Tag Archives: Tin

South Crofty pre-con, ore sorting test work implies improved project economics, Cornish Metals says

Cornish Metals Inc has received results back from TOMRA Sorting GmbH that indicate X-ray Transmission (XRT) sensor-based sorting could be a viable option for its South Crofty tin project in the UK.

The feasibility study on South Crofty, a iconic former producing copper and tin mine with first documented production history dating back to 1592, is advancing on schedule with a substantial amount of the study completed, Cornish Metals said. The mine was the last tin operation in Cornwall to close in 1998.

Metallurgical test work and heavy liquid separation (HLS) pre-concentration test work provided “excellent results”, the company said.

Conducted on samples from the 2023 metallurgical drill program across five mineralised zones (No. 4 Lode, No. 8 Lode, Roskear B/D Lodes, North Pool Zone and Dolcoath South), it represented the majority of the potential production areas in the first six years of the proposed mine life, according to Cornish Metals.

The XRT work came back with a 55% mass rejection and less than 3% metal loss (-50 mm – +15 mm size fraction), while the HLS testing saw a 50% mass rejection and lesss than 5% metal loss (-15 mm – +0.85 mm size fraction).

The XRT ore sorter test work of bulk composite samples was completed by TOMRA Sorting GmbH, with the HLS test work of bulk composite samples completed by Wardell Armstrong International.

Cornish Metals said: “The test work results confirm the upgrading potential of South Crofty mineralisation and enables continuation of the process design optimisation work to reduce the size of the mineral processing plant and materially lower capital costs, operating costs and environmental footprint.”

Richard Williams, CEO and Director of Cornish Metals, said the company expected the mineralisation at South Crofty to respond well to XRT ore sorting, but these results exceeded “our most optimistic expectations”.

He added: “We expect this result will have a positive effect on the project economics, allowing for lower power consumption and a smaller process plant and therefore lower capital and operating costs.”

In addition to ore sorting test work, the following feasibility study components have also been completed:

  • Headframe structural modelling and refurbishment;
  • Schedule and costing for the refurbishment and recommissioning of New Cooks Kitchen and New Roskear shafts;
  • Televiewer investigations and geotechnical rock testing to confirm known historical structural and rock mass property data;
  • Conceptual numerical modelling of the proposed underground mining methods and stope designs. Back analysis supports historical operating data. Ground conditions and excavation stability are expected to be very good;
  • Phase 1 of the metallurgical testwork program (mineralogy, physical competency, characterisation and gravity response test work). The gravity response results are very good and confirm previous operational results;
  • Concept engineering on paste backfill options and sighter test work; and
  • Ground investigations for the new mineral processing plant.

The following dtudy components are currently underway:

  • Mineral processing plant design, layout and capital cost study, incorporating the results of the metallurgical test work program reported today and potential future throughput expansions;
  • Underground mine design and optimisation using the latest South Crofty resource estimate published in September 2023;
  • A mine ventilation study, underground infrastructure design and hoisting analysis;
  • A feasibility study-level engineering design for the paste backfill plant;
  • Hydrogeology, environmental, social, marketing and closure studies; and
  • AMC Mining Consultants has been appointed to independently review and compile the feasibility study with initial gap analysis and site visits completed.

Trafo Power Solutions bolsters dry-type transformer contingent at Alphamin’s Bisie mine

Five years since Trafo Power Solutions supplied Alphamin’s Bisie tin mine in the Democratic Republic of Congo with two dry-type transformers, the mining company has now ordered another three of these modular substations equipped with dry-type transformers to keep up with the mine’s expansion.

“This latest order is testament to the operational performance of our dry-type transformers at Bisie mine over the past five years,” David Claassen, Managing Director of Trafo Power Solutions, said. “There were numerous challenges that our design had to accommodate, not least of which is a very arduous section of road in the journey to the mine.”

The mine’s location in the Walikale Territory of DRC is remote, being about 180 km northwest of Goma. Like the initial order, the three 3,000 kVA, 400 V/11 kV substations will be supplied in standard 6 m containers to facilitate transportation. However, specialised steel bracing is required – to withstand the challenging road conditions, especially over the last part the journey.

