Tag Archives: mine communications

Plan Nord backs Newmont Goldcorp’s 4.0 mine vision at Éléonore gold operation

The Government of Québec, through the Société du Plan Nord, says it will invest C$1.75 million ($1.28 million) to connect Newmont Goldcorp’s Éléonore mine facilities to the existing regional fibre optic network.

“This project will enable one of Quebec’s most innovative mining companies to continue advancing its vision to create mine 4.0, an interconnected mine of the future,” the government said, adding that the connection, which will help optimise the company’s operations, will also increase the quality of life of workers on site and encourage employee retention.

Jonatan Julien, Minister of Energy and Natural Resources and Minister responsible for the Côte-Nord region, made the announcement this week while visiting Éléonore.

As part of this project, 124 km of fibre optic cable will be laid from the Eastmain 1A link to the Éléonore mine. This project, valued at C$3.5 million, will be delivered by the non-profit organisation Eeyou Communications Network (ECN), with the new high-speed connection expected to be operational in 2020.

Julien said: “The mining sector is entering a new era with mine 4.0. Today’s funding will contribute to the Éléonore mine’s competitiveness in the future: access to a reliable and high-performance telecommunications network is fundamental for the industry to modernise. The realisation of this project is excellent news for the Eeyou Istchee James Bay region, but also for the Quebec economy.”

Sophie Bergeron, General Manager, Éléonore Mine, Newmont Goldcorp, said: “This joint investment from our Cree partner, Eeyou Communications Network, and the Société du Plan Nord will connect the mine to a fibre optic network, providing far more bandwidth than we have today, and will support our vision of creating the first 4.0 mine in Quebec.

“With this technology backbone in place, new sustainable and responsible mining developments can consolidate the leadership role Quebec plays in Canada’s mining sector and beyond.”

Éléonore was expected to produce some 360,000 oz of gold in 2018 from the underground Roberto deposit. Ore is mined from four horizons using sill and stope techniques, then processed onsite using a conventional circuit that includes crushing, grinding, gravity, flotation and cyanidation.

The operation has begun to develop a fifth mining horizon and build a production shaft, both of which will bring Éléonore closer to its full production capacity, a key part of the company’s plan to increase production by 20% by 2021.

At Éléonore, all underground workers, vehicles and other heavy equipment are outfitted with radio frequency identification tags that transmit a unique ID number via a Wi-Fi connection to the Cisco access point throughout the mine. Telemetry units integrated into vehicles also monitor the functions and systems in the vehicle’s engine, and issue an alert to mine managers when something needs attention, the company said.

The Société du Plan Nord contributes, from a sustainable development perspective, to the planning and integrated and coherent development of northern Quebec, it says. It does so in consultation with representatives of the regions and indigenous peoples, as well as the private sector.

Volvo CE staying connected to automation trend with 5G collaboration

As the application of automation in underground mines accelerates, several companies have started exploring 5G communications developments in order to handle the massive amounts of data that is being generated from autonomous equipment.

One company interested in exactly this is Volvo CE, which earlier this year, in co-operation with Telia and Ericsson, launched Sweden’s first 5G network for industrial use at its facility in Eskilstuna. The partnership could see the mining and construction equipment company become one of the first in the world to use 5G technology to test remote-controlled machines and autonomous solutions.

IM, as part of its annual focus on Nordic Suppliers (to be published in the June print issue), put some questions to Calle Skillsäter (pictured below), Volvo CE’s technical specialist for ‘Connected Machines’, to find out more about this collaboration and understand what hurdles companies are facing when trying to implement such communications solutions.

IM: What is the justification for investing in 5G technologies with Telia and Ericsson? How much of your equipment is currently controlled remotely or autonomously?

CS: Connectivity is a crucial enabler for automation, which is why this 5G project is so significant for us at Volvo CE and for the construction industry as a whole. We also believe that automation technology is at its most efficient when it is run hand in hand with electromobility – as we demonstrated through the Electric Site quarry project.

Thanks to a prior research collaboration with Telia and Ericsson, in the Pilot for Industrial Mobile Communication in Mining (PIMM) project, and now this established Telia Journey to 5G Partnership Program, we have the possibility to test future connectivity solutions for our machines in mining applications, as well as other potential applications.

Currently we are focusing on our L180H wheel loader remote-controlled prototype, but will soon test 5G on the HX2 concept (pictured above) autonomous hauler as well. There are no autonomous or tele-operated machines from Volvo CE available on the market today.

IM: Most of the 5G investment in mining has, so far, come from the Nordic region; why is this?

