Tag Archives: Malmberget

LKAB to trial AI-backed XRF drill core logging with help of Minalyze and Sentian

LKAB, Minalyze AB and Sentian say they have joined forces in a consortium to develop the latest technology for scanning drill core.

In March 2020, LKAB started a test with the Minalyzer CS drill core scanner where the goal was to improve the workflow for core logging – ie how the results of exploration drilling are analysed. The test led to a permanent installation in Kiruna (Sweden) and expansion to Malmberget where data from the Minalyzer CS is used to help geological logging of the drill core.

The consortium of LKAB, Minalyze and Sentian are now set to take the use of data to the next level when boreholes in LKAB’s deposits are to be investigated. The new artificial intelligence application being developed by the trio will make the analysis much faster, with the time to evaluate a drill core reduced from weeks to minutes, with increased accuracy.

This could see Minalyze’s X-ray Fluorescence-backed CS scanner analyse LKAB drill core while leveraging Sentain’s industrial artificial intelligence solutions to make real-time decisions relating to drilling and exploration activities.

The technology development driven by the consortium will be a world first, changing the entire industry, the companies say.

Jan-Anders Perdahl, Specialist at LKAB’s Exploration Department, said: “With the collaboration, the core logging takes a big step through machine learning and artificial intelligence. The geologist can, at an early stage, place greater focus on the parts of the core that show chemical or other changes. Opportunities are opened up to gain increased knowledge about ore formation processes and alterations in a completely different way than before. One can also get indications that you are close to mineralisation and where it may be located, and thereby streamline exploration.”

The technological leap will give LKAB’s staff increased competence, increased quality in and efficiency of the work, as well as reduced need for other analysis methods, according to the companies.

Annelie Lundström, CEO of Minalyze AB, said: “We are at an interesting time when the hardware to extract consistently high-resolution data from drill cores is available and we can now take the next step and generate value from data together with our customers. In this collaboration, we will develop algorithms that can map rock layers in so-called lithological logs with very high confidence. This can only be done by combining expertise from all three parties.

“The results from our collaboration will forever change how drill core logging takes place everywhere and will result in a more efficient, non-subjective and consistent process.”

Martin Rugfelt, Sentian CEO, added: “We see great power in the application of modern artificial intelligence to data from the mining industry and there is major potential in further combining our machine learning technology with Minalyze’s unique capabilities in data collection and analysis.”

LKAB plots carbon-free pathway with direct reduced iron switch

LKAB has presented its new strategy for the future, setting out a path to achieve net-zero carbon emissions from its own processes and products by 2045, while securing the company’s operations with expanded mining beyond 2060.

Jan Moström, President and CEO of LKAB, said the plan represented the biggest transformation in the company’s 130-year history, and could end up being the largest industrial investment ever made in Sweden.

“It creates unique opportunities to reduce the world’s carbon emissions and for Swedish industry to take the lead in a necessary global transformation,” he said.

The strategy sets out three main tracks for the transformation:

  • New world standard for mining;
  • Sponge iron (direct reduced iron) produced using green hydrogen will in time replace iron ore pellets, opening the way for a fossil-free iron and steel industry; and
  • Extract critical minerals from mine waste: using fossil-free technology to extract strategically important earth elements and phosphorous for mineral fertiliser from today’s mine waste.

The transformation is expected to require extensive investments in the order of SEK10-20 billion ($1.2-2.3 billion) a year over a period of around 15 to 20 years within LKAB’s operations alone. The company said the new strategy was a response to market developments in the global iron and steel industry, “which is undergoing a technology shift”.

The move could cut annual carbon dioxide emissions from the company’s customers worldwide by 35 Mt, equivalent to two thirds of Sweden’s domestic greenhouse gas emissions, it said.

Developments under the HYBRIT project, in which SSAB, LKAB and Vattenfall are collaborating on a process to enable the reduction of steel from iron ore using hydrogen instead of carbon, will be keenly observed following the miner’s announcement.

On top of this collaboration, LKAB is working with Sandvik, ABB, Combitec, Epiroc and several other industry leaders to develop the technology that will enable the transition to fossil-free, autonomous mines, it said.

