Tag Archives: AHS

Fortescue hits new automation milestone in the Pilbara

Fortescue Metals Group’s autonomous haulage (AHS) fleet has marked a significant milestone, moving two billion tonnes of material, doubling the amount hauled since reaching the one billion tonne milestone in September 2019.

In 2012, Fortescue was the first in the world to deploy Caterpillar’s AHS technology on a commercial scale at its Solomon Hub operations in the Pilbara of Western Australia and the multi-class fleet has since expanded across the company’s operations with a total of 193 autonomous trucks now in operation.

Fortescue Chief Executive Officer, Elizabeth Gaines, said: “Fortescue is a leader in the implementation of autonomous haulage across our iron ore operations. Our fleet represents one of the largest in the world, with 79 trucks currently in operation at Solomon, 74 at Christmas Creek and 40 at Cloudbreak. Moving over two billion tonnes of material without a driver at the wheel is a significant milestone and a reflection of Fortescue’s ongoing commitment to increasing operational efficiency through technology and innovation.

“Most importantly, the introduction of AHS technology has led to significant safety improvements for our team members, with our fleet safely travelling over 70 million kilometres to date – the equivalent of 91 return trips to the moon.”

The continued expansion of autonomous capability across the business has demonstrated that autonomy doesn’t need to be at the expense of jobs, with the transition to autonomous haulage providing significant new opportunities for Fortescue’s workforce through the provision of training and redeployment to new roles, Fortescue said.

Gaines added: “Significantly, the adoption of autonomous haulage has allowed us to relocate many traditional site-based roles to our integrated operations centre in Perth, providing opportunities for parents and women in particular to remain engaged in our workforce. Today, almost 50% of our workforce in the Fortescue Hive are women.”

ioneer signs MoU with Caterpillar to introduce autonomous haulage at Rhyolite Ridge

ioneer Ltd says it has completed a joint automation study with Caterpillar and the Cat dealer for Nevada, Cashman Equipment Company, and signed a memorandum of understanding with Cat that should see autonomous haulage employed at the Rhyolite Ridge lithium-boron project in Esmerelda County.

The study was targeting the early introduction of Cat’s Command for hauling Autonomous Haulage System (AHS) at Rhyolite Ridge, with the results of the Rhyolite Ridge feasibility study showing the viability of AHS at the mine and how its proposed application could positively impact the overall cost structure of the operations.

Key anticipated drivers include increased operating hours, reduced cycle times and improved cycle efficiency, and decreased operating costs in terms of maintenance, fuel, labour and tyres. AHS should also lead to improved in-cycle productivity and overall utilisation, reducing the number of trucks required, ioneer said.

To date, Cat autonomous mining trucks have safely hauled more than 2 billion tonnes of material worldwide, driving over 67.6 million km without a lost-time injury in the process.

The Rhyolite Ridge operations are scheduled to start in 2023 with a fleet of Cat 785 Next Generation mining trucks (pictured) equipped with Cat Command for hauling, and the fleet is scheduled to expand significantly in year four, ioneer explained. All support equipment will feature the latest MineStar technology using high-precision GPS and real-time analytics to maximise efficiency and accuracy in material loading, it added.

This will be the first greenfield operation in North America to use AHS and will mark the expansion of Command for hauling automation technology to the 140-t class Cat 785 Next Generation mining truck.

The MoU between Cat and ioneer is for the use of Cat Command for hauling at the Rhyolite Ridge mine. The companies have engaged in preliminary, non-binding negotiations regarding the terms of the proposed transaction and intend to negotiate formal agreements in the coming months, ioneer said.

The partnership will operate through Cashman Equipment, Nevada’s Caterpillar dealership since 1931. The fleet and initial auxiliary equipment will all be equipped with Cat MineStar Terrain, sold and supported by Intermountain Mining Technologies. This GPS system provides improved data for drilling, excavation, grading and dozing and should allow for better delineation of the overburden and ore for Rhyolite Ridge, according to ioneer.