CS: That’s right, we do have a rather unique setup in that many Nordic companies are at the absolute forefront of their industries with this technology. Mining companies like Boliden and LKAB are driving the business to be more intelligent and automated, Ericsson & Telia bring the connectivity perspective, ABB bring their experience of automation into the process industry, and Volvo CE and Epiroc bring the machine perspective. It’s certainly the case that the Swedish engineering mindset is very open and collaborative, which is what you need to be if you are to explore the potential of new technologies and new ways of working. We are a small country and we need to collaborate and be on the edge of technology to stay competitive.

IM: Do you expect this region, in addition to Canada, to offer the most immediate potential for 5G automated and remote-controlled technologies in mining?

CS: As I’ve mentioned earlier, we have all ingredients available in the Nordics to succeed in this transformation towards more connected and automated mining solutions. Another strong reason is that we have high demands on health and safety for the people working in the mines. Automation is a key way to improve site safety and reduce the dangers and accidents associated with mining. In addition, automation is our key to staying ahead of our competitors.

IM: What testing have you so far been able to carry out at Eskilstuna? What results have been achieved?

CS: We quite recently inaugurated the new test area for automation and tele-operations, so we are still in the early phase. The initial focus is on the tele-operation of the remote-controlled wheel loader L180H, but we will very soon start testing 5G for the HX2 autonomous hauler concept machine. At the moment, it is too early to reveal any results.

IM: When do you expect to be able to test this out in a real-life underground mining environment?

CS: Tests have very recently been performed within the PIMM Digitalized Mining Arena (DMA) project in one of Boliden’s mines, using LTE wireless 4G communications, the results of which will be announced next month. Testing on a customer site with 5G is not planned yet.

IM: When comparing 5G to 4G technologies, what are the main benefits for mining companies when it comes to using this newer communication infrastructure (aside from lower latency, bandwidth, quality of service, positioning, etc)? What sort of impact could it have on operating costs considering the improved accuracy/responsiveness it brings to automated and remote-controlled operations?

CS: The main benefits are, as you say, lower latency, bandwidth and the quality of connection. But lower latency will also mean that tele-operated machines are more responsive, therefore resulting in much higher productivity. Higher bandwidth also means better video quality, which means a better work environment for the operator. Better video quality also creates a better feeling of presence, which helps to improve productivity. Quality of Service will mean machines are up and running for longer.

IM: How far is the industry away from employing these 5G solutions commercially? What are the three biggest hurdles to achieving this milestone?

CS: It’s too early to say when we think customers will be ready to see 5G solutions available commercially. But the biggest hurdles are:

  • Legislation related to the radio frequencies. There are still a number of open questions here; for example, will there be space for local industrial solutions, or will everything be dedicated to the mobile network operators?
  • Hardware availability. For example, there are not many 5G devices designed for demanding mining environments available right now on the market.
  • Business models. The new technologies will push us to review our business models. Should we continue to sell machines like we are used to?

IM: Do you expect underground mines of the future to be run solely off 5G networks? Or, do you expect a combination of 5G/Wi-Fi?

CS: There is a potential for mines to be run only on 5G in the future. But this is one of the questions that we hope to be able to answer in our coming tests and collaboration with our partners.

DAMM and Wellracom to digitalise Amman Mineral’s Baju Hijau copper-gold mine

DAMM and its systems partner, Wellracom, have successfully commenced an upgrade from an existing analogue system to a digital TETRA communication solution for Indonesia mining company, PT Amman Mineral Nusa Tenggara.

DAMM has delivered five 2-carrier DAMM Outdoor Base Station BS421s for voice and data communication for the entire mining operation, it said.

Key factors for choosing DAMM were the cost-efficiency and scalability of the system combined with the open API, DAMM said. DAMM says its MultiTech Platform enables voice and data communication across technologies, including TETRA, TEDS, DMR and Analog in one single system.

To facilitate the gradual migration to the new TETRA system, Amman Mineral has deployed a DAMM TetraFlex Group Bridge, which enables communication between the two different technologies. This will ensure a seamless migration and smooth integration, according to DAMM. The site will eventually become fully digitalised.

Amman Mineral operates the Batu Hijau copper-gold mine, in the West Sumbawa regency, West Nusa Tenggara province. This is the second largest copper and gold mine in Indonesia.

Desmond Cheong, Regional Manager at DAMM, said: “This has been an exciting project for us. It is great for us to demonstrate our ability to deliver communication in challenging conditions, a success that can be attributed to the high quality of our DAMM TetraFlex solution as well as our great collaboration with Wellracom.”

