Tag Archives: Vattenfall

HYBRIT partners produce world’s first hydrogen-reduced sponge iron

SSAB, LKAB and Vattenfall say they have now produced the world’s first hydrogen-reduced sponge iron at a pilot scale.

The technological breakthrough in the HYBRIT initiative captures around 90% of emissions in conjunction with steelmaking and is a decisive step on the road to fossil-free steel, the partners say.

The feat from the HYBRIT pilot plant in Luleå, Sweden, showed it is possible to use fossil-free hydrogen gas to reduce iron ore instead of using coal and coke to remove the oxygen. Production has been continuous and of good quality, the companies said, with around 100 t made so far.

This is the first time ever that hydrogen made with fossil-free electricity has been used in the direct reduction of iron ore at a pilot scale, according to the HYBRIT partners. The goal, in principle, is to eliminate carbon dioxide emissions from the steelmaking process by using only fossil-free feedstock and fossil-free energy in all parts of the value chain.

Hydrogen-based reduction is a critical milestone, which paves the way for future fossil-free iron and steelmaking. SSAB, LKAB and Vattenfall intend, through HYBRIT, to create the most efficient value chain from the mine to steel, with the aim of being first to market, in 2026, with fossil-free steel at an industrial scale, they say.

Last year, HYBRIT, a joint initiative of SSAB, LKAB and Vattenfall, began test operations to make hydrogen-reduced sponge iron in the pilot plant built with support from the Swedish Energy Agency. The technology is being constantly developed and the sponge iron that has been successfully made using hydrogen technology is the feedstock for the fossil-free steel of the future, they say.

Jan Moström, President and CEO at LKAB, said: “This is a major breakthrough both for us and for the entire iron and steel industry. LKAB is the future supplier of sponge iron and this is a critical step in the right direction. Progress with HYBRIT enables us to maintain the pace in our transition and, already in 2026, we will begin the switch to industrial-scale production with the first demonstration plant in Gällivare, Sweden. Once LKAB has converted its entire production to sponge iron, we will enable the transition of the steel industry and reduce global emissions by around 35 Mt a year, which corresponds to two thirds of Sweden’s entire emissions. This is the greatest action we can take together for the good of the climate.”

Martin Lindqvist, President and CEO at SSAB, added: “This technological breakthrough is a critical step on the road to fossil-free steel. The potential cannot be underestimated. It means that we can reach climate goals in Sweden and Finland and contribute to reducing emissions across Europe. At the same time, it creates new jobs and export successes. SSAB’s transition means we will reduce carbon dioxide emissions by 10% in Sweden and 7% in Finland. High-strength fossil-free steel will also allow us to help our customers to strengthen their competitiveness. As early as this year, we will deliver minor quantities of steel made using hydrogen-based reduction to customers, and in 2026 we will deliver fossil-free steel at a large scale.”

The hydrogen used in the direct reduction process is generated by electrolysis of water with fossil-free electricity, and can be used immediately or stored for later use, according to the partners. In May, HYBRIT began work on building a pilot-scale hydrogen storage facility adjacent to the direct reduction pilot plant in Luleå.

Anna Borg, President and CEO at Vattenfall, said: “Sweden’s and Vattenfall’s fossil-free electricity is a basic requirement for the low carbon footprint of hydrogen-reduced sponge iron. The breakthrough that we can announce today shows in a very real way how electrification contributes to enabling a fossil-free life within a generation.”

Howden to deliver hydrogen storage compression solution for HYBRIT

Howden says it has been selected to deliver a hydrogen storage compression solution for HYBRIT, the world’s first fossil-free steel plant, in Svartöberget, Sweden.

A joint project between Sweden’s SSAB, LKAB and Vattenfall, HYBRIT is the deployment of a unique pilot project for large-scale hydrogen storage. This initiative leads the development of the world’s first fossil-free value chain for the iron and steel industry, to address renewable hydrogen storage.