As stated in the October 2020 release, the equipment and services supplied by Caterpillar during the first five years of operation is valued at around $100 million and may be financed through Caterpillar Financial Services.

ioneer’s managing director, Bernard Rowe, said: “Our agreement with Caterpillar represents much more than just the purchase of equipment; it is a true ongoing partnership as we commence production at Rhyolite Ridge.

“We are very pleased with the results of the automation study and look forward to working with Caterpillar, Cashman, and Intermountain Mining Technology in our effort to produce materials that are vital to a sustainable future. The incorporation of an autonomous haulage system and other Caterpillar technologies at Rhyolite Ridge will only further our goal to improve project safety and operational efficiency.”

Jim Hawkins, General Manager of MineStar Solutions of Caterpillar Inc, said: “Caterpillar mining technologies, including Command for hauling, deliver mining companies throughout the world benefit from greater productivity, increased truck utilisation, consistent truck operation and reduced costs. We are excited to support ioneer to deliver these same advantages to the Rhyolite Ridge greenfield mining opportunity.”

The Rhyolite Ridge project is the only one of its type known globally, according to the DFS from Fluor. Its unique mineralogical characteristics support low-cost processing of its ore into high-grade lithium and boric acid products using sulphuric acid leaching.

An initial starter pit at the project will be developed in the southwestern part of the orebody to supply ore for the first 4.5 years. In this area, lithium grades are 15% higher than the average grade for the deposit and the ore is more exposed at surface. Development of the greater pit will start once the environmental permits for this development have been granted.

The Stage 2 pit design will facilitate a larger mining area to be maintained, aiding the efficiency of the operation for another 21 years, according to Fluor. Stage 2 will involve expansion to the south and east. Finally, mining will progress to the north of the deposit. The Stage 2 pit requires prestripping to begin in year four.

Fortescue completes autonomous haul truck fleet conversion in Western Australia

Fortescue Metals Group says it has completed its Chichester Hub autonomous haulage project, with 183 trucks now operating in AHS mode across its Solomon and Chichester Hubs, in Western Australia.

The project represents one of the largest fleet conversions to autonomous haulage systems (AHS) in the industry. It was aided by the involvement of Thiess.

The multi-class fleet includes Cat 793F, 789D and Komatsu 930E haul trucks and has safely travelled more than 52 million km and moved 1,500 Mt of material since 2013, according to FMG. An additional 900 assets, such as excavators, wheel loaders and light vehicles, are integrated with the autonomous fleet using Cat MineStar Command for hauling technology, which is operated from the Fortescue Hive, the company’s integrated operations centre in Perth, Western Australia.

Chief Executive Officer, Elizabeth Gaines said, “Mining is one of the most innovative industries in the world, and Fortescue continues to build on our leading autonomy capability to deliver productivity and efficiency benefits.

“Most importantly, the introduction of AHS technology has improved safety outcomes across our operations and we’re very pleased that the team achieved this important milestone in the truck conversion program to the highest safety standards.

“Our approach to autonomy has been to be open and transparent with our plans and to work closely with our team members to offer opportunities for re-training and re-deployment. Around 3,000 Fortescue team members have been trained to work with autonomous haulage, including over 200 people trained as Mine Controllers and AHS system professionals.”

Group President, Resource Industries, Caterpillar Inc, Denise Johnson, said: “Fortescue is a leader in the implementation of autonomous solutions. This important milestone further reinforces the transformation Fortescue has made with autonomy to improve safety, site productivity and machine utilisation. We congratulate Fortescue on this significant achievement.”

Fortescue Chief Operating Officer, Greg Lilleyman, said: “Fortescue’s autonomous haulage fleet has delivered a 30% increase in productivity. Looking ahead, the flexibility of our efficient, multi-class autonomous fleet offers considerable potential for further productivity and efficiency gains.

“Our operations are more connected than ever before and, by using data from our autonomous haulage fleet, we can paint an accurate picture of our operations and focus on the optimal opportunities for improvement, such as haul road design and maintenance scheduling.