Moström added: “The market for iron and steel will grow and, at the same time, the global economy is shifting towards a carbon-free future. Our carbon-free products will play an important part in the production of railways, wind farms, electric vehicles and industrial machinery.

“We will go from being part of the problem to being an important part of the solution.”

The market for steel is forecasted to grow by 50% by 2050. This growth will be achieved by an increase in the upgrading of recycled scrap in electric arc furnaces, according to LKAB. Today, the iron and steel industry accounts for more than a quarter of industrial emissions and for 7% of the world’s total carbon dioxide in the atmosphere, according to an IEA report.

The company said: “The global market price for recycled scrap is now twice that of iron ore pellets. The carbon-free sponge iron that will in time replace iron ore pellets as LKAB’s main export product is suitable for arc furnaces, allowing the company to offer industries throughout the world access to carbon-free iron.”

Moström said the switch from iron ore pellets to carbon-free sponge iron was an important step forward in the value chain, increasing the value of its products at the same time as giving customers direct access to “carbon-free iron”.

“That’s good for the climate and good for our business,” he said. “This transformation will provide us with good opportunities to more than double our turnover by 2045.”

During the transformation period, LKAB will supply iron ore pellets in parallel with developing carbon-free sponge iron.

To reach the new strategy’s goals, rapid solutions must be found for various complex issues, according to the company. These include permits, energy requirements and better conditions for research, development and innovation within primary industry.

Moström said: “Our transformation will dramatically improve Europe’s ability to achieve its climate goals. By reducing emissions primarily from our export business, we will achieve a reduction in global emissions that is equivalent to two-thirds of all Sweden’s carbon emissions. That’s three times greater than the effect of abandoning all cars in Sweden for good.

“It’s the biggest thing we in Sweden can do for the climate.”

Göran Persson, Chairman of the Board of LKAB, said: “What Swedish industry is now doing, spearheaded by LKAB, is to respond to the threatening climate crisis with innovation and technological change. In doing so, we are helping to secure a future for coming generations. This will also create new jobs in the county of Norrbotten, which will become a hub in a green industrial transformation. Succeeding in this will create ripples for generations to come. Not just here, but far beyond our borders.

“Now we are doing, what everyone says must be done.”

Sandvik enters LKAB-led SUM project as Volvo Group departs

Sandvik has joined the Sustainable Underground Mining (SUM) project being run by LKAB at the same time as the Volvo Group has exited the Sweden-based collaboration.

The moves come as the iron ore miner looks to “further strengthen a joint endeavour towards sustainable underground mining at great depths”, it said.

To develop the digitalised, autonomous and carbon-dioxide-free mine of the future, in collaboration with other globally leading Swedish companies, LKAB initiated SUM in 2018.

After 2030, LKAB must be ready to mine iron ore deeper in the mines in Kiruna and Malmberget, in northern Sweden. For this, one of Sweden’s biggest industrial investments ever, decisions will have to be taken in the mid-2020s.

“This type of strategic collaboration project is very complex, each company contributes its specific expertise, and the partners will link together both digital systems and operations,” LKAB says. “Providing unique possibilities for SUM, the test mine, Konsuln, in Kiruna will serve as a real mine environment where technology, machines and working methods will be tested.”

Sandvik will be joining LKAB, Epiroc, ABB and Combitech in trying to achieve this goal. The Volvo Group’s earlier partnership in SUM will now take the form of other collaboration with LKAB, the miner said.

Jan Moström, President and CEO of LKAB, said: “In the coming years, LKAB must have a solution in place to be able to mine iron ore at depths approaching or exceeding 2,000 m in a cost-effective way by employing technology that is safe, autonomous, electrified, digitalised and carbon-dioxide-free.

“To enable this, collaboration with other leading industrial companies will be decisive. Sandvik’s longstanding experience of producing underground vehicle systems will complement the ongoing work in an important way.”

Stefan Widing, President and CEO Sandvik, said: “LKAB has used automated equipment from Sandvik for many years and we look forward to the opportunity to extend our collaboration and introduce new and advanced solutions that will set an industry standard.”