Howden has been contracted to supply a high-pressure diaphragm compression package to seamlessly integrate the storage cycle of the hydrogen production. The hydrogen compression includes installation and commissioning of a packaged three stage diaphragm compressor.

The storage facility consists of a 100 cu.m hydrogen storage built in an enclosed rock cavern approximately 30 m below ground. This offers a cost-effective solution, with the necessary pressure required, to store large amounts of energy in the form of hydrogen, Howden said.

The reliability, efficiency and safety delivered by Howden’s compression solution matches with the large-scale hydrogen storage requirements, relative to the storage conditions and the evaluation of the amount of time during which the compression pressure remains at the desired level, it added.

HYBRIT supports the European Union’s Hydrogen Strategy and its ambition to install at least 6 GW of renewable hydrogen electrolysers in the EU by 2024 and at least 40 GW by 2030.

Salah Mahdy, Global Director – Hydrogen at Howden, said: “Our partnership with HYBRIT demonstrates Howden’s capabilities in developing and delivering state-of-art hydrogen compressor solutions, based on our long-standing compression expertise. We have over 100 years of experience in the compression of hydrogen, which is ideally placed to support the transition to a fossil-free energy system.

“We’re thrilled to be working on this ground-breaking project, which has the potential to reduce Sweden’s total carbon dioxide emissions by at least 10%. The steel industry currently accounts for about 7% of the world’s global carbon emissions, so the creation of a zero-emission steel is revolutionary, and may, in the future, help to reduce emissions from iron and steel production worldwide.”

Mikael Nordlander, Head of R&D Portfolio Industry Decarbonisation, Vattenfall, adds: “Fossil-free hydrogen is central to the HYBRIT process. Hydrogen can be produced cost-effectively through the electrolysis of water using fossil-free electricity. The hydrogen produced by the electrolysers can be used immediately or stored for later use. One of the key aspects of our storage facility relies on the hydrogen compression to be deployed in a contamination-free manner. Based on their proven technology, expertise and references, we are delighted to cooperate with Howden on the integration of a reliable compression solution for storage.”

Howden says it is focused on helping customers increase the efficiency and effectiveness of their air and gas handling processes enabling them to make sustainable improvements in their environmental impact. It designs, manufactures and supplies products, solutions and services to customers around the world across highly diversified end-markets and geographies.

HYBRIT partners start building underground fossil-free hydrogen storage facility in Luleå

SSAB, LKAB and Vattenfall have commenced building a rock cavern storage facility for fossil-free hydrogen gas on a pilot scale next to the HYBRIT pilot facility for direct reduced iron in Luleå, northern Sweden.

This is an important step in the development of a fossil-free value chain for fossil-free steel, the companies said, with the investment of just over SEK250 million ($29 million) divided equally across the holding companies and the Swedish Energy Agency, which provides support via Industriklivet.

As part of the SSAB, LKAB and Vattenfall joint HYBRIT initiative, Hybrit Development AB is starting the construction of a hydrogen storage facility in Svartöberget to develop the technology for storage.

Fossil-free hydrogen, which will replace coal and coke, is a crucial part of the production technique for fossil-free iron and steel production, where emissions of carbon dioxide will be virtually eliminated, the companies said. Hydrogen can be produced cost effectively through the electrolysis of water using fossil-free electricity. The hydrogen produced by the electrolysers can be used immediately or stored for later use.

Hydrogen storage is predicted to play a very important role in future power and energy balancing, and in large-scale hydrogen production, according to the companies. The storage facility is expected to be operational from 2022-2024.

Andreas Regnell, Head of Strategy at Vattenfall and Chairman of the Board at HYBRIT, said: “We’re really pleased that HYBRIT is continuing to lead the development of efficient production for fossil-free steel, as we’re now also building a pilot storage facility for large-scale fossil-free hydrogen in Luleå.