“Our autonomous haulage system is a foundational tool which allows us to streamline processes and improve outcomes, ultimately delivering increased value for our shareholders.”

Hitachi to trial autonomous tech on ultra-large hydraulic excavators in Australia

Hitachi Construction Machinery (HCM) is looking at trialling autonomous ultra-large hydraulic excavators at an Australia mine site as part of a series of verification tests.

The tests, set to begin from the start of the 2021 financial year (from April 1, 2021), are geared towards improving future mining site safety and productivity, HCM said.

“The remote controlled ultra-large hydraulic excavator will be developed in order to improve the working environment and ensure the safety of operators,” the company stated. “This excavator will be equipped with operator support systems, such as a collision avoidance system with other mining equipment, to ensure the same level of operability as with the operator on board the machinery.”

Following the initial development, some part of the excavation and loading operation will be automated to allow a single remote operator to operate multiple ultra-large hydraulic excavators, the company said.

“The incremental development will eventually realise the ultra-large hydraulic excavators with autonomous operation features,” HCM said.

The remote control, driving support system for manned excavators and autonomous operation features are all retrofittable onto the EX-7 series of ultra-large hydraulic excavators to enable mining site customers to use the equipment they currently operate, while supporting autonomous operation at mining sites in the future, HCM said.

The company explains: “Mining resources including iron ore and copper sustain the activities of global industries, and the sites which mine these resources are required to operate in a stable manner 24 hours a day, 365 days a year.

“In contrast, the operators of ultra-large hydraulic excavators are required to repeatedly perform complex operations for a long period of time while paying attention to avoid collision with surrounding equipment and the stability of the vehicle, in order to excavate and load mining resources in an efficient manner.”

Because the safety and productivity of ultra-large hydraulic excavator operation largely depends on the operator’s skill and experience, building a production system that does not depend on these skills and reduces the operator’s workload are important issues at mining sites, it said.

Such developments have been coming from the group considering the company entered the mining machinery business in the late 1970s, and has made leaps in tele-remote operations of excavators within other sectors.

For example, the company used a remote-controlled unmanned excavator to advance the development of technologies in the reconstruction work at Mount Unzen Fugen-dake volcanic eruption in 1992. In 2013, it also led the industry by advancing the development of technologies for long-distance remote control by remotely operating a hydraulic excavator located in the Urahoro test site, Hokkaido, over an internet connection from approximately 800 km away in Tsuchiura City, Ibaraki Prefecture.

“Now, we have decided to begin verification tests at an actual mining site to advance the development of autonomous driving for ultra-large hydraulic excavators, reflecting the needs of customers,” it said.

The autonomous operation for ultra-large hydraulic excavators can be deployed as a standalone system, or as a part of fleet management system (FMS), such as the Fleet Control from Wenco International Mining Systems, a HCM subsidiary with a solid implementation track record at large-scale mines.

“Our goal is to balance a high degree of safety and productivity by having autonomous operation through sharing the information among the autonomous ultra-large hydraulic excavators, dump trucks and other equipment,” the company said.

Operation support system

Because it is difficult to assess the conditions around the vehicle and the inclination of the vehicle during remote control compared with a manned operation, the actual machinery will be equipped with a collision avoidance system and a vehicle stability monitoring system to reduce the burden on the operator performing the remote control during the verification tests, HCM said.

In addition, Wenco has been advancing the development of an excavator payload monitoring system, which measures the weight of the material inside the bucket, and plans to test this feature at the same time.

Reflecting the needs of actual customers through verification testing will further improve remote control and driving support technologies in ultra-large hydraulic excavators, HCM said.

“These operator support systems can be retrofitted onto the EX-7 series of ultra-large hydraulic excavators and are scheduled to be ready for the market during the 2022 financial year (April 1, 2022 onwards) as systems installed on actual machinery to increase operation safety,” the company said.

Integration with the autonomous haulage system (AHS)

HCM began researching AHS in 2009, with six EH5000 rigid dump trucks now starting 24-hour autonomous haulage at Whitehaven’s Maules Creek coal mine in New South Wales, Australia.

