Tag Archives: Cadia

Olitek ships first Remote Charge-up Unit to Newmont’s Cadia operation

Olitek Mining Robotics says it has reached an important milestone in its Remote Charge-up Unit (RCU) project with the dispatch of a RCU to Newmont’s Cadia operation in New South Wales, Australia.

The RCU uses robust mining robotics and a modified Volvo Construction Equipment wheeled excavator platform to enable full face charge-up from the safety of the cabin, Olitek explains.

Mechanised charge-up of tunnel development faces significantly reduces exposure of charge-up crews to tunnel face hazards such as seismicity, rockfalls, thermal stress and repetitive strain injuries. The development face explosives loading and priming crews are most ‘at risk’ to these geotechnical hazards due to the lengthy exposure duration at the tunnel face to perform their tasks.

The RCU project was part of a Canada Mining Innovation Council (CMIC)-backed consortium involving Vale, Newcrest (now Newmont), Agnico Eagle and Glencore, which sought to deliver a TRL7 (Technology Readiness Level) fully functioning prototype unit that will move personnel at least 4-5 m away from the underground development face and provide faster manual charge-up options to reduce exposure time for existing operations.

The system leverages Olitek’s patented HELX initiation system, allowing full charge-up and tie in to be completed using low-cost conventional detonators, the company says.

Olitek said the dispatch represents a major commercialisation milestone.

Newcrest plans for ZERO Automotive, MacLean ML5 battery-electric trials at Cadia

Having committed to and benefitted from the use of battery-electric haulage at its Brucejack underground mine in Canada, Newcrest Mining is now looking into equipment electrification options at its Cadia underground mine in Australia.

In its recently published annual report, the company confirmed it was planning for electric vehicle trials at the mine in New South Wales. This follows the deployment of a fleet of Sandvik Z50 battery-electric trucks at Brucejack, along with a trial of Sandvik’s LH518B battery-electric loader.

Newcrest, which is currently the subject of a friendly takeover from Newmont Mining, continued to progress its “Net Zero by 2050” goal during its financial year to June 30, 2023, with the scoping and planning of key trials and studies to implement the Group Net Zero Emissions Roadmap continuing.

A company spokesperson confirmed to IM that its plans at Cadia – a block cave operation that is currently being expanded – could see a ZERO Automotive battery-electric light utility vehicle deployed for trials in its current financial year. This comes alongside plans to test out MacLean’s battery electric ML5 Multi-Lift, also in FY2024.

ZERO Automotive has made inroads into the Australian underground mining space, deploying vehicles at multiple OZ Minerals (now BHP) sites, in addition to bringing an ultra-safe ZED70 Ti battery-electric converted utility vehicle, using LTO battery technology, to IGO’s Nova project in Western Australia.

MacLean’s ML5, meanwhile, is the newest addition to the company’s utility vehicle product line, initially designed as a safe and purpose-built alternative to the use of integrated tool carriers in underground operations across Australia. This specific application context – mine services installation and repair work from a certified elevated work platform with a 6.5-m working height and a 4.5-t payload – was the foundation of the ML5’s engineered design for safety, productivity and versatility.

Newcrest’s plans to incorporate more electric equipment into its operating fleet have – most likely – been influenced by the impressive results the company has seen at Brucejack, with the battery-electric trucks expected to improve truck productivity, lower unit costs and abate approximately 65,000 tonnes of CO2 emissions through to 2030.

CIMIC’s CPB Contractors enters alliance partnership with Newcrest Cadia on TSF, ancillary works

CIMIC Group company CPB Contractors has been selected by Cadia Holdings, a wholly owned subsidiary of Newcrest Mining Limited, to deliver enabling works for the Cadia Tailings Storage Facility Recommissioning Project, in New South Wales, Australia.

The project, to be delivered in an alliance partnership with Cadia Holdings, will support the operation of the Cadia gold and copper mine, near Orange.

The scope involves enabling works associated with the existing Cadia tailings storage facilities and ancillary works including haul roads and supporting facilities. Work is scheduled to be completed in 2023.