“Storage provides the opportunity to vary demand for electricity and stabilise the energy system by producing hydrogen when there’s a lot of electricity, for example in windy conditions, and to use stored hydrogen when the electricity system is under strain.”

Martin Pei, Technical Director of SSAB and Board member of HYBRIT, said: “By developing a method for hydrogen storage and securing access to fossil-free electricity, we’re creating a value chain all the way out to customers where everything is fossil-free – from the mine to the electricity and to the finished steel. This is unique.”

The 100 cu.m hydrogen storage is being built in an enclosed rock cavern around 30 m below ground. Building the storage facility underground provides opportunities to ensure the pressure required to store large amounts of energy in the form of hydrogen in a cost-effective way, the companies said.

The technology used is adapted to Scandinavian bedrock conditions and will be further developed to handle the storage of hydrogen.

The storage facility is based on proven technology and the hydrogen is used in the plant’s direct reduction reactor to remove oxygen from iron ore pellets, the companies said. The fossil-free sponge iron resulting from the process is then used as a raw material in the manufacture of fossil-free steel.

Industrialisation of fossil-free steel under the HYBRIT initiative is intended to start with the first demonstration plant, which will be ready in 2026, for the production of 1.3 Mt of fossil-free sponge iron in Gällivare, Sweden. The goal is to expand sponge iron production to a full industrial scale of 2.7 Mt/y by 2030 to be able to supply SSAB, among others, with feedstock for fossil-free steel.

HYBRIT partners choose Gällivare for fossil-free sponge iron demonstration plant

SSAB, LKAB and Vattenfall say they are taking a new, decisive leap forward in their work on HYBRIT, with the trio selecting Gällivare, in northern Sweden, as the location of the first production plant for its fossil-free sponge iron exercise.

Industrialisation is intended to start with the first demonstration plant, which will be ready in 2026, for the production of 1.3 Mt of fossil-free sponge iron in Gällivare. The demonstration plant will be integrated with iron pellet making and is part of LKAB’s transition plan.

The goal is to expand sponge iron production to a full industrial scale of 2.7 Mt by 2030 to be able to supply SSAB, among others, with feedstock for fossil-free steel. The choice of Gällivare for the demo plant was based on a joint assessment of industrial synergies, where proximity to iron ore, logistics, an electricity supply and energy optimisation were important factors, the companies said.

There are many advantages to locating the new sponge iron plant in Gällivare, which is also near LKAB’s mining production and processing plants. Using iron ore pellets that are already warm in the process will save huge amounts of energy, according to the companies. On top of this, 30% of weight will be eliminated from transport since hydrogen gas will be used to remove the oxygen in the iron ore. Gällivare also offers good access to fossil-free electricity from Vattenfall.

Martin Lindqvist, President and CEO at SSAB (centre), said: “We are world leaders in the work to transform the steel industry and are now stepping up the pace. We are doing this for the climate, customers, competitiveness and for employment. That we are now raising ambitions for a completely fossil-free value chain is unique and a message of strength from SSAB and our HYBRIT partners. We are seeing a clear increase in demand for fossil-free steel and it is right to speed up our ground-breaking cooperation.”

Jan Moström, President and CEO at LKAB (left), said the companies are leading the transformation of the iron and steel industry.

“The whole process starts with top quality iron ore in the mine and our transition plan gives strong economies of scale that pave the way for the competitive production of fossil-free steel by our customers,” he said. “This is the greatest thing we can do together for the climate. Once we are ready, we will reduce the global emissions of our customers by 35 Mt a year, which is equivalent to triple the effect of parking all passenger cars in Sweden for good.”

At the same time as announcing the Gällivare demo plant, SSAB and LKAB have agreed to deepen their partnership to create the “most effective fossil-free steel value chain from mine to steel, to customer”, they said.

“We will support and enable each other’s transformation, with Vattenfall an enabler of the huge need for electricity and hydrogen gas,” they said. “On the back of an acceleration of HYBRIT, together with LKAB’s strategy and deeper partnership, SSAB will now explore the prerequisites to convert to fossil-free steel production in Luleå faster than planned.”