Epiroc and Sandvik will be relied on for battery-powered, autonomous and efficient mining equipment and related solutions that will ensure improved productivity and safety in LKAB’s mines. ABB’s role is to contribute knowledge and solutions for electrification, automation, service and maintenance. Combitech, meanwhile, will bring broad expertise and experience when it comes to connecting autonomous processes and people via so-called digital ecosystems.

LKAB says significant progress has been made on the project to date, including:

  • Successful establishment of the test mine, Konsuln, in Kiruna, where testing is carried out in a real mine environment;
  • An integration and collaboration platform, ‘LOMI’ (LKAB Open Mine Integrator) has been developed to enable an open systems architecture whereby all partners can develop modules and solutions that work together;
  • ABB has delivered ABB Ability System 800xA, the control-room console Extended Operation Workplace and a “Collaboration table” for visualising key functions and key figures in the mine, allowing the operator to monitor and control equipment in the best, most sustainable way. The ambition is that everything that is done in the test mine can be approved, planned and controlled via a project office at surface level, so that underground work can be done more efficiently;
  • Epiroc has delivered the drill rig Easer L and Scooptram ST18 LHD, both equipped for automation functionality, for the test mine, and operators and service personnel have been trained. The Easer L, commissioned in 2019, has shown good results in drilling over 50-m-long holes in the test mine, which is an important step for planning the future mine layout. For the loader, during Autumn 2020, the plan is to conduct tests with increasing complexity in terms of automation and interoperability; and
  • Combitech has delivered new solutions for systems platforms on an ongoing basis together with LKAB’s IT department. The aim is to synchronise new technology with existing systems.

In March 2020, the “Testbed for integrated, efficient and carbon-dioxide-free mining systems”, a part of SUM, received funding amounting to 207 million Swedish kronor ($23 million) from the Swedish Energy Agency.

SSAB, LKAB and Vattenfall start up world’s first pilot plant for fossil-free steel

SSAB, LKAB and Vattenfall have celebrated the start-up of their HYBRIT pilot plant as part of a project to produce fossil-free sponge iron.

Sweden Prime Minister, Stefan Löfven, started up the plant together with Isabella Lövin, Minister for Environment and Climate and Deputy Prime Minister in Sweden, Martin Lindqvist, President and CEO of SSAB, Jan Moström, President and CEO of LKAB, and Magnus Hall, President and CEO of Vattenfall, today.

The achievement comes just over two years since ground was broken to mark the start of the pilot plant build for fossil-free sponge iron (direct reduced iron/hot briquetted iron) with financial support from the Swedish Energy Agency.

At the plant, HYBRIT will perform tests in several stages in the use of hydrogen in the direct reduction of iron ore. The hydrogen will be produced at the pilot plant by electrolysing water with fossil-free electricity. Tests will be carried out between 2020 and 2024, first using natural gas and then hydrogen to be able to compare production results.

The framework for HYBRIT also includes a full-scale effort to replace fossil oil with bio oil in one of LKAB’s existing pellet plants in Malmberget, Sweden, in a test period extending until 2021. Preparations are also under way to build a test hydrogen storage facility on LKAB’s land in Svartöberget in Luleå, near the pilot plant.

The HYBRIT initiative has the potential to reduce carbon dioxide emissions by 10% in Sweden and 7% in Finland, as well as contributing to cutting steel industry emissions in Europe and globally. Today, the steel industry generates 7% of total global carbon-dioxide emissions, according to the companies.

“With HYBRIT, SSAB, LKAB and Vattenfall aim to create a completely fossil-free value chain from the mine to finished steel and to introduce a completely new technology using fossil-free hydrogen instead of coal and coke to reduce the oxygen in iron ore,” they said. “This means the process will emit ordinary water instead of carbon dioxide.”

Visualising the future of particle measurements with 3DPM

The 3DPM vision system has had quite a journey. Since the first prototype was installed at LKAB’s Malmberget iron ore to help the miner optimise its pellet production, the system has helped ‘settle the argument’ between mine and mill at base metal mines in Europe and improve the quality of coke being fed to blast furnaces in Japan.

The future looks bright too, with the potential for the system to play a major role in the automation of mine process plants.

