns Range, announced in October 2018, identified the potential to double the mill feed grade. This would lead to an increased production rate of heavy rare earth carbonate and a potential lowering of overall operating costs.

Once the ore sorting system is commissioned, Northern Minerals plans to run additional test work at pilot plant scale on all ore types to establish baseline data on feed grade improvements, it said. This work will also help evaluate material flow-through benefits of ore sorting on overall processing efficiencies, feeding into any future commercial, large-scale project feasibility studies at Browns Range.

Northern Minerals says it is also evaluating the economics of further downstream processing options for Browns Range ore.

To date, Browns Range has produced a mixed heavy rare earth carbonate for small-scale export to offtake partners. The options being assessed would take a further step along the supply chain to produce separated heavy rare earth oxides.

The company announced in August 2019 it had commenced a scoping study with US-based K-Technologies Inc to investigate a separation technology on intermediate mixed rare earths materials produced at Browns Range. K-Tech’s technology is focused on continuous ion exchange, continuous ion-chromatography and related advanced separation methodologies.

The study continues to progress well, with positive test results being achieved at K-Tech’s facilities in Florida albeit slower than planned because of constraints associated with COVID-19, Northern Minerals said. However, the company expects to see separated dysprosium and terbium oxides from the study before the end of this year.

Separately to collaborating with K-Tech, Northern Minerals is pursuing studies into traditional solvent extraction to produce oxides from the mixed heavy rare earth material produced at Browns Range.

Northern Minerals CEO, Mark Tory, said: “With approvals in place for the ore sorter and installation now under way, we will be in a strong position to thoroughly evaluate the flow-through benefits of that technology at a pilot plant scale.

“The results will provide a valuable input into future feasibility studies to assess the commercial viability of a large-scale heavy rare earths mining and processing operation at Browns Range.

“In addition to our investment in ore sorting to improve the mill feed grade, we are also committed to assessing opportunities to further unlock value at Browns Range through downstream processing to oxide products, which opens up a wider field of offtake and future project financing opportunities.”

Northern Minerals started producing rare earth carbonate through the Browns Range pilot plant in October 2018 as part of a three-year pilot assessment of economic and temporarily technical feasibility of a larger scale development at Browns Range.

TOMRA makes recovery promise to diamond miners

TOMRA is offering diamond mining customers a guaranteed diamond recovery of greater than 98% with the use of its sensor-based ore sorting technology.

The company is making this guarantee alongside a promise of 100% detection in the specified range, irrespective of luminescence profile or coating.

As the company says, maximising diamond recovery while optimising costs is the top priority for every diamond producer.

“With TOMRA’s holistic approach and cutting-edge technologies, both can be achieved to deliver outstanding results,” it said, adding that its X-ray Transmission (XRT) diamond recovery technology has helped recover some of the largest and rarest gemstones in history.

TOMRA says it approaches every project as a partnership with the customer to deliver a complete solution that meets their operational and business requirements.

This begins with a detailed analysis of the customer’s requirements and operational needs.

TOMRA – Operations Hub Johannesburg

Working collaboratively, it assists in developing a tailor-made flowsheet redesign that combines its XRT technology with its Near Infrared (NIR) and Laser solutions as needed. This collaborative approach continues throughout the project, with testing at its Test Center in Germany and, on-site, as required, through to installation and beyond.

More recently, this approach has been enhanced with the development of a remote testing option.

“The complete solution can also include the web-based TOMRA Insight platform that turns all the sorters into connected devices for monitoring and tracking the system’s performance,” the company said.

Once the system is fully operational, TOMRA offers its Service Level Agreement to ensure its solution continues to deliver the desired results.

“The tailored agreement can include on-site presence as required, seven days a week product support, application engineer visits, tiered urgency support, targeted site response, training, as well as spare and wear parts coverage to ensure maximum uptime and protect the customer’s investment,” the company said.

Advanced technologies adding value

TOMRA’s XRT technology recognises and separates material based on its specific atomic density. It uses a cutting-edge X-ray camera with DUOLINE® sensor technology to measure spectral absorption information.