“These conditions make the road almost impassable by any vehicle other than a six-wheeled Unimog,” Claassen says. “There is intense vibration and tilting of the cargo on these trailers, so our design and bracing is done with this in mind.”

He notes that the mine had considerable foresight in specifying the first dry-type transformers, especially given the relative novelty of this option at the time. At that stage, it tended to be standard practice to use oil-filled transformers for this type of application. Apart from the logistics, the substation solution also had to withstand the equatorial climate and frequent lightning strikes.

“The region where the mine is located is ranked in the top five most vulnerable to lightning strikes, so there is a high risk of damage to equipment related to electrical surge,” Claassen says. “We therefore designed robust surge protection solutions on both the medium voltage and low voltage sides of the substations, and for the transformers.”

Given the warm climate, Trafo Power Solutions designed a fully redundant N+2 cooling system for the transformers; this means that each transformer is cooled by two fans, with another two fans on standby. Among the advantages of dry-type transformers in this climate is that the MV winding is completely cast in resin, so is highly resistant to humidity.

GlencoreTech-AtlanticCopper

Freeport’s Atlantic Copper enlists Glencore Technology’s ISACYLE solution for waste recovery project

Glencore Technology is to help Atlantic Copper, owned by Freeport-McMoRan, to create the first waste recovery plant for metal fractions of e-material in southern Europe.

The ‘CirCular’ project will feature Glencore Technology’s ISACYLE™ technology to process 60,000 t/y of e-material, and is expected to be operational in the March quarter of 2025.

According to Atlantic Copper, the works will begin in September. The company is investing €310 million ($345 million) in the project, which will move Spain from a recycling rate of 50% to 100% of electronic material, Glencore Technology says.

The ISACYCLE-based project will recover, among other metals, copper, gold, silver, platinum, palladium, tin and nickel from what Atlantic Copper describe as waste electrical and electronic equipment or WEEE.

In 2019, Spain generated around 890,000 t of WEEE, of which only around 370,000 t were managed by authorised recyclers. The other 520,000 t of disused electrical and electronic equipment are stored in homes, end up in landfills or are exported to countries where the metals might be recovered in an environmentally unfriendly way, Glencore Technology says.

Atlantic Copper, Spain’s leading copper producer, will use ISACYCLE technology to divert that kind of waste from landfill and instead recover significant value from it.

The CirCular project is aligned with Sustainable Development Goals and with the EU’s Green Deal and the Plan of Reconstruction, as copper is among the key raw materials that Europe will need to achieve that goal of a sustainable, environmentally neutral economy.

Glencore Technology’s Manager for Pyrometallurgy and Hydrometallurgy, Dr Stanko Nikolic, said the project is expected to be the first of many to use the company’s ISACYLE technology, which is a direct evolution from its ISASMELT™ technology.

“ISACYCLE has been purposefully evolved and proven to take residual waste, including e-waste, and transform it into saleable commodities,” he said. “It’s a very scalable technology. This is a project featuring a plant toward the larger scale. But it is also a technology that works in a small scale, ideal for urban utilities and waste processing companies.”

Nikolic said the ISACYCLE technology, on any scale, can virtually eliminate landfill and instead produce recovered metals, a safe slag that can be used as a construction product, energy and clean offgas.

He concluded: “We’re proud to be able to work with such an innovative company as Atlantic Copper. They’re building a major milestone for the region and what will become a showcase for others.”

Maximising the benefits of sensor-based ore sorting machines

Ore sorting has been shown to provide both economic and environmental benefits, but many mines are not yet fully utilising this technology, according to HPY Technology.

Yet, the company’s ore sorting machines are providing a breakthrough solution for Fankou, one of Asia’s largest lead and zinc mines, resulting in an annual revenue increase of around $9.22 million.