Users of 3DPM have seen the importance of having a high-quality vision system that can measure material from a few millimetres to as big as 300 mm in size at relatively high speeds on conveyor belts.

Matthew Thurley, Principal Scientist at Innovative Machine Vision and one of the inventors of the system, has seen the system evolve at the same time as the industry’s understanding of orebody characterisation has grown.

Sweden-based MBV Systems was involved from the beginning on the system, working in partnership with Thurley during his time at Lulea University. It was a three-way collaboration between the university, the SME, and mining companies that got the product to market.

3DPM stands for three-dimensional particle measurement. The system consists of high-performance hardware for 3D scanning of particles and state-of-the-art software for analysis of the size and distribution of particles on a conveyor belt.

“Each system is optimised regarding the hardware and software to best fit each individual installation site and customer preference,” MBV Systems said. “A few examples include OPC communication, heating options to allow functionality in freezing environments, bulk volume calculation, rock bolt detection, and alarm triggering on oversize material.”

Back in 2006, the system installed at Malmberget was very different.

Thurley said the physical hardware, mounted above a conveyor, was pieced together to function properly, but required integration of many individual parts which was hard to maintain.

Still, it provided the iron ore miner with a detailed particle size distribution down to mm-size classes of its high-grade iron ore pellets.

And, in the 14 years since first installation, the principle of the system has remained: to provide increased knowledge of particle size distribution to generate value in, for instance, crusher/mill control, blast furnace effectiveness, process optimisation, or process knowledge.

As more companies have become familiar with the system, the advanced features such as algorithms to detect fines and partially embedded particles have come to the fore. The hardware has been reinforced for rough environments with IP65 rating and the need for very low maintenance even when running 24/7.

This has meant the system has potential in projects focused on improved quality control, automation and process control; three topics the industry is looking at to improve its bottom line, increase its revenues and remove people from operations.

MBV Systems said: “Our customers, who are already highly automated, must continually make their operations more efficient and reduce costs in increasingly tougher international competition. MBV Systems’ machine vision systems constitute a decisive factor for higher productivity, improved efficiency and for complete quality control.”

LKAB started using the system more than 10 years ago. Over that timeframe, the system won many admirers.

Boliden is a big fan of 3DPM, with installations at its Garpenberg, Aitik and Tara operations.

Earlier this year, the miner decided to install another 3DPM system at Garpenberg, four years after the first system was delivered to the Aitik mine to help boost process knowledge and control strategies for crushers and grinding mills.

The way the Sweden-based miner has applied this technology makes for a great case study, according to Thurley.

At Tara, the system is being used for increased process knowledge – “settling the argument between mine and mill”, Thurley says – while, at Garpenberg, the vision system is being leveraged to detect boulders and rock bolts online in a safe way.

This shows 3DPM can be used for multiple purposes.

Such flexibility is down to the system’s ability to provide full size distribution measurements from 0-300 mm and the use of newer algorithms, with the accuracy dependent on the speed of the conveyor belt and the target size of the material under scrutiny.

One of the differentiating factors of 3DPM compared with other vision systems – many of which are now used within ore sorting projects – is the ability to provide a good 3D data profile of the surface of the rock mass. This helps distinguish between rocks and fines, for instance, even when the two are interwoven.

“With the system, we can classify fines and embedded rocks,” Thurley explained. “In other systems, fines may be mistaken for large ‘rocks’ and significantly skew the measured size distribution resulting in bad data and bad decision making.”

This is particularly important in operations that produce several products within one mine – for instance iron ore lump and fines – ensuring that the correct product ends up in the correct stockpile.

The vision system can be tailored to each application.

“At a pigment producer, for instance, we are looking for material that is 3 mm in size,” Thurley said. “In order to carry out that sort of classification, we use the latest technology to measure 3D points at 0.3 mm resolution.”

Typically, visualisation down to this size of material is not required in mining operations, where the company is really competing with batch ‘mine-to-mill’ ore characterisation studies carried out through sieving or some type of other manual process. Such classification can work well for that ‘sample’ but can be misrepresentative depending on the orebody’s heterogeneity.

“3DPM can, instead, provide an end-to-end analysis that can now start to be used as a decision-making tool,” Thurley said.

