Tag Archives: mine communications

MICROMINE makes a software splash at Diggers & Dealers

With Western Australia one of MICROMINE’s key markets for its Micromine and Pitram products, it is hardly surprising the software leader chose this week’s Diggers & Dealers Mining Forum in Kalgoorlie to reveal a host of new updates for the 3D modelling and mine design/mine production and fleet tracking solutions.

Across the company’s product suite, MICROMINE has been readily engaging with customers throughout the world, with users providing feedback to form its product roadmaps.

One of the results of this consultation process is a move to a six-monthly release cycle to enable its software to grow and adapt with clients’ operations.

Another is providing networking options to expand usage of its software across a wider number of users – the free Micromine Effects reader enabling anyone to view, share and interrogate Micromine output files without needing access to a full software licence.

“We’ve also introduced subscription offerings which our customers have quickly adopted because they provide a flexible and scalable option for large teams to access more functionality across our product suite, with less upfront cost compared to the traditional perpetual model,” Adam Brew, MICROMINE Australia Manager, told IM.

Shifting any capex item to the opex column is bound to go down well with the mining community, as MICROMINE has shown.

Having occurred in August 2019, the move led to almost nine months straight of subscription-only sales, according to Brew. “It surpassed our expectations,” he said. “The ability to have a subscription model allowed us to then launch the Free April campaign.”

The “Free April” campaign – which saw MICROMINE offer miners complimentary access to its general mining Micromine package during April as COVID-19 started to bite – led to around 4,000 new people interacting with the software, according to Brew.

MICROMINE has been busy on updates during the pandemic, but it has also delivered its first fully remote implementation of Pitram at a mine operation in Greece, leveraging the experience from its global Pitram support desk to fully deploy a Pitram FMS and Material Management solution.

This Greek project is well advanced with Pitram playing a crucial role in a major refurbishment and expansion of existing operations. The solution at the mine is aimed at helping improve development and production mining cycles; accurately track materials from source to processing; provide Online Analytical Processing reporting and analysis; enhance reactions to, and minimise the impact of, unplanned events; and increase equipment availability and utilisation.

Yet, those attending the MICROMINE booth at Diggers & Dealers this week will have even more to talk about.

Something new

“Micromine 2021 is scheduled for release later this year and attendees of Diggers and Dealers will be the first to get a pre-release reveal of our flagship software offering,” Brew said.

Australia, in particular, has bucked global trends in terms of exploration expenditure, and the Micromine value proposition has been central to the company capitalising on this resurgence in exploration activities, according to Brew.

It is no wonder then that the company has put significant efforts into updating its flagship product.

“The first thing clients will notice is a completely redesigned user interface that provides easier access to the critical functions of the software, transforming the whole user experience with responsive design and efficient workflows,” Brew said.

Delivering this transformation has been a focal point for the business for more than a year, according to Brew, with developers reviewing customer requests most commonly received from the support team, analysing how users work with the array of Micromine functionality, and modelling interface scenarios to optimise the presentation of key functions within the software.

“By providing easier access to these functions and a smart interface that responds contextually, Micromine 2021 anticipates and supports workflows in a genuinely intuitive way,” Brew said.

The Micromine update has more than a new look.

It also includes new tools for importing and working with as-drilled drill-hole data, Brew explains.

These provide faster and more intuitive control over underground ring drill and blast design – also a focus of the earlier Micromine 2020.5 update – enabling designs to quickly adapt to changes in the field, identifying drilling inefficiencies and improving design protocols.

“We are also introducing intuitive tools that mirror the terrain of a blast face and speed up the process of creating blast-hole patterns within the bounds of the dig block,” Brew said. “Users will be able to accommodate polygons/blast masters of varying shapes, reducing the need for manual adjustment.”

The new grade control capabilities in Micromine 2021 provide dynamic updating of grade control reports to enable faster design preparation and reserve evaluation, according to Brew. This can allow miners to explore variations in dig block configuration and evaluate the ramifications of design changes on the grade – a function bound to appeal to opex-focused companies mining complex orebodies.

An integrated scheduler, meanwhile, enables planners to build and visualise an optimised schedule through configurable templates, scripting capabilities and scenarios built from real-world constraints, Brew said.

While the new and intuitive interface is likely to capture the immediate attention of users, MICROMINE has evidently not scrimped on updated and upgraded features.

Getting to the core

With the release of Pitram 4.17 earlier this year, there were improvements to the Materials Movement and Shift Planner modules, but Pitram 5, to be released later this year, goes above and beyond that.

“Stockpile management is now part of your end-to-end process and not managed as isolated assets within Pitram,” Brew says of Pitram 5. Geologists can work with data up- and down-stream to manage and react to material mismatches. Such data validation and accuracy is key to the value proposition Pitram drives in MICROMINE’s global implementations, according to Brew.

“Pitram is at the core of any mining operations ecosystem,” he said. “Our ability to accurately track Last Source, Destination Moved, Quantity and Grade as well as set individual depletion models across the various stockpiles across the mine, makes it a more flexible offering while maintaining data integrity.”

This near real-time tracking ability has previously failed on occasion from connectivity issues.