TOMRA’s proprietary high-speed X-ray processing unit uses the data to produce a detailed “density image” of the material. The result is a high level of purity in sorting materials, irrespective of size, the degree of moisture or surface pollution present, TOMRA says. This makes TOMRA’s XRT high-capacity sorters effective in the recovery of free, liberated diamonds at high feed rates up to 300 t/h.

TOMRA’s NIR sorters recognise and separate kimberlite and waste rock based on their chemical composition. This technology is useful in upgrading lower grade run of mine and stockpiles, producing a kimberlite concentrate for further processing, the company says.

Marie-Claude Hallé had first-hand experience of how TOMRA’s solutions can add value to diamond mining operations when she held the role as Marketing Operations Manager for diamond exploration and producing company, Stornoway Diamonds.

“You have to really envision that TOMRA has actually changed the game in terms rough diamond recovered around the world and allowed producers to access large exceptional quality goods that perhaps in the past would be crushed to pieces,” Hallé said.

Customised solutions for kimberlite, lamproite and alluvial applications

With its customised approach, TOMRA says it can deliver on its promise of guaranteed results both in hard-rock kimberlite/lamproite and alluvial deposits – each of which presents their specific challenges.

In kimberlite, the challenge is to recover “needle in a haystack” diamonds, which requires controlled crushing of kimberlite ore to avoid damaging or breaking the diamonds, the company says.

“High waste dilution impacts the crushing energy needed and further increases diamond breakage risk,” TOMRA says. “Utilising TOMRA NIR technologies, we can remove non-diamond bearing material, not only improving the crushing profile of the ore, but also increasing the value of each tonne of ore processed. TOMRA NIR waste sorting technology can make diluted marginal kimberlite deposits economic.”

Additionally, complex, energy- and water-intensive kimberlite liberation processes, and the cost of transportation for crushing and processing, are challenges facing modern diamond miners today.

“TOMRA’s XRT and NIR technologies, which offer extremely high concentration factors, allow the production of hand sortable, ultra-high grade concentrates in as little as two stages compared to up to seven in traditional methods,” the company claims.

The challenge of economically mining low-grade alluvial deposits is due to their typically lower grade and the sporadic nature of the deposits.

The high recovery performance of TOMRA’s XRT technology enables single-stage or double-stage diamond recovery, offering a drastically lower operating cost and capital investment so that mining marginal deposits becomes economically viable, according to TOMRA.

“Another advantage of TOMRA’s XRT solution is that it can operate as a dry process, which dramatically reduces its environmental impact and operational complexity,” it says. “Besides, it opens the door to new opportunities, making it possible to mine deposits in arid areas where water access is minimal.”

TOMRA XRT machines have proved effective in alluvial operations, the company says.

One such case is that of the Lulo mine in Angola, operated by Lucapa Diamonds, where TOMRA XRT technology is used to process material between 18 and 55 mm in size and allows the recovery of diamonds of up to 1,100 ct – and where it has recovered Angola’s second-biggest diamond on record, a 227 ct stone in 2017.

Stephen Wetherall, Lucapa Diamonds Managing Director at the time of the recovery, said: “The recovery of the 227 ct diamond using the new XRT circuit justifies our investment in TOMRA’s large diamond recovery technology, which has more than paid for itself with the recovery of this one stone alone.”

Optimised flowsheet

TOMRA is in the unique position of being able to offer diamond operations a full XRT recovery flow sheet to 2 mm that delivers concentration factors up to 1 million with a much-reduced number of concentration stages, it says.

Geoffrey Madderson, Diamond Segment Manager for TOMRA Sorting Mining, explains: “TOMRA XRT technology replaces multiple stages of diamond concentration by virtue of its ability to concentrate diamonds to a hand sortable product after only a single step. This concentration factor allows for the removal of multiple recovery steps, drastically reducing both the capital investment and operational costs to recover diamonds.”

Geoffrey Madderson, Diamond Segment Manager for TOMRA Sorting Mining

TOMRA’s XRT technology can replace traditional methods such as dense media separation (DMS), wet magnetic separation and XRL final recovery with single-stage solutions for +8 mm and double-pass for -8 mm +4 mm particles, it claims.

“TOMRA’s solution eliminates up to seven concentration stages, dramatically reducing the complexity of the supporting plant and infrastructure,” the company says. “This results in significantly lower power and water consumption, which not only reduces costs, but also the environmental impact of the recovery process.”