Located in Renhua County, Shaoguan City, Guangdong Province, Fankou is owned by Shenzhen Zhongjin Lingnan Nonfemet Co Ltd. The mine has been producing lead and zinc for over 60 years. However, with new underground mining processes, such as vertical crater retreat and large blasting, more waste rock is being introduced into the crushing, grinding and flotation processes, resulting in higher production costs and energy consumption.

Furthermore, under the “zero waste” target set by the Environmental Protection Law of China, Fankou’s tailings pond needs to be closed by 2025. As of 2018, the mine’s annual processing capacity was 1.5 Mt, with 600,000 t ending up in the tailings pond. In addition, Fankou’s waste rock piles had reached approximately 2 Mt. With the continuous addition of around 200,000 t/y of waste rock, these piles grew larger. With the pressure to meet the zero waste target, Fankou was under pressure to make a change.

In 2017, Fankou conducted exploratory tests of sensor-based ore sorting machines with Ganzhou HPY Technology Co Ltd. The result of the initial tests showed promise and addressed the problems the mine was beginning to face, according to HPY Technology. As a result, Fankou decided to add HPY Technology’s ore sorting machines to the industrial design plan of their mineral processing plant in 2018, and HPY Technology’s machines were officially added to the plant in 2019.

The Fankou lead-zinc mine currently produces about 1.4 Mt/y of ore, and it is expected that more than 105,000 t of waste rock will be pre-rejected from the raw ore throughout the year. Ore sorting technology can discard a large amount of waste rock from the raw ore before it is fed into the flotation system, reducing the amount of waste rock entering the mill and saving on electricity costs.

Fankou’s mineral processing plant uses four Classic Series P60-X1400 ore sorting machines. The machine processes the particle size range of +12-90 mm, which accounts for about 50% of the raw ore. This accounts for 2,600 t of ore, rejecting 400-500 t/d of waste rock. After pre-concentration, the lead and zinc content in the waste rock are below 0.3%, and the sulphur and iron content is below 3.8%. Therefore, the ore sorting process enriches the ore grade by 1.08% for lead and zinc and 2% for sulphur and iron.

Four Classic Series P60-X1400 ore sorters in Fankou’s mineral processing plant

After sorting the waste rock from the raw ore, this waste rock can be sold as construction aggregate to bring further economic benefits to the Fankou mine. This has also seen the amount of tailings decrease and the service life of the tailings pond extend significantly, resulting in remarkable energy savings and consumption performance, while also enhancing the mine’s societal value, HPY Technology says.

Mr Wang, Project Manager of Fankou Mineral Processing Plant, said: “We are proud to be one of the world’s first lead and zinc mines to utilise ore sorting fully. We see significant economic benefits for using HPY Technology’s ore sorting machine, especially for low-grade mines. China has huge lead and zinc ore reserves, the second largest in the world. But the grade of the deposits is generally low, with many poor and few rich ores. The average grade is about 1.5% for lead and 2.5% for zinc. Reserves with a grade below 5% account for more than 90% of lead ore, and reserves below 8% account for more than 85% of zinc ore. We hope to continue contributing to the mining industry’s progress and are willing to recommend HPY Technology’s ore sorting machine to our peers.”

The Classic Series used in Fankou’s mineral processing plant is a benchmark in the ore sorting industry, according to HPY Technology. This machine uses dual-energy X-ray technology, combined with high-speed air jets to sort ore from waste rock. The X-ray technology penetrates the ore and creates a grayscale image that distinguishes between target and vein minerals. This image is then processed by an artificial intelligence algorithm, which uses the information to accurately sort the ore and waste rock. The Classic Series has undergone numerous iterations, ensuring stable and efficient operation, HPY Technology says. It is currently the most widely used ore sorting machine in China’s mining industry, according to the company.

Fankou Lead-Zinc mine, mineral processing plant

HPY Technology | Fankou lead-zinc mine, mineral processing plant

Machine used Four Classic Series P60-X1400
Processing capacity 2,600 t/d
Particle size +12-90 mm
Concentrated ore grade (Pb+Zn) 12%
Waste rock grade (Pb+Zn) <0.3%
Grinding grade (Pb+Zn) increased by 1.08%
Rejection rate 16-17%

Fankou’s mineral processing plant can save more than $2.9 million/y by using HPY Technology’s ore sorting machines, resulting in an annual profit margin of more than $7.8 million, considering the comprehensive benefits of increased plant capacity, tailings reduction and construction aggregate sales.