Not anymore.

“Pitram 5 is a huge leap forward in how we deploy our solution from a connectivity point of view,” Brew said. “Many of the mines we work with have limited or varying degrees of underground Wi-Fi and communications available. Our Peer to Peer solution bridges the gap where communication back to the server is not available at the face, for example.”

The Peer to Peer software can be installed on light vehicles which move around the mine encountering heavy equipment and collecting data in areas of no network coverage before moving back to a Wi-Fi-enabled area to sync the data back to the main server and into the control room. This allows miners developing new areas of their operation to keep up the communications flow without the need to immediately install or expand a communication network.

Such a solution has been successfully deployed at several sites globally, with Independence Group’s Nova nickel operation, in Western Australia, being the company’s reference site.

“Additionally, we have driven more R&D in how we can better leverage our Pitram Restful Integration Service (PRIS) to communicate shift planning data back to the shift bosses and mine managers in near real time,” Brew said.

The free Pitram Connect application, downloadable from the Apple or Google Play store, will show users real-time shift data as well as give them the ability to make updates to the shift, such as equipment or location allocations.

“Our ability to deliver on short interval control is a common requirement we are measured against and providing this planner to key users underground unlocks considerable value for an operation,” Brew said.

Pitram 5’s machine-learning update in the 2021 release leverages the company’s learnings from earlier deployments at some Central Asia mines.

“Utilising the processes of computer vision and deep machine learning, on-board cameras are placed on loaders to track variables such as loading time, hauling time, dumping time and travelling empty time,” he said. “The video feed is processed on the Pitram vehicle computer edge device, with the extracted information then transferred to Pitram servers for processing.”

Reflecting on the product updates and more than six months of pandemic-affected upheaval, Brew concluded: “Our business is extremely fortunate to have powered on through the COVID-19 pandemic, and we’ve worked hard to maintain our renowned ability to work, support and deploy our solutions remotely.

Diggers & Dealers is the pre-eminent event for the Australian region of our business, with representation from all our customers, so it represents a fantastic opportunity to show how we continue to drive value to our existing customer base as well as connect with new customers.”

Matrix to bring Maestro’s Plexus PowerNet to US mining market

Matrix Design Group is to introduce Maestro Digital Mine’s Plexus PowerNet™ networking system to the US market following the signing of a distribution agreement between the two companies.

Plexus PowerNet, the first coaxial-based gigabit network, provides both data and power over a single cable, according to Canada-based Maestro. The system delivers a high-speed, low-latency digital communication network that provides PoE+ power to Access Points, cameras and any other IP-based devices, it says.

The Plexus PowerNet coaxial cable carries both power and network connectivity, eliminating the need to run both fibre and power to new network devices. The system can also extend a fibre-optic-based system from the fibre patch panel at any level as needed. Plexus PowerNet eliminates the need for costly outside fibre-optic contractors and can be installed and maintained by any mine personnel, Maestro says.

Chris Adkins, Sales/Business Development, Matrix Design Group, said: “For a mining application, Maestro gives mines the ability to have high-speed data and power without the technical and time constraints of running a fibre network to the face of the mine. Of course, the maintenance requirements of fibre are complex, but Maestro has reinvented the high-speed data network, allowing delivery of real-time data and power combined into one durable coaxial cable that’s easy to install, maintain and repair.”

The Plexus PowerNet is a backbone network system that can be used in mines with or without a fibre-optic network, Maestro says.

“Supporting existing underground infrastructure, Plexus provides network connectivity to new and existing IIoT devices and automation technologies,” the company said. “It enables the digital mine and connected worker for: autonomous and tele-remote vehicles; telemetry to drills, loaders and support equipment; support for short interval control and connectivity to tablet and smart devices; IoT sensors, such as environmental and seismicity; Voice over IP; augmented reality; asset tracking; PoE+ based IP cameras and PoE+ LED lights for paste fill; and PLC connectivity. Plexus is an enabling technology for the digital mine.”

Michael Gribbons, Co-founder and CEO, Maestro Digital Mine, stated: “The collaboration with Matrix Design Group is an essential part of expanding our reach into the US market with a team that understands the value of our digital network solution and how it aligns with the mines in the area. Bringing digital solutions, such as the Plexus PowerNet, online enables worker safety, increased production and reduced costs; all of which are vital to Maestro and Matrix.”

Talking mining truck automation with China’s pioneer TAGE Idriver

In a world first, Paul Moore spoke to the senior management of TAGE Idriver, in Beijing, the leading Chinese player in mining truck autonomy solutions, both for new machines and retrofits. CEO Professor Yu Guizhen, CTO Huang Liming and Head of Marketing Li Qingshe gave their insight on this huge and rapidly growing market.

PM: Can you give some background on TAGE Idriver as a robotics solution company and how you came to be active in the mining sector?