The plan to convert its Oxelösund steel works in 2025 remains unchanged, as does its goal to be the first to market, in 2026, with fossil-free steel, SSAB clarified.

Anna Borg (right), President and CEO at Vattenfall, added: “Sweden and HYBRIT have a world-leading position in making fossil-free iron- and steelmaking a reality and the initiative will now be further scaled up. That fossil-free electricity and ground-breaking processes will in principle help to eliminate climate-affecting emissions completely from iron- and steelmaking is a flagship example of Vattenfall’s strategy to enable a fossil-free life within a generation. It is now extra important that the permit processes can deliver at the same pace as fossil-free steelmaking.”

Hybrit Development AB, which is owned by SSAB, LKAB and Vattenfall, is developing the technology to make steel using hydrogen gas instead of coal, which will minimise climate harmful carbon dioxide emissions from production. The HYBRIT pilot plant will be able to make fossil-free sponge iron to make fossil-free steel for prototypes to customers already in 2021.

The partners claim the initiative has the potential to reduce carbon dioxide emissions by 10% in Sweden and 7% in Finland, as well as contribute to cutting steel industry emissions in Europe and globally.

LKAB plots carbon-free pathway with direct reduced iron switch

LKAB has presented its new strategy for the future, setting out a path to achieve net-zero carbon emissions from its own processes and products by 2045, while securing the company’s operations with expanded mining beyond 2060.

Jan Moström, President and CEO of LKAB, said the plan represented the biggest transformation in the company’s 130-year history, and could end up being the largest industrial investment ever made in Sweden.

“It creates unique opportunities to reduce the world’s carbon emissions and for Swedish industry to take the lead in a necessary global transformation,” he said.

The strategy sets out three main tracks for the transformation:

  • New world standard for mining;
  • Sponge iron (direct reduced iron) produced using green hydrogen will in time replace iron ore pellets, opening the way for a fossil-free iron and steel industry; and
  • Extract critical minerals from mine waste: using fossil-free technology to extract strategically important earth elements and phosphorous for mineral fertiliser from today’s mine waste.

The transformation is expected to require extensive investments in the order of SEK10-20 billion ($1.2-2.3 billion) a year over a period of around 15 to 20 years within LKAB’s operations alone. The company said the new strategy was a response to market developments in the global iron and steel industry, “which is undergoing a technology shift”.

The move could cut annual carbon dioxide emissions from the company’s customers worldwide by 35 Mt, equivalent to two thirds of Sweden’s domestic greenhouse gas emissions, it said.

Developments under the HYBRIT project, in which SSAB, LKAB and Vattenfall are collaborating on a process to enable the reduction of steel from iron ore using hydrogen instead of carbon, will be keenly observed following the miner’s announcement.

On top of this collaboration, LKAB is working with Sandvik, ABB, Combitec, Epiroc and several other industry leaders to develop the technology that will enable the transition to fossil-free, autonomous mines, it said.

Moström added: “The market for iron and steel will grow and, at the same time, the global economy is shifting towards a carbon-free future. Our carbon-free products will play an important part in the production of railways, wind farms, electric vehicles and industrial machinery.

“We will go from being part of the problem to being an important part of the solution.”

The market for steel is forecasted to grow by 50% by 2050. This growth will be achieved by an increase in the upgrading of recycled scrap in electric arc furnaces, according to LKAB. Today, the iron and steel industry accounts for more than a quarter of industrial emissions and for 7% of the world’s total carbon dioxide in the atmosphere, according to an IEA report.

The company said: “The global market price for recycled scrap is now twice that of iron ore pellets. The carbon-free sponge iron that will in time replace iron ore pellets as LKAB’s main export product is suitable for arc furnaces, allowing the company to offer industries throughout the world access to carbon-free iron.”