In addition to the four Classic Series P60-X1400 in the mineral processing plant, the Construction Materials Plant has three HPY Technology ore sorting machines to process the waste rock from the mineral processing plant and its existing waste rock piles. The waste rock is taken to the construction material plant for another round of sorting, with the remaining waste rock being used for construction aggregates. The three machines at the construction materials plant also process the 2 million cu.m of waste rock initially stockpiled in the tailings pond.

Mr Luo, Project Manager of Solid Waste Treatment, said: “In the past, we could only transport solid waste back to the shaft for filling. After using HPY’s ore sorting machines, we can now sort out all the ore from solid waste and recover the value of the resources. The remaining waste rock can be sold as construction aggregates, which is a win-win solution. Currently, we are also sorting waste rock that was stored before using HPY’s ore sorting machines. The ore grade is about 3%. Sensor-based sorting technology enriches the ore grade to 12-14%. Sorting results show that the rejection rate exceeds 95%. In the global mining industry, Fankou is one the first to successfully apply intelligent ore sorting technology in lead and zinc mines, achieving maximum resource value recovery and is great for the environment.”

According to Mr Luo, waste rock that was initially made into construction aggregates now yields more than 1,500 t/y of lead and zinc metal, which has been able to be recovered through the Construction Materials Plant. In addition, the ore sorting process reduces the waste rock’s sulphur content. This substantially improves the grade of the construction aggregates, increasing its sales price. As a result, the waste rock made into construction aggregates generates about $977,000/y in economic benefits. In addition, the recovered ore generates over $2.8 million/y in benefits.

Fankou has utilised sensor-based ore sorting to its full extent, HPY Technology says, using it during the comminution process to pre-reject waste rock to increase its lead-zinc ore grade. The company also sees benefits from pre-rejected waste rock in reduced costs in its grinding process. With pressure to control the amount of tailings, the pre-rejected waste rock lowers the amount of tailings entering the tailings pond to help the company in its aim of closing the tailings pond in 2025. In addition, sensor-based ore sorting has allowed the company to gain additional revenue through the recovery of lead-zinc from their waste rock piles, while also utilising these piles for construction aggregates. Overall, the introduction of ore sorting has allowed the company to expand its resource recovery. By pre-rejecting and enriching low ore grades, Fankou can now mine areas previously deemed un-mineable due to having low grade ore, allowing them to increase the processing capacity each year.

Fankou lead-zinc mine, Construction Materials Plant

HPY Technology | Fankou lead-zinc mine, Construction Materials Plant

Machine used One Insight Series | Two Classic Series
Concentrated ore grade 12-14%
Waste rock grade Pb 0.04%, Zn 0.10%
Concentrate recovery rate Pb 96.76%, Zn 92.8%
Rejection rate 95%
Enrichment ratio Pb 9.68, Zn 9.28
Particle size +10-50 mm

The Insight Series used in Fankou’s Construction Materials Plant adopts a combined detection method comprised of a VIS HD dual-sided imaging system and X-ray technology, which can be customised according to the physical characteristics of different ores. The machine can collect the ore’s internal and external information simultaneously and with an AI algorithm, which can significantly improve the accuracy of ore sorting and better for sorting complex ores.

Compared with traditional ore sorting machines, which use a belt, the upgraded Insight Series utilises a vibrating feeder and short belt that leads to ore free fall, HPY Technology says. With the optimised mechanical design, the ore falls more evenly, avoiding ore overlap that affects recognition accuracy. In addition, the machine has various feeding widths (1,600 mm, 3,200 mm), which leads to processing capacities of 40-150 t/h (+10 mm-80 mm) to meet the needs of different mines needs during the beneficiation process.