TAGE Idriver CEO, Professor Yu Guizhen

YG: Founded in 2016, Beijing TAGE Idriver Technology Co Ltd (hereafter referred to as TAGE) is a high-tech enterprise focussed on the research and development of autonomous driving technology for open-pit mining vehicles. Open-pit mining is regarded as one of the most ideal applications for autonomous driving technology implementation as it involves a relatively restricted area where vehicle speed is low and the transportation routes are well managed. As such, we took the unmanned robotic mining truck as our chosen breakthrough point, to try to help to solve the long standing issues with open-pit mining haulage such as frequent accidents, driver recruitment difficulty and persistently high cost. And we have achieved a lot so far – our system has already been successfully implemented in the Bayan Obo iron ore and rare earths mine (Baogang Group) and the Huolinhe coal mines (SPIC) in Inner Mongolia.

PM: It seems only recently the major mining equipment OEMs in China were working on their own autonomy solutions, but now independent players are dominating…what has changed?

YG: Unmanned transportation solutions for open-pit mines involve complex systems requiring not only vehicle technology, but also autonomous driving technology, dispatching and fleet management technology, and vehicle communication technology. To independently build all those capabilities into one platform is a tough challenge for the Chinese traditional mining equipment OEMs. This is why independent players with advanced autonomous driving technology but working in close cooperation with the OEMs are in a more competitive position to deliver open-pit mine unmanned transportation solutions in China.

PM: The market for these independent autonomy system tech providers seems very competitive in China; several other companies are also active – what would you say makes TAGE Idriver stand out from the rest?

HL: First I would say system integrity. As the earliest player engaged in the development of unmanned transportation solutions for open-pit mining and the first to put them into practical operation in China, TAGE has delivered complete solutions and has a mature product portfolio including OBU (Onboard Unit) product series, RSU (Road Side Unit) and Cloud Control Platform. The OBU product series includes unmanned mine truck terminal products, bulldozer vehicle terminal products, excavator vehicle terminal products, crushing station terminal products and external on-road vehicles terminal products. Then there is functional adaptability. Open-pit mine transportation is complex, especially in China. On the basis of intellectualisation and interconnection of the unmanned mine trucks and the cloud based dispatching control platform, TAGE’s products seamlessly connect every step of mining transportation process, so as to make the system capable of working in an actual operational scenario, which is extremely critical for commercial implementation.

TAGE Idriver CTO, Huang Liming

Then there is system reliability and multiple safety aspects. TAGE’s OBU products are designed in accordance with vehicle grade certification to meet the operational reliability requirements of the harsh environments (low temperature, vibration, etc) in the mining area. Our system has achieved multiple redundant security designs, which mainly includes CCU (Central Control Unit) security redundancy, wireless network redundancy, cloud platform DHBS (Dual Machine Hot Backup System) redundancy, etc. Finally I would mention engineering design ability. TAGE has a vertically structured and expert team in the open-pit mining industry, who have rich experience in engineering design and system simulation verification of unmanned transportation in mining.

PM: Is the main potential currently working with equipment OEMs or the mines directly, or both?

YG: Both, I have mentioned already Baogang and SPIC as mining customers we have ongoing projects with and we are also closely cooperating with top Chinese OEMs like Inner Mongolia North Hauler (NHL), XCMG and Shaanxi Tonly.

PM: The Chinese market is also very price sensitive. How is it possible to provide these complex technologies to these mines at a low enough price they will accept?

TAGE Idriver Head of Marketing, Li Qingshe

LQ: In China, the ordinary consumer market is very price sensitive, but for high-tech production equipment, price is not the decisive factor. TAGE’s unmanned system is capable of creating substantial additional benefits to customers such as labour cost savings, increased operation time, reduced fuel cost and tyre wear cost reduction, and most importantly, zero accident risk to operators. Meanwhile, our prices are still very competitive – the ROI of our system is very attractive to most of our potential customers.

PM: Chinese mines are not known for having extensive comms networks or using the latest fleet management systems. How do you ensure your mining customers meet the minimum standards your systems need to work in terms of networks?

HL: When it comes to telecommunication, China has a good upstream and downstream ecosystem, and wireless communication networks have been widely deployed in mining areas in China. Some large state-owned mining areas have already deployed 4G wireless private networks, so as to realise fleet management and video monitoring under manned transportation conditions. Along with the rapid introduction of unmanned transportation in China’s open-pit mining areas, 4G private networks or 5G networks have been mainly chosen as the mainstream choices for new mining area construction and existing mining area network upgrades. Currently, the major equipment manufacturers and communication service operators are actively cooperating with us to promote unmanned transportation and 5G.

PM: Are Chinese mines now widely trialling LTE and 5G networks? Do you think many mines will go straight to these latest technologies?

HL: As I said, telecommunication technology in China is developing rapidly. China’s Government has spared no efforts to promote the macro strategy of ‘New Infrastructure Construction’. In this positive environment, many mine areas have begun promoting 5G demonstration projects, and TAGE has also carried out 5G demonstration implementation at one of our unmanned transportation projects.

PM: Is there potential for autonomous mining in Chinese underground mines and is this something already happening? Is it a market TAGE Idriver is involved in yet?

YG: China has a large number of underground mines but in many of them mechanised hauling with mobile vehicles is not the major means of transportation – many of these mines instead use conveyors, skip haulage, etc. But we are aware that a variety of autonomous transportation equipment types are being experimented with in Chinese underground mining, however, TAGE is currently focusing on the open-pit mining industry only.