CIMIC Group Executive Chairman, Juan Santamaria, said: “We are pleased to have the opportunity to apply our resources and expertise to Australia’s largest gold mining operation. CPB Contractors will work collaboratively with Newcrest to achieve the project’s business goals
while also ensuring the community’s expectations regarding environmental performance and outcomes are met.”

CPB Contractors Managing Director, Jason Spears, said: “With this alliance CPB Contractors will be working in close partnership with Cadia Holdings to ensure that the project is safely delivered to schedule and budget and that all operational objectives are secured. As always, we will be focused on safety and apply CPB Contractors’ extensive regional project expertise to maximise opportunities for cost-effective, efficient delivery.”

Newcrest grads underline automation possibilities with SmartHog development

The use of an all-terrain unmanned ground vehicle, incorporation of military spec hardware and sensors, a bank of lead/acid batteries, and the ingenuity of three mechatronics graduates have brought Newcrest Mining closer to its goal of automating the PC1 extraction level at its Cadia East gold-copper underground mine in New South Wales, Australia.

The company has progressively been rolling out automation-focused technologies at this mine steered by its Mining Innovation and Automation (MIA) Team.

Last year, this team, with the help of Epiroc, successfully implemented the first semi-autonomous integrated production level at the mine, with, at the time, an autonomous Scooptram ST18 capable of full 24/7 production across seven drives of a whole panel cave at the operation.

It is a slightly smaller machine that is helping the company progress from the automation of production and support equipment at the mine to autonomously completing a range of inspection tasks on the fully-autonomous PC1 extraction level.

The seeds for the SmartHog vehicle – a WartHog all-terrain unmanned ground vehicle with ‘smarts’ – were sewn back in early 2021, when Cadia’s first mechatronics graduate arrived to join the MIA team.

“A challenge was set to build an automated underground inspection robot utilising a WartHog chassis,” Aaron Brannigan, Cadia General Manager, told IM, explaining that the challenge provided a hands-on task for the graduate that would result in a solution that was beneficial in realising the team’s key focus of improving safety through technology and innovation.

The new graduate began to design this robot with the WartHog chassis as the base and, over time, was joined by two more mechatronics graduates – one with a dual computer science degree – where the conceptual work behind the robot really started to accelerate.

In early 2022, the three started to build the robot from a range of hardware, all based on military specifications to withstand the underground environment.

Brannigan explained: “To achieve this, the graduates made every cable themselves, crimped every connector, assembled all the components and sensors and wrote the software code for various aspects of the sensor outputs.”

Since the inspection robot was designed to replicate tasks typically performed by people on the level, it had to be fitted with a range of sensors including LiDAR, Radar, a PTZ camera, stereoscopic camera, LED spotlights and a weather station for wet bulb temperatures and measuring wind velocity for ventilation purposes, the company explained. Powered by a bank of lead/acid batteries, the SmartHog was commissioned on surface and, in June 2022, completed trials underground, including being ‘checked in’ to the autonomous system.

“With some further testing and improvements, the SmartHog will soon live permanently underground in the autonomous zone and will be able to complete a range of inspection tasks,” Brannigan said. “This moves us closer to our goal of automation at the extraction level and is a key focus of improving operational safety and sustainability through technology.”

IM put some questions to Brannigan to find out more.

IM: How are you leveraging technology from the automotive sector in the SmartHog? What kind of adaptations are required for this to work underground?

AB: The SmartHog utilises automotive industry radars as a way of localising its position underground. LiDAR is vulnerable to interference from dust and moisture in the air, whereas radar can ‘see’ through these, allowing the SmartHog to continue to navigate and know its position underground when these are present. We believe the use of radar in this context is industry-leading and our intent with this is twofold: first, it demonstrates the advantages and reduced downtime of radar over LiDAR and, second, it encourages original equipment manufacturers (OEMs) to move from LiDAR to radar for their autonomous equipment so they can take advantage of the benefits it offers.