As one of Asia’s largest lead and zinc mines, Fankou has taken steps to maximise the economic value of its process. Through the utilisation of sensor-based ore sorting, the company has seen significant increases in revenue and savings. Having worked with HPY Technology for over five years, Fankou looks to continue this partnership to further the research on the benefits of ore sorting machines. As HPY Technology continues innovating and revolutionising mineral processing, the benefits will only continue to grow, it says.

HPY Technology Co Ltd says it is a leader in the development and manufacture of ore sorting machinery, achieving excellent results in the ore sorting of tungsten, tin, antimony, lead, zinc, copper, molybdenum, gold, phosphate and over 30 other ore types, revolutionising the traditional mineral processing process and significantly promoting the technological progress of the global mining industry. With over 400 machines in use in over 100 mines, the company says it looks to continue revolutionising mineral processing.

Tungsten West cuts CAPEX with new Hemerdon feasibility study plan

An updated feasibility study on Tungsten West’s Hemerdon project in Devon, England, has brought with it a processing re-optimisation program that includes a complete redesign of the front-end crushing circuit at the mine, a process that, it says, will considerably reduce the capital expenditure associated with this development.

The new study outlined average annual production of 2,900 t of WO3 in concentrate and 310 t of tin in concentrate over a life of mine of 27 years, along with an average steady-state mining rate of 3.5 Mt/y.

The changes to the existing process flowsheet to be implemented at Hemerdon can be categorised into three areas, namely:

  • Front end upgrades – new crushing, screening and ore sorting circuit required for Phase 1 (average of 2.4 Mt/y of granite ore, years 1-2);
  • Existing minerals processing facility modifications – upgrades to existing plant to accommodate production requirements for Phase 1; and
  • Phase 2 (3.5 Mt/y of granite ore, year 3 onwards) crushing and process plant expansion – future upgrades to both crushing and processing plants required for increased production rates, envisaged from year three onwards.

The re-engineering has mainly reduced capital and operating expenses around reduced ore handling costs by the introduction of direct tipping at a newly sited run of mine pad, incorporating the introduction of new semi-mobile primary jaw and secondary cone crushers, new operating parameters for the ore sorting circuit, and, to a lesser extent, changes to the existing dense media separation and fine gravity dressing circuits.

The revised front-end design also includes a significant tactical advantage through the introduction of a secondary crushed ore stockpile ahead of the ore sorters, Tungsten West said. This provides up to circa-40 hours of redundancy capacity to the crushing circuit, thereby de-coupling the front end crushing circuit from the minerals processing facility (MPF) – minimising downtime and maximising availability of the concentrator circuit.

Tungsten West has maintained the ethos of the original feasibility study in continuing to engineer-out as many operational, mechanical, electrical or ESG issues associated with the previous operation as possible and to ensure MPF availability and operability remains a priority, it said.

Back in July, Tungsten West concluded a re-evaluation of the options for bringing the Hemerdon mine back into production, announcing a new development plan that would re-optimise the March 2021 Bankable Feasibility Study. The plan was developed in response to global crises in power and diesel prices and the general inflationary environment for construction materials faced by the company.

The new plan has resulted in a remaining capital expenditure, including EPCM fees, of £31.1 million ($38 million) as of October 1.

Mark Thompson, Executive Vice Chairman of Tungsten West, said: “The feasibility study provides solutions to the energy price challenges and will enable increased operating efficiencies at the project. Key highlights from this study include a revised ore delivery and waste mining strategy, a split-phase approach to operational ramp-up to the full design specification, a new primary and secondary crushing method and location, a re-optimisation of the operating strategy for the X-ray Transmission ore sorters, re-design and re-engineering of the feed preparation, ore sorter buildings and structures, and a re-evaluation of the operation of unit processes and expected recoveries.

“We are build-ready at Hemerdon and we look forward to continuing to work with our partners and stakeholders to bring Hemerdon back into production in the fourth (December) quarter of 2023.”

Boston Metal to test molten oxide electrolysis tech on mining waste in Brazil

Boston Metal, a global metals technology solutions company, says it will deploy its molten oxide electrolysis (MOE) platform technology to recover high-value metals from mining waste in Brazil.