Because a diverse and large quantity of manned and unmanned machineries mix together in a large-scale mining operation, the radio communication needed for the operating control must be managed in a stable manner, HCM explained.

“The AHS from Hitachi Construction Machinery runs on the Wenco FMS and utilises various technologies from the Hitachi Group to realise a significant advantage by extending its range of control up to a maximum of 100 vehicles,” the company said.

The goal of autonomous ultra-large hydraulic excavators is to balance a high level of safety and productivity, even in the autonomous mining sites of the future, by sharing information with dump trucks and other machinery.

The Hitachi Construction Machinery Group has thus far been engaged in realising “reliable solutions” to solve social issues as a close and reliable partner for our customers, it said.

“Going forward, we will continue to promote the development of long-distance remote control and autonomous driving, ultra-large hydraulic excavators using ICT and IoT for mining industry customers around the world to help provide the higher level of safety and mine management productivity improvements that our customers require,” the company concluded.

Hitachi moves into a new mining automation zone

Back in 2017 when it was soon expecting to commercially apply its mining truck haulage automation system, Hitachi Construction Machinery (HCM) made the bold claim that it had “commenced development of an autonomous haulage system (AHS) that will leapfrog over current market offerings”.

With trials of the technology at its first mine site concluded and the rollout of automated haulage in New South Wales, Australia, ramping up, HCM’s Adrian Hale, Business Development Manager – AHS, International Operations, Global Mining Group, and Greg Smith, General Manager – AHS Business Unit, Client Solutions Division, provided IM with a bit more information about HCM’s AHS technology, the third commercial offering from a mining OEM.

IM: How would you summarise the Hitachi approach to mining AHS versus others in terms of fundamental development, capability, and overall aims?

AH: Hitachi undertakes a broad investment to leverage group entities and technologies within the development of our AHS capability. This has resulted in formation of cross-entity teams, and adoption of technologies that have been applied in industries including high-speed rail to underpin command and control. It’s definitely a new and contemporary approach in delivering our Open Autonomy vision that extends value across all areas of the mining business. Our objective is to drive operational outcomes for our customers.

IM: What advantages do the wider capabilities within Hitachi Ltd, Wenco, etc bring to your AHS system? How easy was it to adapt systems designed for the rail and automotive groups, for example, for the mining AHS sector?

AH: Leveraging multi-industry capabilities from across Hitachi remains a foundation AHS development and this One Hitachi vision is driving the contemporary method of our ongoing investments. As mentioned earlier, adopting permission control technologies from Hitachi’s rail traffic control applications has delivered innovative efficiency in network communications and supports large scale fleet potential. In the case of Wenco, there remains a seamless integration of design and development team that has accelerated our AHS platform. This continues in terms of our objectives to lead Open Autonomy strategies.

IM: Comparisons are always going to be made between the major OEM providers of AHS: can you highlight some of the differences between your AHS systems and the likes of FrontRunner and Command for Hauling (LiDAR/RADAR differences, on-board/off-board computing power, truck speed restrictions, shovel interaction with AHS, etc)?

AH: Without a doubt there will be areas of difference in the baseline capabilities of all OEM AHS platforms. Command & control functions, sensor and technology integration, base truck engineering and design, as well as services methodologies and support delivery will all factor into these differences.

IM: What are the ‘entry’ requirements for Hitachi’s AHS system in terms of networks and connectivity? How has the Rajant wireless mesh network functionality enabled the Hitachi AHS to avoid the connectivity problems that have been an issue in deployments in the Pilbara (ie the trucks stopping and having to be manually restarted every time they lose connection)?

AH: We remain open on our supporting technologies and infrastructures and these elements remain a key focus of discovery as our regional development progresses. There is always a view to collaborate with our customers importantly to utilise already established assets wherever possible.