Mr Suprapto, Managing Director of Wellracom Group, said DAMM has a proven track record in the mining industry, adding: “The challenge in the mining industry, in Indonesia, is to secure communication 24/7 to minimise any disruption to operations.”

Hard-Line’s Teleop system receives LTE certification with Redline partnership

Redline Communications Group and HLS Hard-Line Solutions have successfully integrated the operation of Hard-Line’s Teleop Teleremote Control System with Redline’s industrial Private LTE solution, enabling tele-operation of heavy mining machinery from a remote-control station.

This integration will allow machinery such as rock breakers, drills, excavators, wheel loaders and dozers to be operated by operators totally out of the proximity of danger, in addition to “more easily expand a mine’s progression”, Redline said.

“The system saves time, heightens operator safety, improves comfort, and allows a greater percentage of the workforce to operate equipment,” the company said. “Together, the companies demonstrated they could deliver safe, reliable and cost-effective remote operations, on a fit-for-purpose, secure private LTE infrastructure designed for the mining environment.”

Hard-Line is certified for installation of Redline Private LTE networks and is partnering with Redline to deliver communications infrastructure solutions to the mining industry. Its latest Teleop Auto system delivers 2D and 3D views, with ‘real-time’ operator control achievable when the system is coupled to robust communication networks.

Louis Lambert, Senior Vice President, Business Development for Redline Communications, said: “As the mining industry progresses through digital transformation to enable ‘smart mining’, private LTE is surfacing as the wireless technology of choice to deliver robust, reliable and secure mobile communications.”

Hard-Line’s, Scott Whelan, Vice President of Sales, said: “As a result of our collaboration with Redline, Hard-Line is now certified in both Wi-Fi and LTE solutions to satisfy our customers’ needs. This enables our customers to have the flexibility to operate our products on the solution and infrastructure of their choice.”

In addition to the collaboration with Hard-Line, Redline continues to invest to further develop communication solutions that are fit-for-purpose for mining companies to deliver on smart mining initiatives globally, it said.

Komatsu’s FrontRunner autonomous haulage system and Nokia make mining LTE history

Komatsu America Corp’s FrontRunner autonomous haulage system (AHS) has achieved a mining industry first, after the system qualified to operate on private long-term evolution (LTE) mobile broadband technology.

This makes it the sector’s first AHS enabled to run on private LTE in commercial operations, paving the way for ultra-high system availability and reliability, while adhering to Komatsu’s renowned safety standards, the company said.

Komatsu’s FrontRunner AHS allows unmanned operation of ultra-class mining trucks. It delivers significant benefits, including reduced worker exposure to harm, protocols designed to constantly improve mine-site safety, reduced operating costs, and increased productivity and efficiency. The company completed a year-long qualification programme at the company’s proving grounds in Tucson, Arizona, conducting extensive testing of the FrontRunner AHS on Nokia’s Future X infrastructure, a leading provider of private LTE communication solutions for the mining industry.

Komatsu said: “Mining operators demand wireless networks with high-availability, seamless mobility, world-class quality of service, and the ability to support multiple applications and services simultaneously. Accordingly, the industry is moving away from less predictable wireless technologies such as Wi-Fi, and towards private LTE networks, that improve security, capacity, and overall performance within a multi-application environment.”

Luiz Steinberg, Komatsu Global Officer and President/CEO of Modular Mining Systems, said: “This industry milestone represents a key step in Komatsu’s exploration of private LTE and highlights Nokia’s role as the leading global supplier of mission-critical solutions and services for the mining industry.

“As the leader in autonomous haulage technology, we are firmly on our way to helping the industry move the next billion tons of material with autonomous technology. We have come together with Nokia to further this vision of delivering increased value to the mining industry.”

Kathrin Buvac, President of Nokia Enterprise, said: “We are excited to be engaging the mining automation market with Komatsu, a powerhouse in the industry, to further highlight the benefits of Future X for mining companies as a strategic advantage in their operations.

“Private LTE is a key element in the Nokia Bell Labs Future X architecture to help industries, such as mining, create an intelligent, dynamic, high-performance network that increases the safety, productivity and efficiency of their business.”

Komatsu pioneered the first AHS for the mining industry with a commercial deployment in 2008 at Codelco’s Gabriela Mistral (Gaby) copper mine in Chile. In November, the company’s FrontRunner AHS system marked the movement of 2 billion tons (1.81 Bt) of surface material moved.