PM: How would you say your system differs from those offered in the global market by Cat, Komatsu, Hitachi and ASI?

Wide-body dumpers, sometimes called tippertrucks, are used in their 100s at many Chinese mines, so their automation is a big part of the unmanned projects taking place in China

HL: To start with, TAGE’s system designs are based on China’s unique mining area circumstances and transportation process requirements, which are often more difficult and more complex than the mining situations in which overseas counterparts are working. In order to ensure continuity, efficiency, and reliability, we must consider in our offering allowing switching between various driving modes (such as from manned to unmanned or to remote control etc) so as to adapt to the unique characteristics of China’s mining areas. Secondly, the vehicle models utilised in China’s mining areas are quite diverse. There are many brands and types of rigid mine trucks but also many types of non-rigid wide-body dumpers, sometimes called tipper trucks, in China, so our OBUs have to adapt to the control characteristics of various truck models to serve the different customers. In the mining areas where wide-body dumpers are deployed, there are usually hundreds of them in the fleet and sometimes more than a thousand, which places harsh requirements in terms of capacity and reliability on the cloud-based dispatching and control system. Finally, there are a large number of existing mine trucks in China, so to offer autonomous modification solutions ie retrofits for those existing trucks has huge commercial potential. We have already accumulated rich engineering experience and made considerable commercial progress in this field.

PM: What is making big mining groups in China look at automation, is the major push a drive towards safety or productivity, or both?

YG: Both. Productivity is obviously important, but safety is probably the top concern as the Chinese Government has issued strict legal rules that impose stringent safety requirements on mine management.

PM: Most of the Chinese examples of autonomous fleets I have read about seem to be closed loop trials – are any Chinese mines actually using autonomous fleets in normal production yet?

LQ: The attempts at unmanned transportation of mining vehicles in China started much later than that in other countries. The whole industry is still in the transformation stage from small batch trial operations to large scale commercial implementation. As the leading player and the first to get commercial contracts in China, TAGE is standing at the forefront of the industry both in terms of technology maturity and user acceptance. We achieved multi-fleet unmanned operation in Bayan Obo iron mine in 2019, and by the end of 2020, all the mine trucks there will have been modified and fully put into unmanned transportation. For the non-rigid wide-body dumpers, we recently signed a large contract for 200 unmanned dumpers in the Ordos coal mining region. This project will be completed within two years, and the first batch of 50 dumpers will be in operation by the end of 2020. Some other contracts are also under negotiation, so we can say that the large scale commercial implementation phase is already underway.

PM: I have not seen reference to autonomy being applied at some of the largest operations like the Zhungeer, Pingshuo coal mines or the Julong Copper mine in Tibet, are these operations also looking at autonomy?

LQ: TAGE’s existing customers like Baogang and SPIC are giants in their respective fields. And the large mining groups Zhungeer, Pingshuo and Julong that you mentioned have also been paying close attention to unmanned transportation. We are communicating with them closely and they have clearly expressed their intention to carry out unmanned transportation projects going forward.

PM: The focus currently seems to be mining trucks. What about blasthole drill or excavator autonomy – is this an area you are also working on and can you give any examples?

HL: At present, in order to ensure the high efficiency of transportation, we have only developed and deployed unmanned systems on mine trucks. As for blasthole drill rigs, excavators, bulldozers and other auxiliary equipment, although they are still operator controlled, we have upgraded them with vehicle terminal devices to enable them to locate and interactively cooperate with unmanned mine truck fleets.

PM: On the truck side, is the focus mainly on larger trucks or are you also working on projects involving smaller trucks, eg 100 t class and smaller, including the tipper non-rigid trucks that are very common in Chinese mines?

HL: Our current solution is adaptable to both large mine trucks and non-rigid wide-body dumpers. The two types of truck are mainly different in terms of vehicle control. In addition, the transportation technical procedure is different in the mine areas using the two types of truck, so we have to do adaptive development to meet the specific needs of each fleet type.

TAGE Idriver says it is at the forefront of the mining truck autonomy industry in China both in terms of technology maturity and user acceptance

PM: How significant is your recently signed deal with NHL to work with them to produce a new NTE200AT truck – is this the first time your system will have been applied to a ‘new’ mining truck as opposed to a retrofit?

YG: Yes and no, we started to modify NHL’s existing mine trucks with unmanned technology via retrofit in 2018, and have also jointly developed drive-by-wire trucks with a pre-installed unmanned system. This year we are confident we will carry out pre-installation with our proven solution on a large scale with the new NTE200AT 186 t truck fleet for SPIC, which will be a new milestone for us and for NHL.

PM: Do you see a lot of opportunities for TAGE Idriver outside of the China market such as where Chinese trucks are being sold (eg the new NHL deal with Yancoal), or where you are able to work with older or more basic truck designs, such as in India?

YG: We hope of course to work together with Chinese mine equipment OEMs to serve their customers both in China but also all over the world, as the use of Chinese mining trucks in the global market is increasing.