GS: One of the key advantages of the Hitachi Autonomous Solution is that autonomous haulage trucks (AHTs) can continue to operate on their assigned permitted path, despite intermitted loss of connection. The AHTs have the ability to navigate within their permitted path and bring themselves to a safe and controlled stop at the end of the assigned path, should the network not be re-established prior. Several safety layers above those linked to network stability are in place to ensure safe and efficient operation.

IM: I believe in a 2017 release, it was quoted that “limiting constant communication between the truck and the FMS, Hitachi’s autonomous technology was able to control up to 100 vehicles under the one system”. Is this the ‘ceiling’ in terms of the number of AHS haul trucks you expect to deploy on any one mine site?

AH: While we don’t perceive there would be ceiling limits, it is reasonable to acknowledge AHS fleet will have an optimal design utilisation within operations. This includes, of course, instrumented equipment that is not fully autonomous that has to have visibility within these areas.

IM: How do your TCS and Exclusive Permission Control functions differ to the traffic management and navigation procedures of other AHS systems? Does it enable your AHS system to reduce the number of false positive ODs (object detections) on mine sites?

AH: Without making direct comparison to other AHS solutions, integration of these systems and functions delivers optimised AHS fleet & network management. As a design principle, Hitachi AHS is a complex, contemporary ‘system of systems’ and that platform delivers these benefits.

IM: Outside of the obvious productivity and safety benefits your system will offer, what other external benefits are you expecting (fuel use, haul road degradation, tyre life, etc)?

AH: The basis of AHS technologies from a customer viewpoint reinforces the absolute need to deliver safety and compliance as #1, as well as productivity and efficiency benefits that would include optimisation of input cost areas. Hitachi has every expectation to meet market demand for reducing cost per tonne, optimising production, enabling grade control management and investing in workforce skilling for future mining. These priorities are also strengthened by our corporate sustainable development goal commitment and corporate social responsibility focus.

IM: Is your AHS focus likely to remain with the retrofit or ‘new’ market? Will the system likely become available for EH4000AC3 and EH3500AC3 trucks?

AH: Terminology in this space is quite fluid, regarding retrofit and new market. All Hitachi AC-3 rear dump trucks are designed for AHS and we can confirm the commissioning of these models is now in place. The assembly and commissioning of AHTs (ie on-board hardware) occurs wherever possible prior to customer delivery. Fleets that are already in operation at a customer site can be managed for retrofit without issue.

IM: Do the open architecture of the Wenco FMS and your wider DX initiatives mean you will be able to retrofit AHS on other truck manufacturers’ products in the long run?

AH: Hitachi’s continued R&D initiatives in the mining sector focuses on providing greater technology benefit across the value chain – not solely haulage. Our AHS market growth remains fixed at this time on our own fleet portfolio. Open Autonomy strategy ultimately provides choice and flexibility to the mining community.

IM: You have large haul truck fleets in important markets like Colombia, Zambia, and Indonesia. Is the business case for AHS as strong in these countries?

AH: Our clear priority remains on our commitments in Australia. Developing business value in other markets remains important to Hitachi and we will continue to engage in conversation with all customers.

IM: What can you say about the performance of the initial deployment of a fleet of six EH5000 AHS-enabled in commercial operation? How have these trucks performed compared with the test work you previously carried out on site?

AH: The current phase of deployment has produced ongoing and very encouraging results. Implementing within coal operations as well as the first AHS operation in NSW has also provided some great learnings – working with the customer teams, regulator and our multi-national implementation delivery model. Moving from test to production now validates the performance objectives we had established, and, as the fleet population meets its full size in AHS operation, further operational gains.

IM: How different is the AHS-enabled trucks Hitachi has compared with what you initially presented at Meandu (have any major elements changed)?

AH: There is a continuing investment in terms of engineering and development for our next-generation AHS capabilities, but aligning these priorities with strategic directions. Our supported AHS base truck fleet as deployed at Meandu remains our core platform but we are extending the EH class fleet models and ancillary supported fleet that operate within the autonomous zones.

Autonomous trucks arrive on time at BHP’s Newman East mine

As expected, the first fleet of autonomous trucks have arrived at BHP’s Newman East mine site with full roll out to be complete by September.