Analysis of the ore coming through just after blasting can help provide the reconciliation tool miners require to check how effective the blasting practice is, for instance, helping provide the “pre-crusher size distribution feedback much earlier in the value chain”, he said.

With the incorporation of new software and camera technology, the company is expecting more complex analysis to be carried out on bigger amounts of material, according to Thurley.

“These new technologies will allow us to analyse material on a conveyor belt going at 6 m/s where the previous generation was limited at around 2 m/s,” he said.

This could open opportunities at much bigger operations – some large copper or iron ore mines, for instance – as well as automated plants of the future.

It is not farfetched to see the system operating in the same blasting reconciliation position but providing crusher operators with the analysis required to optimise operations ahead of receiving the material.

Moving one step further, it could provide the same information to a system that operates autonomously.

“This could eventually lead to automatic control of the crusher,” Thurley said.

SSAB, LKAB and Vattenfall plot HYBRIT pilot production pathway

SSAB, LKAB and Vattenfall are taking another important step in their fossil-free steelmaking journey with preparations now underway for the construction of a demonstration plant on an industrial scale for its HYBRIT initiative.

The companies have also started consultations for deciding on placement of this demo plant in Norrbotten, Sweden.

The objective of the joint venture HYBRIT project is to develop the world’s first fossil-free, ore-based steelmaking process. The by-product of using fossil-free electricity and hydrogen in steelmaking, instead of coke and coal, will be water, instead of carbon dioxide. The partners believe the initiative has the potential to reduce Sweden’s total carbon dioxide emissions by 10%, hence the reason the Swedish Energy Agency has granted financial support for the project.

The plan is for construction of the demonstration plant to start in 2023, with the goal of taking the plant into operation in 2025.

“The intention is to be able to demonstrate full-scale production with a capacity of just over 1 Mt/y of iron per year, ie 20% of LKAB’s total processing capacity at Malmberget and almost half of the production capacity of SSAB’s blast furnace in Luleå,” the company said. “The goal is to be first in the world to produce fossil-free steel as early as 2026.”

HYBRIT is now starting an investigation into the selection of a location for the demonstration plant. Parallel consultations are being launched at two sites in Sweden: the Vitåfors industrial estate in Gällivare Municipality, where LKAB has mining operations, and the Svartön industrial estate in Luleå, where facilities including SSAB’s steel mill and LKAB’s ore port are located.

“The purpose is to consult and conduct an open dialogue about the location and design of the plant ahead of the upcoming selection of the site and permit application,” the companies said. “Consultation with government agencies, organisations and the public will begin in June and conclude in September 2020.”

The choice of location will have a major impact on future competitiveness and climate benefits, according to the partners, with investment decisions made once the authorisation procedure and other investigations have been completed.

HYBRIT’s pilot phase will run in parallel with the demonstration phase. In Luleå, the pilot plant for fossil-free steel will be fully constructed during the summer, and preparations are also under way to initiate construction of a temporary hydrogen store to test the technology for storing hydrogen in caverns, the partners said.

Martin Pei, Chief Technical Officer at SSAB and Chairman of HYBRIT, said: “We want to build the plant in Norrbotten. There’s good access to fossil-free electricity and competence here, as well as close collaboration with academia and the community. A demonstration plant for fossil-free iron production would also be positive for growth and jobs in the region, as well as contributing to a major climate benefit.”

Markus Petäjäniemi, Senior Vice President Market and Technology at LKAB, said HYBRIT is an important piece of the “jigsaw puzzle” in a green transition, in which we want to “climate-optimise” the whole chain from mine to finished steel by the year 2045.

“We want Norrbotten to be a world-leading arena for innovation and a centre of knowledge for the global mining and minerals sector,” he added.

HYBRIT fossil-free steelmaking project moves forward with biofuel plant build

A joint initiative between LKAB, SSAB and Vattenfall to develop the world’s first fossil-free steelmaking process is gaining momentum, with construction of a biofuel-based pelletising plant shortly beginning at the iron ore miner’s Malmberget site, in Sweden.

This “world-unique test facility”, a key component of the HYBRIT initiative, will see fossil fuels replaced with biofuel to achieve fossil-free production of iron ore pellets.