Strata Worldwide’s MC2 certified for underground coal mine use

Strata Worldwide says its StrataConnect second-edition Miner Communicator (MC2) has won IECEx Intrinsically Safe approval, paving the way for it to be used in underground coal mines.

The StrataConnect MC2 (Part No SCT-MC2-03) is an underground personnel communication and location tracking device that operates on the StrataConnect™ wireless mesh network – formally known as Strata CommTrac. Released last year, the unit is designed specifically for harsh underground environments and provides personnel with two-way text communications, real-time location tracking, and both critical alert and response functions, the company says.

Communication messages include peer-to-peer or group texting and can be sent between units underground or to the user interface at the surface. Users have access to a full employee contact list and the ability to create personalised groups, while a full, hard-button QWERTY keyboard and large display screen facilitate fast and easy message reading and response, the company says.

“Miner location tracking is continuously active,” Strata said. “The units ping nearby communication nodes every 60 seconds for monitoring both location and direction of travel. Personnel can utilise the MC2 to locate fellow workers underground.”

The MC2, which is automatically functional on all StrataConnect wireless networks, is worn in a pouch on the user’s belt. Green LEDs on all four corners indicate the receipt of incoming messages, while red LEDs indicate an emergency notification. The device can also be used to send emergency alerts to dispatch if immediate assistance is needed.

Strata says battery life ranges between 24 and 48 hours, depending on use. Recharging takes around four hours, including the automatic update of contact lists which are done at this time.

Motorola Solutions keeps essential services running at Rio Tinto aluminium ops

Motorola Solutions says it is helping Rio Tinto’s aluminium business continue supplying its customers while protecting people and communities during the COVID-19 pandemic.

The two companies partnered to design and roll out a back-up communications solution for Rio Tinto Aluminium’s Integrated Operations Centre (IOC), in Brisbane, Queensland. The system enables continued critical communications between mines during an emergency and was developed and deployed in just five days, according to Motorola.

The existing IOC provides 24/7 monitoring of all safety, production and quality aspects at bauxite mines in Weipa, Queensland, and Gove, Northern Territory, and is essential to coordinating Rio Tinto’s bauxite supply to Australia alumina plants and export markets, the company said. Rio’s Weipa operations include three bauxite mines, processing facilities, shiploaders, an export wharf, two ports, power stations, a rail network and ferry terminals; while Gove produced 12.2 Mt of bauxite last year.

“If the IOC becomes inaccessible for any reason, Rio Tinto can continue tracking mine production movements via its mission-critical TETRA digital two-way radio communications system, which feeds directly into the mining organisation’s Disaster Recovery Centre,” Motorola said.

Rio Tinto uses a combination of TETRA DIMETRA™ and MOTOTRBO™ radio handsets and dispatch consoles across the mine sites to monitor and manage field operations safely and efficiently, it added.

“The solution forms an important part of Rio Tinto’s business continuity plans to keep operations running safely throughout the COVID-19 pandemic, enabling commercial supply chain continuity and planning for future eventualities,” Motorola said.

Martin Chappell, General Manager of Energy and Natural Resources for Motorola Solutions Australia & New Zealand, said: “Any communications equipment used in mining must adhere to the highest standards to keep workers safe and maintain security and reliability across the entire operation.

“Through a combination of rugged radios, purpose-built dispatch consoles and essential back-up links, we are providing Rio Tinto Aluminium with effective protection for its people and assets to ensure business continuity throughout the COVID-19 pandemic.”

Newtrax NVD offers miners customised proximity detection solution

Newtrax Technologies says its New Vehicle Device, or ‘NVD’, is its most “powerful device yet, providing underground hard-rock mines with proximity detection, positioning, and communications capabilities in one box”.

The NVD, launched at the Sandvik Digitalization in Mining event, in Brisbane, Australia, this week, is both OEM and network agnostic, according to Newtrax, and includes peripherals such as sensors and control interfaces to enable EMERST CAS (collision avoidance solution) level nine (9).

L9 will help establish technologies that automatically intervene and take some form of machine control to prevent or mitigate an unsafe interaction, according to Newtrax.

Newtrax says the NVD allows underground hard-rock mines to implement several safety and production control solutions tailored to their needs.

Alexandre Cervinka, President & CEO of Newtrax, said: “Proximity detection devices must be designed to work without any network infrastructure. We maintain this critical feature and enhance the new generation of vehicle devices with positioning and remote communication capabilities, to enable near-miss heat maps, operator behaviour monitoring and remote firmware upgrades.”

In April of this year, Newtrax was acquired by Sandvik to be run as an independent business unit within the division Rock Drills and Technologies in the business area Sandvik Mining and Rock Technology.

Agnico continuing to innovate at Kittilä gold mine as shaft project progresses

Agnico Eagle is likely to leverage more innovation at its Kittilä gold mine in northern Finland judging by André van Wageningen’s presentation at the FEM conference in Levi, this week.

In a talk titled, Building future mines through collaboration, van Wageningen, Engineering Manager of the Shaft project at Agnico Eagle Finland, said the company was testing out battery-electric equipment and could potentially apply LTE in the underground mine next year.