IM: What existing underground communications infrastructure is in place at PC1 to help facilitate the real-time transmission of data from the SmartHog?

AB: Our underground PC1 level has Wi-Fi throughout which forms the basis of the autonomous system, and this is connected to the surface via fibre optic cables.

IM: How are you using the new data you are collecting with the SmartHog at Cadia? What tasks is it allowing you to do that you couldn’t previously carry out (or conducted differently)?

AB: The primary purpose of the SmartHog is to undertake a range of tasks that a person has usually performed in the past, improving both safety and efficiency. One example is geotechnical inspections of draw points and extraction drives. In the past when it was necessary for a Geotechnical Technician to undertake an inspection, the autonomous level would need to be deactivated and the autonomous equipment removed to ensure there was no risk of vehicle on person interaction. This is a time-consuming process and means production is stopped for the duration, not to mention the potential risk to the person entering the level on foot.

With the various sensors fitted to the SmartHog, it can scan and photograph the draw point (using the conventional digital camera and stereoscopic camera) and send this information to the surface where a Geotechnical Engineer can review it, all while autonomous loading operations continue.

As the SmartHog is ‘checked in’ to the autonomous system and is ‘seen’ by the other equipment, it can operate independently but also become part of the autonomous traffic management system. Should the Geotechnical Engineer require further information about the draw point, the SmartHog can return and drive up to the limit of the draw point and capture further data from the range of sensors.

IM: Are there other projects outside of the PC1 where you could use the SmartHog?

AB: We anticipate in the future that each panel cave could have their own SmartHog, so that a range of tasks can be completed as previously outlined.

IM: Are there plans to make more SmartHogs? Could they be adapted to carry out other tasks?

AB: The way we have developed the first SmartHog may look very different to how any future SmartHogs may look. The value the graduates gained from solving a current problem using a hands-on approach is priceless and helps demonstrate the value of the graduate program. We believe the graduate program at Newcrest is industry-leading given the types of challenges our graduates can address and solve using the skills recently acquired at university on real-world challenges.

Given the SmartHog is battery powered, as battery technology improves, the next generation of SmartHogs will be able to carry lighter and higher capacity batteries allowing for larger payloads and longer run times. This could allow the inclusion of other sensors and different types of cameras, such as infrared and thermal, which are traditionally heavy items and would limit the range of the current battery performance. The options available are endless once battery technology improves to the point where runtimes are increased and recharge times are reduced. This is not far off given the speed at which battery technology and design is improving.

Epiroc, Orica secure Newcrest Cadia trial for commercial Avatel charging system

Newcrest Mining is set to trial Avatel, a fully mechanised development charging system developed by Epiroc and Orica, at the Cadia operation in New South Wales, Australia, later this year, according to Tony Sprague.

Sprague, Group Manager, Directional Studies and Innovation at Newcrest, said this will be the first commercial trial of the Orica and Epiroc co-developed system anywhere in the world.

Orica and Epiroc, back in 2019, announced joint work on a semi-automated explosives delivery system, enabling safer and more productive blasting operations in underground mines. The companies said the partnership would “bring together the deep expertise and experience of two global industry leaders” to address the growing demand from customers mining in increasingly more hazardous and challenging underground operations.

Avatel includes Orica’s HandiLoader™ emulsion process body, Epiroc’s M2C carrier and RCS 5 control system, working with Orica’s LOADPlus™ control system and WebGen™ 200 wireless initiation system and automated WebGen magazine. Epiroc has also incorporated an onboard dewatering and lifter debris clearing system, while Orica’s ShotPlus™ intelligent blast design software is also being leveraged. These components help eliminate the need for traditional tie-ins and other physical wired connections from the charging cycle.

Orica has stated previously: “This first-of-its-kind innovation enables a single operator to prepare and charge explosives from the safety of an enclosed cabin, several metres from the face and out of harm’s way. Combined with Orica’s LOADPlus smart control system and Subtek Control bulk emulsion, customers can enjoy complete and repeatable control over blast energy from design through to execution.”