Moström said the switch from iron ore pellets to carbon-free sponge iron was an important step forward in the value chain, increasing the value of its products at the same time as giving customers direct access to “carbon-free iron”.

“That’s good for the climate and good for our business,” he said. “This transformation will provide us with good opportunities to more than double our turnover by 2045.”

During the transformation period, LKAB will supply iron ore pellets in parallel with developing carbon-free sponge iron.

To reach the new strategy’s goals, rapid solutions must be found for various complex issues, according to the company. These include permits, energy requirements and better conditions for research, development and innovation within primary industry.

Moström said: “Our transformation will dramatically improve Europe’s ability to achieve its climate goals. By reducing emissions primarily from our export business, we will achieve a reduction in global emissions that is equivalent to two-thirds of all Sweden’s carbon emissions. That’s three times greater than the effect of abandoning all cars in Sweden for good.

“It’s the biggest thing we in Sweden can do for the climate.”

Göran Persson, Chairman of the Board of LKAB, said: “What Swedish industry is now doing, spearheaded by LKAB, is to respond to the threatening climate crisis with innovation and technological change. In doing so, we are helping to secure a future for coming generations. This will also create new jobs in the county of Norrbotten, which will become a hub in a green industrial transformation. Succeeding in this will create ripples for generations to come. Not just here, but far beyond our borders.

“Now we are doing, what everyone says must be done.”

SSAB, LKAB and Vattenfall start up world’s first pilot plant for fossil-free steel

SSAB, LKAB and Vattenfall have celebrated the start-up of their HYBRIT pilot plant as part of a project to produce fossil-free sponge iron.

Sweden Prime Minister, Stefan Löfven, started up the plant together with Isabella Lövin, Minister for Environment and Climate and Deputy Prime Minister in Sweden, Martin Lindqvist, President and CEO of SSAB, Jan Moström, President and CEO of LKAB, and Magnus Hall, President and CEO of Vattenfall, today.

The achievement comes just over two years since ground was broken to mark the start of the pilot plant build for fossil-free sponge iron (direct reduced iron/hot briquetted iron) with financial support from the Swedish Energy Agency.

At the plant, HYBRIT will perform tests in several stages in the use of hydrogen in the direct reduction of iron ore. The hydrogen will be produced at the pilot plant by electrolysing water with fossil-free electricity. Tests will be carried out between 2020 and 2024, first using natural gas and then hydrogen to be able to compare production results.

The framework for HYBRIT also includes a full-scale effort to replace fossil oil with bio oil in one of LKAB’s existing pellet plants in Malmberget, Sweden, in a test period extending until 2021. Preparations are also under way to build a test hydrogen storage facility on LKAB’s land in Svartöberget in Luleå, near the pilot plant.

The HYBRIT initiative has the potential to reduce carbon dioxide emissions by 10% in Sweden and 7% in Finland, as well as contributing to cutting steel industry emissions in Europe and globally. Today, the steel industry generates 7% of total global carbon-dioxide emissions, according to the companies.

“With HYBRIT, SSAB, LKAB and Vattenfall aim to create a completely fossil-free value chain from the mine to finished steel and to introduce a completely new technology using fossil-free hydrogen instead of coal and coke to reduce the oxygen in iron ore,” they said. “This means the process will emit ordinary water instead of carbon dioxide.”

Northvolt and Vattenfall partner on modular zero-emission power option offering

Northvolt and Vattenfall have announced a new battery energy storage solution that could provide a zero-emission alternative to running diesel generators on remote mine sites.

The Voltpack Mobile System is a rugged, highly modular lithium-ion battery system that can serve as a modular power supply solution to meet energy and power requirements of a wide variety of market scenarios, the companies said.

Prime applications include powering remote electricity grids, reinforcing weak grids, supporting electric vehicle charging and delivering grid services such as balancing power, flexibility, or other ancillary services, they said.