Much of the battery-electric machine testing the company is carrying out at the mine is in partnership with the EU-funded SIMS project, but van Wageningen said the company has also acquired two electric bolters outside of the program.

As recently as last week, Agnico tested out an Epiroc MT42 Minetruck and ST14 Scooptram at the mine (pictured), with van Wageningen saying the trials had, so far, gone well, with operators noticing less heat generation and vibrations, and better air quality within the operating environment.

“The battery capacity is of course the main concern,” he said in answer to an audience question about how the electrified equipment had so far performed. “Our mine is designed to drive up and…[the machines] have a limited capacity for [that].”

On the topic of collaboration, van Wageningen mentioned that if Agnico had decided on the use of battery-electric and electrified equipment four or five years ago, it would have likely deepened the shaft further and redesigned the mine to suit the reduced ventilation needs and required battery charging/changeout infrastructure.

“If you go for electrification, you either do it or you don’t as you have to build charging stations for this,” he said, adding that these need to be plotted around the mine in relevant locations to ensure the machines are as productive as possible.

As it stands, the company plans to go down to 1,040 m below surface as part of an expansion plan at the mine to increase production by 25% to 2 Mt/y of ore. This could see Kittilä add 50,000-70,000 oz/y of gold to its profile.

The company is building the 5.6 m diameter shaft by, first, raiseboring to 4 m diameter and then slashing to 5.6 m, van Wageningen said. The company is then concrete casting the shaft.

van Wageningen said Agnico has raisebored down to 875 m, and the 94 m headframe was likely to be finalised in the very near future.

The deepening of Kittilä and the evolution towards using autonomous underground machinery is probably behind the company’s plans to leverage LTE communications at the operation.

Agnico is already a leader when it comes to LTE, having become the first company to roll out the communications technology at an underground mine – the La Ronde Zone 5 operation in Quebec, Canada. This move was predicated on Agnico trialling autonomous equipment underground at the mine. In its June quarte results, the company said results from these trials had produced “favourable” results.

The mining industry’s guiding hand

Ahead of the WA Mining Conference & Exhibition, in Perth, Western Australia, IM spoke with Michelle Ash, Chair of the Global Mining Guidelines Group (GMG), on mining guidelines, the industry’s rate of technology adoption, automation and, of course, interoperability.

Given that Ash is due to sit on a panel discussion titled, ‘The future generation of mining – who, what, when and where’ at the event on October 15, the conversation was very much forward looking.

IM: The development of mining guidelines has been a big focus for you in your work with GMG. Outside of the existing working groups GMG already has in place, where, in the next three to five years, do you see the need for future industry guidelines to ensure mining companies and their employees can leverage new technology?

MA: Our mission at GMG is to work collaboratively with industry and help speed up its rates of change. The guidelines are one of our main products, but we are involved in two others.
One is education where we bring the mining industry (mining companies, suppliers, consultants, academics/academic institutions, regulators and governments) together on topics. Blockchain is a good example of that; we’ve had our members raising the use of blockchain as an issue for the last couple of years – some have not known what the use cases might look like or even the full capabilities of the technology.

An example of the second product is what we have recently carried out in the tailings dam space…where we initially looked at who was doing what in the public arena worldwide. From this, we created a database of that activity with the intention that our members should, first, engage with work that is already being conducted. We are now trying to think through how we codify that data. In this regard, part of the way we will speed up innovation in the mining industry is not only through collaboration, but also making sure we leverage industry work that has already been completed.

Then on the guidelines, we have covered battery-electric vehicles (BEVs), automation and communications systems. We’re currently going through the process of devising a guideline on interoperability and functional safety, too. In the next few months, we will start working with our members to define what ones to pursue from 2020 onwards.

IM: What might these future guidelines look like?

MA: At our leadership summit this year, we will be talking about climate change and how that is going to impact the mining industry. Thinking about the workforce of the future is another potential avenue for future guidelines. That is on top of some of the more futuristic topics like blockchain provenance tracking, changes to business models, etc.

IM: What is likely to push most mining companies into increasing their uptake of new and disruptive technology? Will operational, regulatory, social or technical changes have the biggest influence?

MA: It’s going to be a combination of these, but risk reduction will definitely come into it – a lot of mining companies still feel technologies are risky whether that is in their implementation, operator acceptance, cost, etc. There is a myriad of risks associated with changing the way you do things and investing in technologies. A lot of that risk is, at least, reduced through collaboration; creating a bigger market and being clear on what products we want and how we develop the business cases, produce products and then implement them. That dynamic will evolve as mining companies get more used to implementing some of these new technologies and working with their people in a more agile way.

That said, I do think the rate of social change being driven through technology – the way we interact, get information, perceive and interact with the world, and how all of that continues to change social expectations – is accelerating. That cycle is putting more and more pressure on all companies, not just miners, to, for example, continually reduce their environmental impact (greenhouse gas and diesel emission reductions, for example). There is also an ever-increasing pressure for governments and communities to get greater amounts of wealth from their resources. In addition, investors are changing their thinking – what we used to call ‘impact’ investors are now almost considered ‘mainstream’.

There are a whole series of pressures that will be put on mining companies to make substantive changes to the way they do things and that will link to de-risking the way they implement new technologies.