Home to BHP’s Innovation Centre, the Newman East mine will be the second of the company’s Western Australian mines to transition to fully autonomous haulage with 20 autonomous trucks due on site before the end of the year, BHP said. The first was the Jimblebar iron ore mine in the state, which transitioned in 2017.

The existing fleet of Cat 793s would be retrofitted with autonomous haulage systems, BHP previously explained.

BHP’s Newman Operations General Manager, Marie Bourgoin, said the transition would advance BHP’s technology strategy while also creating 41 new, permanent roles and investing A$33 million ($23 million) in contracts with Western Australian businesses.

“We recognise how important it is for BHP to partner with local and small businesses, particularly as we move into a post-COVID economic recovery phase,” she said.

“We are pleased to have been able to offer A$33 million in contracts to WA vendors for a range of work packages including autonomous conversion kits, trailers, training content development, and a number of engineering and construction packages.

“We know our success will be strengthened when we work together with local people and businesses. We will continue to explore further local initiatives as autonomous haulage rolls out, and beyond.”

Bourgoin said there were no redundancies as part of the transition and more than 300 people in the Newman operations workforce were undergoing training and upskilling to work on an autonomous haulage site.

“We have created new control centre and roles, which many of our truck operators have transitioned into, as well as new opportunities in truck maintenance and fuelling,” she said.

“Importantly we have created 41 new permanent roles, which are being offered locally as well as FIFO and will continue to be filled over coming months.”

Since the introduction of autonomous haulage at Jimblebar, significant events involving trucks have decreased by nearly 90%, according to BHP.

BMA to invest in autonomous haul trucks at Daunia coal mine

BHP Mitsubishi Alliance (BMA) has announced a A$100 million ($69 million) investment and new jobs as part of the introduction of 34 autonomous trucks at its Daunia mine in central Queensland, Australia.

The first retrofit trucks will begin working from February next year, with the rollout expected to be completed by the end of 2021, it said.

The 4.5 Mt/y Daunia coal mine opened in 2013 and has a truck fleet that includes Cat 793Fs.

BMA Asset President, James Palmer, said this was a multi-generational investment in the industry and  state at a time when it is needed.

“We acknowledge the important role our business and industry can play in supporting Queensland communities and the local economy during this time,” he said.

“This announcement is a vote of confidence in Central Queensland. At least 10 regional and indigenous businesses will be employed to support the rollout, with contracts worth A$35 million. This will result in 150 additional project roles for BMA people and contractors. This is on top of 56 new permanent roles on site.”

He reiterated that there would be no job losses as a result of the decision and anyone who currently works with the company – as an employee or labour hire worker – would be given the opportunity to continue to do so.

Hastings Deering’s Central Queensland operations will see an additional 30 jobs required to assist with truck and ancillary fleet conversion.

Hastings Deering CEO, Dean Mehmet, said: “This contract is a huge boost to our local business and the region. We will need 30 additional people to support the work that is required to convert the trucks and ancillary mining fleet into autonomous vehicles at Daunia. It’s exciting work to build on that allows us to grow and develop local talent to deliver technology solutions into the resources sector.”

Other examples of local businesses that will directly benefit from this decision include NB Industries, who will complete the light vehicle fleet conversion, and Radlink who will install wireless communication hardware across the mine.

NB Industries is also involved in completing the fit out of ancillary equipment for the AHS rollout at BMA’s Goonyella Riverside mine, in Central Queensland.

Palmer highlighted the employee engagement and training that is central to this decision.

“We have engaged with our workforce at Daunia over the previous 18 months on the possible rollout of autonomous haulage. Our people have told us that they are eager for new job opportunities and skills. That is why we are confident this is the right decision for Daunia.

“It will further increase safety and performance and help the mine remain competitive over the long term.

“We understand this decision represents some change. But it also offers a unique opportunity for people to gain new, highly valued skills that will create additional opportunities for growth into the future.”