An additional benefit of TOMRA’s solution is that it is a fully automated process, so there is no manual handling during pre-concentration and recovery, which has positive implications on security and eliminates human error, resulting in greater accuracy, the company says.

Recoveries

TOMRA’s sorters process these volumes with great efficiency, finding more diamonds than other, traditional separation methods – including coated and low- or non-luminescent diamonds, the company says.

The performance of its XRT sorters is independent of the “heavies” content in the feed, and is ideal for processing high-yielding ores unsuitable for DMS. The result is an exceptionally high recovery rate, it claims.

“TOMRA guarantees >98% recovery: that is how confident we are in our technology,” Madderson states.

With TOMRA’s sorting solutions, diamond producers can install large diamond recovery systems with a small capital investment and operate with a fraction of operating expenditures per tonne compared with traditional recovery methods such as DMS and XRL, it claims. In addition, the economic recovery of ultra low-frequency exceptional diamonds of +32 mm is now possible.

“TOMRA’s ability to deliver not only a technology that can detect such large diamonds, but also an economical process solution for the recovery of ultra-rare, exceptional diamonds is what sets it apart from its competitors,” Madderson said.

“This is the reason that, to date, TOMRA XRT has become synonymous with the recovery of extraordinary diamonds from all around the world.”

TOMRA sensor-based ore sorters shine at quartz operations

TOMRA says its patented multi-channel laser sorting technology is helping unlock the “full potential” of quartz deposits.

Quartz is one of the most common minerals found in all forms of rock, but it does not exist in high purity in nature, according to TOMRA. The challenge for mining operations serving the metallurgical and engineered stone industries is to reliably deliver quartz of consistently high chemical purity.

The scattering effect of the multiple laser beams from TOMRA’s ore sorting technology can be used to separate quartz-bearing rock from waste rock, with the sensors recognising the glowing crystals that are the tell-tale sign of quartz or quartz veins.

TOMRA says large and pure crystals can be clearly discriminated from other rocks or minerals with a smaller crystal structure, regardless of the colour or chemical composition.

“TOMRA’s laser sorter also stands out for being a gravity system rather than the conventional conveyor belt, so that both sides of the material are scanned and multiple characteristics such as surface structure, size, shape, brightness and colour distribution are processed simultaneously,” the company said. “Laboratory tests and field experience have shown that the recovery of valuable rocks can be increased by 20% while improving the quality of the product.”

Jens-Michael Bergmann, Industrial Mineral Segment Manager at TOMRA Sorting Mining, said the advantages for mine operations are multiple, “from a longer life of the mine to lower operating costs and a reduction of waste, with consequent lower haulage costs”.

He added: “It also enables them to guarantee consistent high-quality of product to their customers.”

TOMRA’s laser sorting technology also has environmental benefits due to the reduced waste and low water use, as only a small quantity of water is required for wet washing the rocks at the beginning of the process to avoid dust in the processing plant.

Laser sorting also eliminates the need for hand picking, which is required with colour sorting in order to achieve the high purity levels demanded by the metallurgy and engineered stone industries, according to TOMRA. This has a positive impact on the mining operation’s health and safety initiatives, as personnel are not exposed to silicon dust in the sorting process.

Spanish company Erimsa, part of Elkem ASA, one of the world’s leading suppliers of silicon-based advanced materials, has over 30 years’ experience in quartz extraction using an environmentally friendly method, according to TOMRA.

It specialises in the production of aggregates for the construction industry and metallurgical quartz, which means a consistently high chemical purity of the quartz is paramount. It originally achieved this level of quality through manual sorting, but, in 2000, the company introduced colour sorting technology.

TOMRA said: “However, in order to achieve the high level of purity they required, the sorters were calibrated in a way that resulted in high rejection rates of material containing quartz. This meant that hand picking was still required in order to improve the recovery and ensure the stability in the quality of the quartz that is key for Erimsa.”

Carlos Forján, Quality Manager at Erimsa, turned to TOMRA for its laser technology, which he thought would enable the company to sort good quality quartz regardless of the colour: “The main problem we have is in the complexity of sorting automatically when the quartz and the rejectable minerals have the same colour. I thought that laser technology would be the way to address this.”