IM: Looking at regulation, what are the major technology trends that will be influenced by incoming legislation, and where is this new legislation likely to come in first?

MA: A lot of governments – and I have recently spent most of my time in Canada, Australia and Europe – are thinking about how they reduce their environmental impact. Many of them have various greenhouse gas and climate change challenges, and I think aspects of these will find their way into legislation. That could be future reductions in diesel usage/emissions or energy usage (especially as it pertains to diesel, coal, etc). That means the electrification of industry and mining, specifically, could be impacted by regulations.

One of the reasons why I am keen to get more regulators involved in the GMG is because sometimes, in aspects of certain technology, the regulations are behind the technology use cases/implementations. As a result, there is a really great opportunity for industry and government to work hand-in-hand and get those regulations developed faster so some of these technologies can be implemented in a way that meets community, as well as industry, needs. I think drones, automation and robotics have all fallen into this category.

On automation specifically, the Western Australia Mining Department has led the world in thinking about and applying legislation around automation. That is in part because Western Australia is where a lot of the automation use cases started. There is a great role for them to show other regulators how these regulations could translate in their own regions. For instance, I spend time with Canadian Provincial Governments, and they are very keen to learn from what Western Australia has done in this arena. I think the Nordics – Finland and Sweden, especially – have also shown some great examples of how to create sandboxes and multi-industry collaborations for such technologies.

IM: Is there anything from a technology perspective stopping mining companies creating a fully autonomous operation?

MA: The challenges with automation are related to how to coordinate and control all autonomous equipment on a mine site in an integrated fashion. That is why we, at GMG, are pushing so strongly for greater interoperability so we can, say, connect Cat trucks with Boston Dynamic robots and some OffWorld swarm bots, operating them all on the one mine under one system. From a technology perspective, that is yet to be refined and developed; we can automate pieces – for example, trucks on surface, or trucks and scoops working together underground – but we can’t go beyond that.

IM: Interoperability has been holding back technology uptake for decades; are we close to a tipping point when it comes to solving this problem?

MA: While we have been talking about interoperability for decades, we haven’t had the really fast communications systems we have today with the likes of 4G and LTE. We also haven’t had the plethora of sensors or the computing power and storage via cloud computing. The latter is a big part of the puzzle as mining companies were using on-premises software for so long for their computing needs, which creates limitations.

I think we are starting to see some movement from the OEMs around interoperability and this whole open innovation concept. There has been wider acceptance across the mining community that open innovation creates competition, instead of stifling it. The interoperability work we are doing is starting to prove that.

Cat, for example, has just announced a partnership with IOSoft to upload the data from a lot of their machinery so it can be interpreted and analysed, etc. That is a move forward in terms of creating open data platforms.

IM: Lastly, with the advent of machine learning and AI, what do you see happening in the future with roles such as the geologist, metallurgist, engineer? Will mine site teams in, say 10-20 years, be dominated by data scientists/engineers, as opposed to personnel with these traditional skillsets?

MA: Going forward, we will have a much more diverse skillset on mine sites. I don’t think the geologist, metallurgist, or mining engineer – that knowledge base – will be completely replaced. Even in 50-100 years, I see that human ingenuity still being required. But I do think, in the next five, 10, 20, or so years, artificial intelligence and machine learning will help augment what we currently do.

For example, as a geologist, you spend a lot of time uploading data, manipulating geological models, etc. You spend far less time pondering what it all means or analysing the best way to obtain and evaluate that data based on what you already know and understand. Similarly, a lot of mining engineers spend time running numbers and changing small pieces of design and calculating the myriad of knock-on changes, as opposed to running numerous mine engineering scenarios.

What machine learning and AI will do is free us up from a lot of the mundane work carried out now and allow us to spend much more time on the analysis and contemplation side of the business.

3D-P on hybrid LTE: a first step towards mine digitisation

While larger mines and those looking to automation are often the most obvious candidates for new LTE connectivity, 3D-P thinks a hybrid LTE solution can offer smaller mines the chance to ramp up their digitisation efforts.

One of the expected benefits of LTE is connectivity at greater distances than what Wi-Fi traditionally offers. This has seen several large companies such as Agnico Eagle Mines (La Ronde), Newcrest Mining (Lihir), South32 (Cannington) and MMG (Las Bambas) ramp up their LTE efforts in recent times.

Yet coupling this distance connectivity benefit with a hybrid solution like the 3D-P hybrid LTE/InstaMesh® (from Rajant) client can offer smaller operations a simple and affordable network, according to the communications provider. This allows remote access to their data in near real time, it says.

“In this scenario, with no network required at the bottom of the pit, vehicles can still remain connected and sharing data via peer-to-peer connectivity,” 3D-P says. “Leveraging the Store and Forward capabilities of the 3D-P hybrid client, data is stored on-board the client while travelling outside the pit and is communicated to the server as coverage resumes and the client connects to the LTE network either directly or through a connected peer.”

With minimal infrastructure requirements, the solution is suited to applications with non-real-time communication requirements, the company said.

With this hybrid network in place, mines need to leverage the data they are receiving.