To help prepare for Daunia’s autonomous future, it is estimated over 30,000 hours of training will be delivered, ranging from general awareness to extensive training for those operating equipment, interacting with the autonomous haul trucks, or taking on new roles.

In addition to pledging to bring autonomous trucks to Daunia and Goonyella Riverside, BHP is looking to start the roll out of autonomous trucks at its Eastern Ridge mine site in the Pilbara of Western Australia shortly.

IAMGold weighs autonomous drilling, haulage at Côté gold project

IAMGold has provided an update on its majority-owned Côté gold project in Ontario, Canada, which included confirmation of a key approval and the mention of studies on implementing autonomous haulage and drilling technologies.

The late 2018 feasibility study on the project demonstrated its potential to produce 460,000 oz/y of gold at all-in sustaining costs of around $700/oz for the first six years of a 16-year mine life.

It said this week that the project has received approval for its application under Section 36 of the Fisheries Act (Canada). This is a key milestone in attaining permits relating to impacts on fish habitats and tailings management, according to the company.

Since the feasibility study was published in late 2018, IAMGold says it has been very active in “de-risking” the project.

As of the end of May, the company says it has:

  • Completed additional resource and geotechnical studies, and advanced mine planning;
  • Completed over 60% of detailed project engineering, including the tailings facility;
  • Following this level of engineering, obtained firm bids and secure prices on all major equipment. To date, 55% of project cost has firm pricing, further reducing technical and cost risks for the project leading to a refinement in costs and metrics as IAMGold works toward a construction decision;
  • Completed a pre-construction camp on the adjacent Chester site;
  • Completed all tree clearing needed for initiating construction – work was carried out with a First Nations partner firm earlier in 2020, before standing down in respect of the COVID-19 pandemic;
  • Carried out detailed implementation studies on technology, including automated truck haulage and drilling, and commenced discussions with regulators regarding the use of automated equipment;
  • Advanced development of construction protocols in consideration of COVID-19; and
  • Completed 4,700 m of drilling at the Gosselin Zone, a potential satellite pit 1.5 km northeast of Côté.

The company has also signed Impacts and Benefits Agreement with First Nations partners, approved the Environmental Assessment and Closure Plan, and advanced permitting.

The 2018 feasibility study envisaged a truck-shovel operation, assuming 220 t autonomous trucks and 34 m3 shovels, and a 36,000 t/d mineral processing circuit incorporating primary crushing, secondary crushing, tertiary high pressure grinding roll crushing, ball milling, vertical stirred milling, gravity concentration and cyanide leaching, followed by gold recovery using carbon-in-pulp, stripping and electrowinning.

Gordon Stothart, IAMGold President and CEO, said: “A key part of the future of IAMGold is our organic growth pipeline, starting with the Côté Gold Project in northern Ontario.

“The transformative impact of Côté Gold on IAMGold’s production profile and global cost structure, in addition to its long mine life in an attractive jurisdiction, establishes clear and compelling reasons for this project to proceed.

“Our current financial position supports our proposed growth plans, with over $800 million in cash on hand, access to a currently undrawn $500 million committed revolving credit facility, and expected stronger operating cash flows from our current mining operations, including anticipated contributions from Saramacca at Rosebel and steady performance from Essakane and Westwood.”

A formal decision on the construction of the Côté Gold Project will be made in conjunction with IAMGold’s partner, Sumitomo Metal Mining, given a satisfactory environment for construction to proceed with appropriate work protocols in light of COVID-19 and without risk of interruption.

IAMGold said: “The company is currently working with SMM toward a formal decision. A decision in the coming months would allow construction to commence later this year with a targeted completion date of mid-2023.”

Fortescue celebrates 100th autonomous haul truck conversion at Chichester Hub

Fortescue Metals Group has celebrated an important milestone in the rollout of autonomous haulage technology at its Chichester Hub operations, in the Pilbara of Western Australia, with the conversion of its 100th autonomous truck.