The company’s wholly-owned subsidiary Boston Metal do Brasil and major Brazilian refined tin producer Mineração Taboca S.A. have signed an memorandum of understanding (MoU) to explore the use of Boston Metal’s MOE technology through a collaboration that, it says, seeks to advance the efficiency of metals production while demonstrating a sustainable and profitable solution for the mining industry. Mineração Taboca S.A produces not only refined tin, but other industrial minerals including niobium and tantalum.

Process development for the MoU will be performed at Boston Metal do Brasil, which opened in August, with construction underway on facilities in the municipality of Coronel Xavier Chaves near São João del Rei, Minas Gerais.

The company’s patented MOE technology uses electricity to selectively extract valuable metals from complex, low-concentration materials that are currently considered waste. This enables miners to reduce the financial and environmental liabilities of slag, by leveraging this natural by-product of metal production to create new revenue streams, Boston Metal says. Using renewable electricity, MOE can also be applied to convert all grades of iron ore into emissions-free steel, according to the company. Once this groundbreaking technology becomes commercially available by 2026, steel producers will be able to cost-effectively achieve net zero scope 1 and 2 emissions and meet growing global demand for green steel.

Itamar Resende, President of Boston Metal do Brasil, said: “MOE provides the metals industry with a more efficient, lower cost and greener solution to produce a variety of metals and alloys from a wide range of feedstocks. We’re looking forward to further developing our high-value metals business and demonstrating the efficiency of our MOE solution to transform mining waste into sources of revenue.”

Boston Metal expects commercialisation of the MOE technology for high-value metals to take place in 2023.

EPC-UK’s rock-on-ground services team heading to Hemerdon tungsten-tin project

EPC-UK says its full rock-on-ground services will soon begin work at the Hemerdon tungsten-tin deposit in Devon, England, as part of a new contract it has secured.

The company’s work will begin in 2023 and will enable operator, Tungsten West Ltd, to benefit from EPC-UK’s skilled level of drilling and blasting expertise as it sustainably extracts specific critical minerals, it says.

The reopened Hemerdon mine comprises the world’s third largest tungsten mineral resource, with a recently-released mining plan envisaging restarting production during the first half of next year.

In terms of mining, Hemerdon will aim to process 2.1 Mt of ore in year one, 2.6 Mt in year two, before ramping up to steady-state production of 3.5 Mt throughput in year three. This targets WO3 in concentrate production of 2,200 t, 3,000 t, 3,900 t, and tin in concentrate production of 320 t, 430 t and 600 t in years 1, 2, and 3 respectively.

In advance of EPC-UK’s rock-on-ground service commencement on site, it has agreed a program of early investment in the Tungsten West project, which has allowed us to fully understand the operation’s requirements and meet the project’s needs, including, among other things, the use of the latest equipment.

This will see the company deliver new Epiroc drilling rigs fitted with autosampler capabilities for drill returns.

Explosive supply to site will also benefit from EPC-UK’s latest smart truck technology supported by the full Vertex software package, which can incorporate drone gathered data and GPS capabilities to refine and improve blast performance, assess against incremental changes in design and subsequently optimise results for customers, the company says.

In terms of digital services, EPC-UK plans to use its digital techniques and engineering expertise, together with subsequent blasting operations, to enable the most efficient ore extraction to realise the most value possible, it said.

Ben Coppock, General Manager Blasting and Explosives at EPC-UK, explained: “We’re keenly anticipating our delivery start date at Hemerdon and look forward to realising results from our joint agenda with customer, Tungsten West. Our business ethos, commitment to safety and levels of expertise are aligned, and we will work successfully and sustainably to meet our mutual greener goals.”

James McFarlane, Managing Director of Tungsten West, said: “Tungsten West has full confidence in EPC-UK as a drilling and blasting rock-on-ground provider. The preparations the team has already put in place in advance of contract work commencing is impressive and demonstrates complete customer focus and a commitment to achieving leaner operations. The reopening of the Hemerdon Mine and its promise to bring sustainable economic activity back to the area is a significant development and we anticipate the results that EPC-UK and Tungsten West will deliver.”