Trials with a prototype machine have been taking place at Epiroc’s Kvantorp Underground Test Mine in Sweden under controlled underground conditions. IM understands there are also plans for a machine to head to Agnico Eagle’s Kittilä Mine in Finland to complete extended underground trials in the production environment.

Newcrest’s Cadia operation is set to be the first site to trial the complete commercial offering at Cadia, commencing in the second half of 2022, according to Sprague.

Komatsu and Vale’s DynaCut Garson collaboration to be highlighted at MINExpo

Komatsu and Vale are set to reveal more about their underground hard-rock mechanised cutting technology collaboration at the upcoming MINExpo 2021 event next month.

The companies, through the Canada Mining Innovation Council, have been engaged on a project to advance the future of underground hard rock excavation through optimising use of Komatsu’s DynaCut mechanical cutting technology.

The technology was previously tested at the Cadia underground mine in New South Wales, Australia, operated by Newcrest Mining, which IM revealed last year as part of an exclusive interview with Vale’s Luke Mahony, Head of Geology, Mine Engineering, Geotechnical and Technology & Innovation for the Global Base Metals Business; and Andy Charsley, Project Lead and Principal Mining Engineer, Technology & Innovation.

Vale and Komatsu will start trialling DynaCut’s capabilities on Komatsu’s new MC51 machine at Vale’s Garson Mine in Sudbury, Ontario, Canada, shortly, working together to increase the pace at which the innovative technology will be available to the larger market.

The machine is set up at Garson and expected to start cutting in the next month, IM understands.

“True innovation requires effective collaboration between the end user and suppliers to ensure the technology meets the needs of the industry,” Dino Otranto, Chief Operating Officer of North Atlantic Operations and Asian Refineries for Vale, said. “This partnership is that first step to really prove and understand the technology, while meeting our high standards for safety.”

Through more than 10 years of research and development, Komatsu says it has determined how to break rock continuously and precisely through a fully-electric system that outputs zero emissions. By automating and controlling processes so the machine can be operated remotely via line of site, Komatsu customers can move their operators further from the cutting face and from harm’s way leveraging DynaCut technology and the MC51 machine, it said.

Rudie Boshoff, Director of Hard Rock Cutting Systems at Komatsu, said: “We’re excited to be trialling this new machine and technology because it offers the potential to really change the way our customers mine. Not only does the DynaCut technology provide a very controllable way of cutting rock – within 50 mm accuracy to plan – the machine itself, the MC51, is designed to advance more sustainable mining methods by reducing the amount of equipment required to get to the orebody.”

Komatsu and Vale will be co-presenting about their partnership to drive innovation on September 13, 2021, on stage at the Komatsu booth in Las Vegas.

Just this week, Hillgrove Resources said it was set to trial the DynaCut technology on an MC51 machine to develop a portal and underground decline at the Kanmantoo mine in South Australia following a A$2 million grant from the South Australia Government.

Matrix aims to replace steel componentry at Newcrest’s Cadia block cave

Matrix Composites & Engineering has secured a contract with Newcrest Mining to develop a “high-tech solution” for its Cadia gold mine in New South Wales, Australia.

Under the scope of the works, Matrix will use its expertise in advanced materials technology to develop a composite replacement for steel componentry within the miner’s block caving operations at Cadia.

The scope of works for product development, with a contract value of up to approximately A$500,000 ($380,701), will commence immediately and is planned for completion in October 2021. If the development work is successful, it is intended Matrix would manufacture the full-scale solution at its facility in Henderson, Western Australia, for supply directly to Newcrest.

The contract aligns with Matrix’s strategy to increase penetration of its advanced materials technologies into operations and brownfields projects, the company said. It follows a recent agreement with Woodside Petroleum to provide technology development services, using the company’s expertise in advanced materials technology, composite materials and advanced manufacturing.

Matrix Chief Executive Officer, Aaron Begley, said the advanced composite solution has applications for other companies in the mining sector and potentially in the oil and gas space.