The aim of HYBRIT, which is supported by the Swedish Energy Agency, is to develop a process for fossil-free steelmaking by 2035.

In 2018, the Swedish Energy Agency announced it would contribute funding amounting to more than SEK500 million ($54 million) towards the pilot-scale development of an industrial process, with three owners, LKAB, SSAB and Vattenfall, each contributing a third of the outstanding capital for the project.

LKAB said: “Fossil-free steel production starts at the mine and LKAB is working hard to determine the design of the next generation of pelletising plants.”

Back in October, Tenova HYL was contracted by HYBRIT to supply its direct reduced iron solution as part of the project.

The biofuel-based plant, to be built near to LKAB’s Malmberget iron ore mine, will cost in the region of SEK80 million.

“Testing a bio-oil system is part of the pilot phase and the objective is to convert one of LKAB’s pelletising plants from fossil fuel to 100% renewable fuel,” the company said. “This means that fossil-generated carbon dioxide emissions from the Malmberget operation will be reduced by up to 40% during the test period, which corresponds to about 60,000 t/y. Eventually, LKAB hopes to achieve totally carbon-dioxide-free pellet production.”

Jan Moström, LKAB’s President and CEO, said: “Within HYBRIT, LKAB is examining options for replacing the heating technologies used in the pellet process, which are the heart of our processing plants. In parallel, trials will be conducted in an experimental facility in Luleå using an alternative heating technology. Trials will determine whether new biofuels and plasma burners will work in the unique setting of a pellet plant. Ultimately, this will make LKAB’s iron ore pellets completely carbon-dioxide-free.”

The global iron and steel industry is one of the industrial sectors whose processes emit the most carbon dioxide, according to LKAB. “A growing population, in combination with greater urbanisation, means that demand for steel will continue to grow until 2050. If the HYBRIT initiative succeeds, Sweden’s carbon dioxide emissions will decrease by 10%,” the company said.

Mårten Görnerup, CEO, Hybrit Development AB, said: “The initiative is decisive for Sweden’s ability to meet the targets set out in the Paris Agreement and nationally, and it is our contribution to battling climate change. Fossil-free production of iron ore pellets is an important step towards reaching these goals.”

Following a pre-study conducted in 2016–2017, the first sod was turned in 2018 for a pilot plant for hydrogen-based reduction of iron ore in Luleå, Sweden. This plant, expected to be completed in 2020, will be used to test processes downstream from the pelletising plant. The investment in a pilot-plant for bio-oil in Malmberget, which is an important milestone for HYBRIT and the development of fossil-free pellet production, is expected to be completed by 2020. The first tests will be conducted up to 2021.

Magnus Hall, President and CEO, Vattenfall, said: “Our partnership with SSAB and LKAB is playing a very important role in the electrification of the industry and the development of fossil-free hydrogen to enable a fossil-free life within a generation.”

Martin Lindqvist, CEO and President of SSAB, said the partners are on their way to a revolutionary technical advancement, “showing the world that it is possible to produce steel without producing carbon dioxide emissions”.

He added: “Work is proceeding according to schedule and I am confident that we will succeed. As a first step toward creating a fossil-free SSAB, we have decided to switch to an electric arc furnace in Oxelösund. This will entail decommissioning both blast furnaces in around 2025 and will reduce our CO2 emissions in Sweden by around 25%,” he said.

The primary goal of HYBRIT is to eliminate fossil-generated carbon dioxide emissions and thereby stop the net increase in carbon dioxide in the atmosphere. This will be done by converting to renewable fuel.

In the next step, LKAB’s vision is to fully eliminate carbon dioxide emissions from the pelletising plants. LKAB’s iron ore consists largely of magnetite and, even without the use of bio-oil, it already gives the company a big environmental head-start on competitors, according to the company.

Steel produced from 100% LKAB iron ore pellets results in carbon dioxide emissions that are 14% lower when compared to steel manufactured at an average European sinter-based steel mill. “One explanation is that it requires less energy to make pellets from magnetite than from the more commonly occurring hematite. The pellet process currently requires a lot of energy, while a very great amount of heat is released when magnetite is converted to hematite.”