Zinnwald striving for battery-electric circularity with lithium project development

The development of the integrated Zinnwald lithium project in Germany could see the incorporation of a battery-electric fleet of LHDs and the return of metal production to a region of saxony with mining history dating back to the Middle Ages.

The London-listed owner of the project, Zinnwald Lithium Plc, has just released a preliminary economic study on its namesake project focused on supplying battery-grade lithium hydroxide to the European battery sector.

As with any responsible battery metal project being developed today, the project’s ‘green credentials’ are being considered even at this early stage.

Zinnwald Lithium has been keen to flag these, mentioning the project is located close to the German chemical industry, a fact that should enable it to draw on a well trained and experienced workforce with well-developed infrastructure, plus reduce the ‘carbon footprint’ of the final end-use product.

This focus will see all aspects of the project – from mining through to production of the end product – located near to the deposit itself.

Zinnwald Lithium also said the project has the potential to be a low- or ‘zero-waste’ project, as the vast majority of both its mined product and co-products have their own large-scale end-markets.

This could see it produce not only battery-grade lithium hydroxide monohydrate products, but sulphate of potash (SOP) for the fertiliser market and precipitated calcium carbonate (PCC) – the latter being a key filling material in the paper manufacturing process.

The project now includes an underground mine with a nominal output of approximately 880,000 t/y of ore at an estimated 3,004 ppm Li and 75,000 t/y of barren rock. Processing, including mechanical separation, lithium activation and lithium fabrication, will be carried out at an industrial facility near the village of Bärenstein, near the existing underground mine access and an existing site for tailings deposition with significant remaining capacity.

With a 7-km partly-existing network of underground drives and adits from the ‘Zinnerz Altenberg’ tin mine, which closed in 1991, already mapped out, the bulk of ore haulage is expected to be via either conveyor or rail

The nominal output capacity of the project is targeted at circa-12,000 t/y LiOH with circa-56,900 t/y of SOP, 16,000 t/y of PCC, circa-75,000 t/y of granite and 100,000 t/y of sand as by-products.

The company is looking to complete the ‘circularity’ dynamic in its fleet and equipment selection, according to CEO, Anton Du Plessis, who mentioned that electric LHDs could be used to load and haul ore to an ore pass in the envisaged operation.

He said the cost estimates to use such equipment – which are factored into the project’s $336.5 million initial construction capital expenditure bill – have come from Epiroc, which has a variety of battery-operated mobile equipment.

“The base case is battery-operated loaders,” he told IM. “The final selection will be based on an optimisation study where, in particular, partly trolley-fed haulage systems will be investigated.”

Forms of automation are also being studied, Du Plessis said, with the caveat that “only select technologies we consider proven” will be evaluated.

Zinnwald Lithium is also looking at electric options for long-hole drilling underground, with both battery-based units and cabled versions under consideration and requiring firming up in the optimisation study.

With a 7-km partly-existing network of underground drives and adits from the ‘Zinnerz Altenberg’ tin mine, which closed in 1991, already mapped out, the bulk of ore haulage is expected to be via either conveyor or rail. The former, of course, will be powered by electricity, but the company is also considering potential battery-electric options for the latter, according to Du Plessis.

The company is blessed with existing infrastructure at the mine, which should help it in advancing the project at the pace its potential end-use manufacturing suppliers would like. It is already evaluating options for the construction stage – with an engineering, procurement and construction management contract the most likely option – and it has plans to conclude a feasibility study by the end of next year.

Du Plessis said while most of the fixed assets have been removed or were deemed outdated a long time ago from the former operating underground mine, other infrastructure was in good shape.

“The excavations, main level, underground workshop, ventilation shafts and, particularly, 2020 refurbished access tunnel provide a very good starting point for our project,” he said. “The access tunnel was originally constructed for dewatering the old mine and, therefore, the mine and the tunnel have been maintained very well.”

The company is now shifting to the bankable feasibility study and currently selecting partners for the project.