“We are pleased to be working with Newcrest and look forward to delivering on this project to replace steel with an innovative composite product that will introduce new technology to make the block caving process safer and more efficient,” Begley said.

“While the scope of this contract for product development is modest, it demonstrates further progress in our strategic pivot from targeting greenfields capital expenditure work to locally-based brownfields operating expenditure in the oil and gas and resources sectors.

“We are optimistic that successful delivery of this project has the potential to unlock larger scale contracts with Newcrest and other blue-chip resources companies.”

Eriez HydroFloat technology to help improve recoveries at Newcrest’s Cadia operation

Eriez Flotation is to supply four HydroFloat® Separators to Newcrest Mining for use in Stage 2 of the miner’s Cadia Valley Operations (Cadia) expansion project in New South Wales, Australia.

This announcement follows the successful delivery, commissioning and ramp up of four Eriez CrossFlow Separators and two HydroFloats as part of the Cadia Coarse Particle Flotation demonstration plant in 2018.

Eriez Flotation Global Managing Director, Eric Wasmund, says: “When Stage 2 of the Cadia Expansion Project is complete, 100% of the Concentrator 1 tailings will be re-treated, significantly improving overall plant recovery for a coarser primary grind.”

The Stage 2 Cadia Expansion project primarily comprises the addition of a second coarse ore flotation circuit in Concentrator 1, using Eriez’s HydroFloat technology, and equipment upgrades in Concentrator 2, Newcrest said back in October. These changes are expected to see plant capacity go from 33 Mt/y to 35 Mt/y, while life of mine gold and copper recoveries could increase by 3.5% and 2.7%, respectively. Alongside this, the company was expecting a A$22/oz ($16/oz) drop in its all-in sustaining costs.

Newcrest is the first mining company to commercialise HydroFloat coarse particle flotation in sulphides and the first
in a tail scavenging application.

Wasmund added: “Eriez has been very fortunate to partner with Newcrest on coarse particle flotation. As partners we have learned many lessons together.”

Eriez-Australia Managing Director, James Cooke, noted: “During the commissioning of the demonstration plant, Eriez and Newcrest Mining worked closely together to perfect the technology. The decision was subsequently made to expand the application.”

Newcrest shores up wind energy input at Cadia mine with Tilt Renewables PPA

Newcrest Mining has entered into a 15-year renewable Power Purchase Agreement (PPA) with Tilt Renewables Ltd to secure a significant part of the future projected energy requirements of its Cadia copper-gold mine in New South Wales, Australia.

The PPA, together with the forecast decarbonisation of NSW electricity generation, is expected to deliver a circa-20% reduction in Newcrest’s greenhouse gas emissions and is a significant step towards achieving Newcrest’s target of a 30% reduction by 2030, the miner said.

Tilt Renewables is the owner and developer of the Rye Park Wind Farm, located north of Yass and east of Boorowa in New South Wales. From January 2024, when commercial operations are targeted to commence, Newcrest will contract for around 55% of Rye Park’s planned circa-400 MW output, which is equivalent to more than 40% of Cadia’s projected energy demand from 2024.

Rye Park Wind Farm, which comes with a capital expenditure bill of A$700 million ($530 million), will become the largest wind farm directly enabled by a corporate PPA in Australia, according to Newcrest, and the project is now expected to move from the development stage into financing and construction.

The PPA is conditional on Tilt Renewables achieving financial close for the project and is a contract for difference requiring no upfront capital investment by the miner. “The PPA will act as a partial hedge against future electricity price increases and will also provide Newcrest with access to large-scale generation certificates which it intends to surrender to achieve a reduction in greenhouse gas emissions,” the company explained.

Newcrest Managing Director and Chief Executive Officer, Sandeep Biswas, said: “This new contract secures renewable energy for our Cadia operations, reduces carbon emissions and helps us maintain competitive energy costs.

“This is a critical step in our transition to sustainable energy use at our operations. As part of our Climate Change Policy, released last June, we have committed to a significant reduction in emissions intensity, and this agreement is a major step towards delivering on that objective.”