“Designed for redeployment, the system can be deployed for operations lasting days, weeks or even longer periods of time,” the companies said. “This characteristic opens Voltpack Mobile System up to opportunities of leasing and is expected to significantly expand the system’s utility.”

Within the project, Northvolt has led development and production of core technologies, including battery and complementary inverter systems, and the battery management system. Vattenfall, drawing on the company’s experience of delivering commercial grid solutions to market, has supported Voltpack Mobile System project development to tailor the product to match the needs of the market, through both advising on design and functionality, they said.

Emad Zand, President Battery Systems, Northvolt, said the company sees an increased need from the market for flexible solutions, both in terms of use case and location.

“Voltpack Mobile System is designed to give our customers a fleet of assets that can be redeployed, repurposed and connected seamlessly,” he said. “Vattenfall has been an invaluable partner of Northvolt since our earliest days, and their contributions to this project have enabled us to accelerate development of a product built to customer requirements.”

Torbjörn Johansson, Head of Vattenfall Network Solutions Sweden, said: “The need for flexible energy solutions such as energy storage is vital for the transition to the new energy system. Energy storage provides fast access to power when customers need to peak-shave, or the capacity of the grid connection is insufficient.

“The battery storage solution will be offered as part of our concept ‘Power-as-a-service’, which means that we deliver a complete package with ownership of the energy storage and manage it to the specification of the customer. Vattenfall add(s) a long experience of owning and operating different kind of network solutions including energy storage.”

Final validation of the system will be undertaken at Vattenfall’s test and certification centre in Älvkarleby, Sweden.

Vattenfall will be the first to offer the battery unit to the market and has identified the need for sustainable solutions at industries, for microgrids, construction sites as well as for event organisers, the companies said.

Voltpack Mobile System delivers up to 250 kW with a scalable capacity from 245 kWh to 1,225 kWh of available energy, according to the companies.

“The system scales through a central interface hub, which can connect in parallel up to five self-contained Voltpacks, each containing three liquid-cooled, industrial-grade battery Voltpack Cores,” the companies said. “The hub also serves as an interface for applications, and houses inverter and auxiliary systems. If further power or storage capacity is needed, this can be fulfilled simply by connecting multiple Voltpack Mobile Systems in parallel.”

Voltpacks feature high safety standards and are designed and built by Northvolt, the companies said.

“Leveraging field-proven technologies, Voltpack Mobile System is well-suited to operate under even the harshest conditions with a rugged profile and unique design features engineered for transportation and repeated redeployment.”

HYBRIT hydrogen storage facility finds financial backing

SSAB, LKAB and Vattenfall have agreed to invest SEK150 million ($15.2 million) on construction of a storage facility for hydrogen at the HYBRIT pilot plant for fossil-free steel.

The funding, which comes on top of the Swedish Energy Agency’s close to SEK50 million pledge, is an important step towards the goal of fossil-free iron and steel production, the HYBRIT joint venture partners said.

The HYBRIT initiative began in 2016. By using fossil-free electricity and hydrogen instead of coke and coal in steel production, the emissions will be water instead of carbon dioxide. The initiative has the potential to reduce Sweden’s total carbon dioxide emissions by 10%, according to company estimates.

The plan is to build the new hydrogen gas storage facility 25-35 m below the ground surface on LKAB’s land in Svartöberget, Sweden, close to the pilot plant currently under construction on SSAB’s site in Luleå. Construction of the 100 cu.m storage facility is expected to start in 2021 and it will operate from 2022-2024. It is expected to be a pressurised hydrogen gas storage facility in a bedrock cavern with a steel lining as a sealing layer.

The implementation study for the HYBRIT initiative showed large-scale storage of hydrogen gas can play an important role in Sweden’s future energy system. As well as acting as a buffer to ensure an even flow to the steel production, a large-scale hydrogen gas storage facility would offer a better opportunity to balance the electricity system with a greater proportion of weather-dependent power generation, and enable a competitive production cost for the fossil-free steel, according to the project partners.