With what it calls a “simple, five-stage processing” route confirmed by test work for the extracted material at Zinnwald, the company is looking to select OEMs with the optimal concept for the project, Du Plessis said.

“In the PEA, mineral processing equipment cost is based on Metso Outotec estimates, pyrometallurgy is based on Cemtec technology, and hydrometallurgy is based on various providers’ technology,” he clarified.

Orica’s WebGen wireless initiation system helps unlock reserves at BMTJV Renison tin mine

The Bluestone Mines Tasmania Joint venture (BMTJV) says it has become the first company in the Tasmania mining sector to demonstrate Orica’s fully wireless initiating system, WebGen™.

Since early 2021, BMTJV, the owner of the Renison tin mine, has been in consultation with Orica to implement the WebGen wireless blasting technology.

The first WebGen blast was successfully loaded in the Central Federal Basset (CFB_1458_5990_F4) section of the mine on June 13, 2022, with the first wireless blast in Tasmania successfully fired at BMTJV over the mine’s leaky feeder system on June 19.

Some 107 WebGen primers were loaded into BP4 (Block Panel 4) and “slept” for 14 days while BP3 was charged and fired, the company explained. Due to the geometry of the blast – and it being a high seismicity area – for B4 to be mined conventionally, a further 60 m of development would have been required to recover this ore.

The Orica WebGen system includes an i-kon™ plugin detonator, a Pentex™ W booster and a DRX™, which is a digital receiver comprising a multi-directional antenna and a battery that serves as the in-hole power source.

The Encoder Controller individually programs each wireless primer with its own unique encrypted codes. This encoder contributes to the inherent safety of the system, and programs each wireless primer with two codes, BMTJV explained. The first code is a unique group identity number for exclusive use at each mine and assigned to specified groups of primers which will sleep, wake and fire together. The second code is a ‘delay time’ specific to the wireless primer and blast design.

Mark Recklies, Chief Operating Officer – BMJTV, said: “WebGen has now been used to support continual safety improvements and deliver savings across the working mine.”

Tungsten West breaks ground at Hemerdon for TOMRA XRT ore sorters

Tungsten West says it has broken ground at its Hemerdon tungsten-tin mine in Devon, England, with the first sod turned for the installation of the TOMRA X-ray Transmission (XRT) sensor-based ore sorters.

This event, the company says, marks another major step in the company’s upgrade and refurbishment plans for the project’s processing plant.

Hemerdon is, Tungsten West says, the third largest tungsten resource globally, as well as being a previously producing mine that was operational from 2015-2018. Tungsten West purchased the Hemerdon Mine in 2019, and has since completed a bankable feasibility study that demonstrated an extensive reserve of approximately 63.3 Mt at 0.18% W and 0.03% Sn, as well as 37.4 Mt of saleable aggregate material. The company estimates that the life of mine is currently 18.5 years with the opportunity to extend this through future investment.

As announced earlier this month, the company took receipt of important long-lead equipment items, including the seven XRT ore sorters, which will make up part of the upgraded equipment the company plans to install into the front end of the processing plant. The XRT ore sorter will substantially improve and streamline operations once production restarts, minimising plant downtime, increasing recovery as well as a host of ESG benefits, it said.

After significant test work, Tungsten West engaged TOMRA to supply the seven units that are required to treat the run of mine throughput. This consists of six duty units and one standby unit. Orders and deposits for these units were placed in 2021 and the units have now been delivered to the UK and await final transfer to Hemerdon where they will be installed in the front end of the processing plant.

Additionally, the company is pleased to announce the appointment of James McFarlane as Managing Director of Tungsten West. McFarlane previously held the position of Technical & Operations Director of the company.

Max Denning, Tungsten West CEO, said: “We are extremely excited to have broken ground at Hemerdon this week, marking an important milestone in the project’s restart. Ensuring the UK and the western hemisphere have got access to two key critical minerals has never been more profound. We are also delighted to announce James as our new Managing Director; his extensive experience will prove invaluable in the company’s development as we move closer to first production at Hemerdon.”