He concluded: “We continue to explore ways to reduce Cadia’s emissions intensity and our long-term aim is to virtually eliminate Cadia’s energy-related greenhouse gas emissions. In addition, we continue to pursue emissions-intensity reduction initiatives at our other operating sites.”

Vale teams with Komatsu and CMIC on ‘revolutionary’ hard-rock cutting project

Vale, in 2021, is due to embark on a major hard-rock cutting project at its Garson mine, in Sudbury, Canada.

Part of the mechanical cutting demonstration within the CMIC (Canada Mining Innovation Council) Continuous Underground Mining project, it will see the company test out a Komatsu hard-rock cutting machine equipped with Komatsu DynaCut Technology at the mine.

With an aim to access the McConnell orebody, as well as provide a primary case study for CMIC members to learn from, all eyes will be on this Sudbury mine in the June quarter of 2021.

Vale plans to demonstrate the ability to cut rock in excess of 250 MPa; cut at a commercial rate of more than 3.5 m/shift; quantify the cost per metre of operation and start to look at the potential comparison with conventional drill and blast development; assess the health, safety and environmental suitability of the mechanical rock excavation (MRE) process; and gain insight into the potential of an optimised MRE process.

Another Komatsu unit has already been assembled and (by now) is most likely operating at the Cadia underground mine in New South Wales, Australia, operated by Newcrest Mining. Vale will be watching developments here, where a three-month “pre-trial” cutting hard rock will take place.

Vale has laid out a testing plan for its own machine, with the unit set to cut around 400 m for the trial period.

IM had to find out more about this.

Fortunately Vale’s Luke Mahony, Head of Geology, Mine Engineering, Geotechnical and Technology & Innovation for the Global Base Metals Business; and Andy Charsley, Project Lead and Principal Mining Engineer, Technology & Innovation, were happy to talk.

IM: Why do you think industry collaboration is key in the underground hard-rock cutting space, in particular? Why has it been harder to develop and apply this technology in mining compared with other solutions such as automation, electrification and digitalisation?

LM: There are many various OEMs entering the market with hard-rock cutting equipment. All of them approach the problem a little bit differently, so it is difficult for one company to trial all of the options. At the same time, we are trying to leverage these new technologies and processes across the industry for a mechanical cutting type of future. For me, this is essential if we are to get the safety, cost and productivity benefits we need to make some of these new underground mines viable.

Comparing it to automation and electrification shows it is a ‘revolutionary’ concept as opposed to an ‘evolutionary’ one. Automation and electrification are more evolutionary concepts – automating an existing scoop or truck or electrifying it – whereas hard-rock cutting is more revolutionary and transformational in the sector, so industry collaboration is even more important.

IM: Since the project was presented at CMIC’s ReThinkMining Webinar, in June, have you had a lot more partnership interest in the project?

LM: We have seen a few other industry members ask questions and connect regarding this project. Some mining companies, while interested, are a little unsure of how they can get on-board with a project like this. What we have done is to utilise the CMIC consortium to make it the foundation of this collaboration, ensuring it is as easy and efficient as possible to join. Also, we want to cover the key concerns that mining companies have when it comes to collaboration, which CMIC is well aware of and can address.

CMIC is well connected with underground professionals and like-minded companies, and is able to pull in interest and facilitate the collaboration framework.

IM: What has happened to the MRE project timeline since June? Are you still on for receiving the machine in early 2021 to start testing later in the year?

AC: The machine has been assembled and we will mobilise it to Canada in early 2021. All of the underground cutting, in Canada, is scheduled to start in April 2021.

Komatsu have assembled two units – the first unit has come off the assembly line and is about to start trials at Cadia any day now. The second machine has just completed final assembly and will undergo Factory Acceptance Testing in the next few months, while we monitor the initial performance of the first machine. The second machine will come to Canada early next year and, if there are any modifications required, we can carry them out, prior to it going underground.