Magnus Hall, Vattenfall’s President and CEO, said: “I am very pleased that we, as partners, are step by step developing our joint fossil-free steel project, and the support from the Swedish Energy Agency is important.

“Now, with the support of the community, we are investing in the next piece of the jigsaw puzzle for a value chain in which hydrogen gas plays a decisive role in the success of the initiative and the development of competitive fossil-free electricity generation in Sweden.”

Martin Lindqvist, SSAB’s President and CEO, said the investment in a storage facility for fossil-free hydrogen gas is “an important building block in achieving our goal of a fossil-free value chain from ore to finished steel”, with Jan Moström, LKAB’s President and CEO, adding that he was pleased the project could make use of parts of the company’s former ore port facility for the experiment.

Robert Andrén, Director General of the Swedish Energy Agency, said large, complex and expensive leaps in technology need to be taken for the sake of the climate, to achieve the goal of zero net emissions.

“Large-scale storage of hydrogen gas will be an important piece of the jigsaw puzzle for a fossil-free value chain for steel manufacturing, but also in a future electricity system with an increasing proportion of weather-dependent power,” he said.

In June last year, SSAB, LKAB and Vattenfall, the HYBRIT initiative partners, started the construction of a unique pilot plant in Luleå. Work also began recently on the reconstruction of a pellet works in Malmberget to replace fossil fuel with bio oil, with the aim of manufacturing fossil-free pellets.

The pilot plants for fossil-free steel production will be used from 2021 to 2024, and the partners are already looking into the possibility of scaling up the manufacturing by building a demonstration plant in 2025, three years earlier than previously planned, to produce fossil-free steel from iron ore for commercial use. The aim for 2035 is to sell fossil-free steel on a broad scale.

Boliden and Vattenfall sign agreement to electrify mines and smelters

Vattenfall and Boliden say they have signed an agreement to jointly evaluate technical developments to electrify mines and smelters, “the circular economy and a fossil-free future”. The agreement, which covers a four-year period, also includes battery solutions with a view to supporting the electricity grid and optimising electricity consumption, the two companies said.

The companies said: “Vattenfall and Boliden are committed to the transition to a sustainable society, which means reducing dependence on fossil fuels. Under the new four-year strategic agreement, the companies will develop business solutions involving batteries, solar panels, electric transport and recycling of new generation car batteries.”

President and CEO of Vattenfall, Magnus Hall, said: “It’s great that Vattenfall and Boliden can work together on this. It will require technological change and investments in new solutions, but the opportunities are there for both companies. Industrial partnerships like this are crucial if we are to make progress on the electrification of industry and enable fossil-free living within one generation.”

President and CEO of Boliden, Mikael Staffas, said: “Boliden is one of Europe’s largest players in the field of base metals. These metals are a crucial part of the solution for achieving ambitious climate targets in society. At the same time, it’s clearly important for us to drive the development forward within the raw materials sector and identify business solutions and processes for both mining and recycling which will make us more competitive.”

Boliden has mining and smelting operations in Sweden, Finland, Norway and Ireland, with the main sources of fossil emissions include diesel vehicles, process heat and coke as a reducing agent.

“In all areas, fossil-free electricity can be an important part of the solution,” the two companies said. “As a technology-independent partner, Vattenfall can evaluate and enable the introduction of fossil-free technologies, eg electricity and charging infrastructure for transport and mining.”

As a first step in the partnership, modern energy solutions will be implemented at the Bergsöe lead smelter in Landskrona, one of Europe’s largest recyclers of lead batteries from cars. Solar panels, which will produce locally generated renewable electricity to power the plant, will also be installed shortly, according to the two companies.

Technical solutions involving batteries, among other things, are expected to reduce the load on the electricity grid, provide backup power, reduce peaks in capacity and offset renewable weather-dependent electricity generation, they said.