The full conversion of 108 haul trucks at the Chichester Hub, which comprises the Christmas Creek and Cloudbreak mines, is expected to be completed in September 2020, it said.

Since the introduction of Autonomous Haulage System (AHS) technology at Fortescue in 2012, 168 trucks have been converted across the company’s Solomon and Chichester Hubs. This has seen Fortescue’s autonomous haul fleet move around 1,400 Mt of material and achieve a greater than 30% increase in productivity levels (compared with previous manned fleets), it said.

Fortescue Chief Executive Officer, Elizabeth Gaines, said: “Fortescue’s AHS deployment represents the largest fleet conversion to autonomous haulage in the industry.

“Our history of embracing leading-edge technology has ensured Fortescue remains at the lowest end of the global cost curve and remains fundamental to driving sustained productivity and efficiency improvements across our business to ensure we continue to deliver enhanced returns for our shareholders and key stakeholders.

“Most importantly, the introduction of AHS technology has improved safety outcomes across our operations and we’re very pleased that the Automated Mining Projects team has also achieved this important milestone in the truck conversion program with zero harm to any team members.”

Workforce skills development has been a key aspect of Fortescue’s automation project, it said, with the company’s training and redeployment program successfully transferring or upskilling team members to new roles across the business.

“Training is at the heart of everything we do at Fortescue and as we continue the integration of autonomous trucks across our sites, this ethos has guided our efforts to ensure no redundancies due to automation and to deliver significant benefits to employees from the opportunities offered by this project,” Gaines said.

Fortescue was the first company in the world to deploy Cat autonomous haulage on a commercial scale at the Solomon Hub. It was also the first in the world to retrofit Command for Hauling (part of Caterpillar’s MineStar technology) on a Cat 789D and Komatsu 930E haul truck.

The iron ore miner’s fleet of 168 autonomous trucks have now travelled in excess of 47 Mkm since AHS was first introduced – the equivalent of 65 return trips to the moon.

And, as part of the Chichester Hub automation project, 549,500 parts have been fitted to date across 100 trucks.

BHP readying rollout of autonomous trucks at Eastern Ridge

BHP is looking to start the roll out of autonomous trucks at its Eastern Ridge mine site in the Pilbara of Western Australia in the next month, with the fleet of 20 Cat 793 haul trucks set to be fully converted to autonomous mode by the end of the year.

The company announced earlier this year that Eastern Ridge (also referred to as Newman East) would be the next mine to benefit from autonomous haulage. This came after a previous automation announcement related to the jointly-owned Goonyella Riverside mine, in Queensland. BHP has also agreed to acquire 41 new model Komatsu 930E-5, which are autonomous ready, for its in-development South Flank iron ore mine, but the company has not yet confirmed if it will use the autonomous capability at the site.

A BHP spokesperson confirmed the existing fleet of Cat 793s were set for automation retrofits, explaining that the roll out would occur from the end of June/early July.

Despite the restrictions in place to curb the spread of COVID-19, the spokesperson said the company was on track for full roll out completion by the end of year, as planned.

In the announcement back in February, BHP said the automation project at Eastern Ridge, which the company is currently using as its proving ground for innovation, was down to the significant safety benefits offered by the technology and its ability to complement the mine’s design, culture and existing infrastructure.

“Newman East is home to our innovation centre, so we’re already using technology there that helps us to be safer and more efficient,” Newman Operations General Manager, Marie Bourgoin, said. “Autonomous trucks were the next logical step.”

This shift will create more than 30 new permanent jobs at Newman East to run and maintain the trucks, according to Bourgoin, with the new roles tied to planning the truck routes and operating the autonomous systems from a control centre, which will initially be located at the mine.

It will also generate more than A$33 million ($23 million) in contracts for Western Australia businesses, with the work required to transition Newman to autonomous haulage including autonomous conversion kits, trailers, training content development and engineering and construction packages.

Newman East is one half of BHP’s Newman operations, which also includes Newman West, locally known as Mt Whaleback. No decision has been made to introduce autonomous trucks at Newman West, the company confirmed.