IM: How has the machine changed from the prototype that was initially deployed at Cadia and shown at MINExpo 2016?

AC: In 2016 and 2018, Komatsu implemented a proof of concept and, after that proof of concept, there was interest from miners to build a full commercial unit – which has happened now.

The prototype was ultimately to test the enabling cutting technology, whereby this element was retrofitted to a medium-sized roadheader for manoeuvrability. What Komatsu has done now is fully embed it into a system more like a continuous miner, which has the cutting arm, ground handling shovel & collector and the rest of the body to put it into a full production, continuous operation. It is now going to be part of the production process, as opposed to just testing the cutting aspect.

IM: Considering the end goal of this project is to evaluate the type and number of applications for which hard-rock cutting is suitable across industry (not just at Garson and the McConnell orebody), why did you select the Komatsu HRCM?

LM: It’s really about the Komatsu DynaCut Technology, which, for us, is an extremely low energy process for cutting the hard rock compared with, say, a TBM.

At the same time, what attracts us is the ability to integrate it with existing infrastructure within our current process at the mine – bolters, trucks, LHDs, etc. It is not about fully redesigning the mine to implement this technology.

This trial is that first step to really prove and understand the Komatsu DynaCut Technology in terms of dealing with cutting our relative hard rock in Sudbury. In that regard, the Komatsu technology provided the best technical opportunities for the conditions at hand.

IM: When the machine gets going in Australia, what hardness of rock will it be cutting in the hard-rock stage? How does this compare with Garson?

LM: Cadia is a rock ranging around 200 MPa, whereas in Sudbury we would be looking around 250 MPa. That’s when you talk about Uniaxial Compressive Strength (UCS) of the rock.

When you start looking at this undercutting technology, there are a few other aspects you need to consider. This includes rock toughness – the ability to resist a crack when a tensile force is applied, sort of like a jackhammer – and brittleness – how much energy that rock can absorb before it breaks.

Ultimately, we are working with Komatsu to understand how we should adapt an undercutting technology for our mines, and what the key parameters to consider are. At this stage, UCS seems to be the benchmark in the industry, but I think there will be a lot more considerations to come out of this project.

IM: What are the reasons for applying the technology at Garson? Were other areas in Sudbury considered?

AC: The priority for us was to have a shallow, low stress ground environment to start off with. At the same time, these are significant machines that would have to be disassembled if you were going down a shaft, which would be complicated. We have ramp access at Garson which makes things easier.

The other point is that Garson is an operating mine so we have got the facilities that can support the project; everything from removing the rock to ground support, service installation and surface infrastructure.

IM: How widespread do you think hard-rock cutting could be across the underground industry? Could it eventually become a mainstream method to compete with drill and blast?

LM: This is the ultimate question. I would like to say yes, it will become mainstream. It is our intention to really develop and prove that it can not only compete with drill and blast, but ultimately improve on it. This will see, in the future, an application for both mechanised hard-rock cutting and drill and blast.

You are going to need to look at fundamental KPIs such as safety, productivity and the cost associated with that productivity.

The focus now is to mature the cutting technology and start to develop the production or the process that goes with underground development beyond just cutting rock.

When developing around sensitive areas where you require low disturbance, hard-rock cutting will be important, as it will be in highly seismic ground. Then, if the unit cost of operating these machines gets low enough, you can start to assess orebodies that were previously not viable. At the same time, it is an electrified process so enables the industry to accelerate some of the decarbonisation plans for underground mining.

IM: Anything else to add on the subject?

LM: I think it’s fair to say, there will be no ‘one-size-fits-all’ solution when it comes to hard-rock cutting. Different OEMs are going to develop and mature solutions and there will be applications for each of them, but we have got a long way to go to really understand that as an industry.

The ultimate goal is to get that industry collaboration between OEMs and industry going to ensure solutions are developed that show a way forward for the sector.

This Q&A will feature in the annual continuous cutting and rapid development focus, soon to be published in the IM November-December 2020 issue. Photo courtesy of Komatsu Mining