“The good news is that a number of simpler, more affordable applications have appeared over the last few years making digitisation an option for smaller operations,” 3D-P said. “Even better, and critical to smaller operators, is the ability that those new solutions provide to prove rapid return on investment on the technology.”

3D-P used its partner iVolve’s fleet management system as an example here. iVolve provides miners with a range of modules from production, maintenance, tyre pressure, material management, etc. “With the ability to integrate directly to existing or third-party systems, iVolve offers a scalable application for your mobile equipment as your mine digitises,” 3D-P said.

Through a proof of concept run at a mine in Western Australia, where productivity data was previously recorded manually, implementation of the iVolve solution proved to deliver an immediate 10% efficiency improvement, according to 3D-P.

Rajant makes its underground mining move

Rajant is now looking to leverage the leading wireless network expert status it has built up in the open-pit mining space for the benefit of the underground mining sector.

At the AIMEX 2019 event in Sydney, Australia, last month, Mike Foletti, Sales Director, Asia Pacific, and Geoff Smith, Executive Vice President Global Sales and Marketing, talked IM through the move, explaining that the exclusive provider of Kinetic Mesh® wireless networks had teamed up with other firms to ensure its below ground offering is as complete as can be.

The underground solution the company was pushing for the first time at the event has been made possible by the strategic partnership between Rajant, Poynting Antennas, Extronics, and Australian Droid + Robot, the company said.

In the underground setup, Rajant’s multi-radio, multi-frequency BreadCrumb® nodes combine with Poynting’s wide-band, bi-directional, circular polarised antenna system to create a “complete underground and tunnel-wide wireless network for mission-critical data, video, and voice communications”, the company says.

As part of this, Extronics rugged and intrinsically safe AeroScout Wi-Fi-based active RFID tags for personnel and asset tracking operate in real time over Rajant’s network, never breaking for handoff. With location tracking precision of about 10 m, the tags can be used to identify productivity bottlenecks for improved operational efficiency, Rajant says. And, lastly, Australian Droid + Robot’s Explora droids (one pictured at AIMEX 2019), which Australian Droid says have “ridiculous amounts of traction and agility”, come equipped with Rajant BreadCrumb technology. This allows the small all-terrain robots to carry out underground inspections, enabling the machine to independently scan, sense, and explore locations that may be hazardous to miners.

While this is the first time Rajant has talked about this underground solution, it has already been deployed at one mine site, according to Foletti.

“This is basically an enhancement on any fixed solution that is installed underground,” he said, explaining that the high throughput and low latency network benefits open-pit miners have received above ground for many years, is now be translated into underground mines.

While Rajant will continue to service the open-pit sector as it has beforehand, providing the type of robust network solutions it has for more than a decade, its decision to move underground is easy to understand.

For starters, many of the big open pits are reaching the end of their mine lives, with mining engineers now planning for underground operations.

At the same time as this, underground mines either in development or production are expanding operations at a pace that makes it hard and expensive for fixed or conventional wireless network solutions to keep up with.

Rajant explains: “Underground mines and tunnels are some of the most challenging environments in which to deploy network systems. Connectivity and throughput demands are high, but circular ramps and declines, stopes, and mine layout place limitations on how far wireless signals can travel.

“Many mines, therefore, depend on fibre to achieve reliable underground communications, but installing fibre in active drives, panels and declines is difficult to schedule and can create operational and maintenance nightmares.”

In addition, development plus drill and blast areas can rarely support fibre infrastructure. “It is not uncommon for trucks to accidentally catch and rip down sections of fibre and when that happens connectivity across the entire underground mine can be lost,” Rajant said.

In Rajant’s Wireless Mesh solution, BreadCrumb nodes act independently of each other. This means if one node is damaged or has an issue, the system continues to operate by using another communication route. In addition, the underground solution boasts the highest data throughput on the market, according to Foletti; latency is less than a millisecond, he added. Both features will become even more important as the industry continues its transition to automation.

Smith and Foletti said the company chose AIMEX 2019 and the Australian market to launch this solution as the company already has 35 installations on surface in Australia, at operations owned by some major mining companies, such as Anglo American. Anglo, in fact, is standardising all its global operations with Rajant Wireless Mesh network technology, according to Smith.

The Rajant team is confident these companies and others will see there is a strong investment case for introducing Wireless Mesh underground, too.

In addition to gaining traction with mining companies, Smith and Foletti said Rajant had been making inroads with equipment manufacturers, fleet management providers and other service providers in the mining ecosystem.

Smith mentioned Wabtec (now GE Wabtec) had made an investment in the company as it looked to incorporate its wireless communications technology into its rail systems, while Japanese conglomerate Mitsui had created a strategic partnership looking to rollout Rajant’s technology across several of its portfolio companies.

Despite the introduction of LTE and 5G technology to the underground environment, Smith and Foletti believe there is still a business case for Rajant’s Wireless Mesh technology.

As Foletti said, “If they [the mining operation] move[s], that’s where Rajant comes in.”

This is likely to see the communications infrastructure installed alongside other technologies in the future such as LTE, fibre and 5G in rapidly expanding mining areas such as development and production.