In 2016, following tests conducted at TOMRA’s Centre in Wedel, Germany, a PRO Secondary LASER Dual sorting machine was installed at its processing plant in Salamanca.

At this operation, the quartz is extracted and washed to avoid dust in the plant, then it is screened by size. Materials over 70 mm are hand-picked by four operators; materials under 20 mm are shipped to aggregates and quartz sand customers; materials between 20 and 70 mm are fed to the TOMRA multi-channel laser machine, which sorts out the waste material. A final quality check is conducted by two operators to remove the rare pieces with quartz content that may have been ejected in the waste by the sorter, as it is calibrated to maximise recovery.

Forján said: “The TOMRA machine has enabled us to reduce costs while increasing our yield; our production has easily increased by 20% compared to when we used colour sorters combined with hand picking. Material that, in the past, was lost to the waste pile is now generating profit for us.

High quality quartz after TOMRA’s laser ore sorting

“The stability of the quality is an important goal, and we have achieved this with the laser sorter. It has been such a game-changer in our operation; we are planning the purchase of a second laser machine to replace an existing colour sorter.”

TOMRA’s laser sorters can also be combined with other sensors depending on the requirements.

This is the case for Mikroman Mining Company, which uses a combination of TOMRA laser and TOMRA colour sorters to differentiate products according to four qualities: white and light grey quartz with low iron oxide content for engineered stones; grey and yellow quartz for the glass industry; coloured quartz for ferrosilicon used in the metallurgical sector; and coloured gravel, also for ferrosilicon, which currently goes into the waste pile.

These precise distinctions, resulting in higher product quality, were not possible before the acquisition of the TOMRA machines, and today the company operates 13 colour sorters and three laser sorters in its various plants, according to TOMRA.

TOMRA strengthens southern Africa ore sorting ties with new regional HQ

TOMRA says it has opened new regional headquarters in Johannesburg, South Africa, to strengthen its commitment to customers in southern Africa.

The initiative is designed to enhance customer care through even better technical support, service and training, and to ensure prompt availability of spare parts, it said. The move will also improve operational efficiencies by bringing together under one roof all three TOMRA business divisions: Mining, Recycling, and Food.

TOMRA’s new facilities are housed in a two-story, 1,800 sq.m building which accommodates offices, a warehouse, spare parts area, two training rooms, and three meeting rooms connected to TOMRA’s global network of more than 4,000 employees. There is also the space here to demonstrate TOMRA’s sensor-based sorting technologies.

The building’s location on the edge of the Longmeadow Business Estate, Edenvale, to the northeast of Johannesburg, is conveniently close to major road networks and the city’s airport.

The most senior executive at the new headquarters is Albert du Preez, Senior Vice-President and Head of TOMRA Mining. Du Preez said: “This investment affirms TOMRA’s wholehearted and long-term commitment to southern Africa. This is a growing market, and one we take very seriously. The 26-strong team operating out of our new headquarters will support customers in South Africa and all other countries in Sub-Saharan Africa.”

With the mineral industry such a valuable source of export earnings, it is hugely important to national economies in Sub-Saharan Africa, TOMRA said. The African continent can produce up to 500 t/y of gold and accounts for a large share of the world’s diamonds, according to the company.

In April last year, a 1,758 ct diamond, one of the largest in recorded history, was recovered in Botswana through TOMRA X-Ray Transmission (XRT) sorting technology. South Africa is also a crucial global supplier of chrome ore and ferrochrome, exporting 8.5 Mt of ferrochrome annually, mostly to China, and TOMRA’s sorting solutions are ideal for the production of these minerals, it said.

Speaking from TOMRA’s new South African headquarters, Helga van Lochem, Sales Manager of TOMRA Sorting Mining, said: “Opening new premises confirms TOMRA’s belief in southern Africa as a big player in the global market, and our commitment to supporting mining businesses here in the long term. Investment in sorting solutions pays back handsomely and now our new training facility in Johannesburg can empower customers to get the most from our profit-enhancing technologies.”

TOMRA says it manufactures sensor-based sorting solutions for almost every mineral application: diamonds, industrial minerals, ferrous metal, non-ferrous metal, slag metals, and coal and other fuels.