Tag Archives: nickel

Raglan Mine extends operations for another two decades with Anuri

Raglan Mine, part of Glencore, has officially inaugurated the Anuri Mine, from its Sivumut mining project, which has been under development for over 10 years.

This event marks an important milestone in the pursuit of its mining operations in Nunavik and highlights its ongoing commitment to the local communities that welcome its operations, it said.

Anuri is one of the largest mining investments in Quebec, Canada, in the last decade. It is anticipated that it will lengthen Raglan Mine’s life of operations for at least 20 years.

Pierre Barette, Vice President of Raglan Mine, said: “We expect that our mining activities, initially forecast to last 25 years, will be significantly extended thanks to the Anuri mine. This is a huge success for our 1,400 employees, our Inuit partners and our business partners.”

More than 60 Raglan Mine employees helped find a name for the new mine. The final choice, Anuri, was selected by the members of the Raglan Committee and means ‘wind’ in Inuktitut. It reflects the change, vigour and evolution that this new phase represents for Raglan Mine and its Inuit partners, Raglan said.

Jean-François Verret, Director – Projects, Geology and Exploration, noted: “This project was a challenge on every level, particularly given the pandemic, the Arctic climate and numerous logistical challenges. Nevertheless, we completed the Sivumut project ahead of schedule, under budget and with everyone’s safety at the heart of every step. We achieved this through outstanding collaboration within our team and with our partners.”

The Sivumut project is the outcome of a collaborative and continuous improvement approach, enriched by the participatory process undertaken with Inuit communities as part of the Environmental and Social Impact Assessment, in compliance with Quebec’s Environment Quality Act and Section 23 of the James Bay and Northern Quebec Agreement.

As a result of these consultations, the Raglan Agreement with the Inuit of Salluit, Kangiqsujuaq and all of Nunavik was improved, particularly regarding land use, employment, training and the participation of Inuit businesses.

Signed in 1995 and enhanced in 2017, the Raglan Agreement continues to guide the day-to-day operations, ensuring that commitments made to the Inuit communities of Salluit and Kangiqsujuaq, as well as to Makivvik Corporation, are respected.

Raglan Mine, involved in nickel mining since 1997, considers the Anuri mine a key step towards the pursuit of its activities in partnership with Inuit communities. Glencore thus continues its efforts to minimise its environmental footprint and maximize local benefits.

Raglan Mine is part of Glencore, one of the world’s largest diversified natural resource companies. It operates on the northern edge of Quebec, in Nunavik. Its property extends to almost 70 km from east to west, and consists of a series of high-grade deposits, mainly nickel and copper.

Anglo American and Finnish Minerals Group look to progress Finland’s battery strategy

Anglo American and Finnish Minerals Group have signed a memorandum of understanding (MoU) to work together to explore opportunities to, they say, further support Finland’s battery strategy.

Finnish Minerals Group is a holding and development company that manages the Finnish Government’s mining industry shareholdings and supports the development of the Finnish battery value chain. Among other assets, it holds the Terrafame nickel heap leach mine.

Alison Atkinson, Projects & Development Director at Anglo American, said: “Finland is a highly attractive investment destination and has a strong heritage in both mining and innovation. We look forward to working with Finnish Minerals Group, whose mission is to responsibly maximise the value of Finnish minerals, to explore the wealth of opportunities that our agreement could offer.

“This agreement further strengthens our commitment to Finland as well as to our Sakatti project, a true polymetallic orebody very much aligned to Finland’s and the EU’s critical minerals priorities. Sakatti is designed as the next generation of FutureSmart Mining™, building on what we have learned in terms of minimal surface footprint and using technology and innovation to deliver ever better environmental and social outcomes, whilst producing essential raw materials needed to transition to a greener, low carbon energy future.”

Atkinson said last year during a sustainability performance update that Sakatti was set to be “a remotely operated, low carbon-underground mine with an electric mining fleet using technology and mining methods that will create zero waste and enable high degrees of water recycling, contributing to a sustainable supply of critical minerals”. The company also sees the potential to use sorting technologies for coarse particle rejection and material recovery opportunities at the project.

Jani Kiuru, Senior Vice President, Raw Materials at Finnish Minerals Group, said: “Exploring joint opportunities with Anglo American is a natural choice for us as they already know the Finnish operational environment. In addition, the company has a long history in mining and is a forerunner in sustainability. We believe this collaboration reinforces both parties by combining local and global knowhow in sustainability and technological development, thus maximising the value of Finnish minerals responsibly. We see there is a mutual understanding on the vast possibilities and importance of Finnish minerals for the green transition.”

As a Finnish state-owned company with a mandate to foster the Finnish mining and battery industry, Finnish Minerals Group is a natural potential partner for Anglo American in Finland, Anglo American says. The company’s main assets are: Terrafame, a subsidiary that produces nickel and cobalt sulphates; project Sokli, a phosphate and rare earths deposit; and a 20% interest in Keliber, a battery-grade lithium project aiming to start production in 2025. Additionally, Finnish Minerals Group is advancing several greenfield investments further downstream in the battery value chain.

Sakatti-FutureSmart Mining

Anglo American highlights next FutureSmart Mining advances at Woodsmith, Sakatti

Anglo American has provided its latest sustainability performance update, highlighting a number of technological advancements the company is looking to take at its in-development Woodsmith polyhalite mine in the UK and its exploration asset, Sakatti, in Finland.

Anglo American says it has an integrated approach to sustainability in project development, helping secure its ability to deliver responsible long-term growth in future-enabling metals and minerals.

The company is moving towards its goal of carbon neutral operations by 2040, evolving its pathways as it progresses, learns and as technologies develop.

At the end of 2022, its Scope 1 and 2 emissions were 21% below the peak levels of 2019 – a significant reduction that, Anglo American says, reflects its transition to 100% renewable electricity supply across its South America operations, with Australia to follow in 2025.

In southern Africa, it is working in partnership with EDF Renewables to build a 3-5 GW renewable energy ecosystem of wind and solar generation capacity, designed to tackle its largest remaining source of Scope 2 emissions and support energy reliability and grid resilience while catalysing broad socio-economic opportunities.

While Scope 3 emissions reduction is largely dependent on the decarbonisation of Anglo American’s value chains and the steel industry, in particular, it is progressing towards its ambition to halve these emissions by 2040.

Tom McCulley, CEO of Anglo American’s Crop Nutrients business, provided several references to Quellaveco, Anglo American’s most technologically-advanced mine that uses automation, a remote operations centre and high levels of digitalisation, when looking at its FutureSmart Mining™ plans at Woodsmith, a 5 Mt/y operation that could ramp up to 13 Mt/y.

McCulley, who also led development of Quellaveco, said Woodsmith will be developed as a benchmark for sustainable mining. This includes plans for the mine to be a low carbon, low water and low waste operation, with no tailings generation and with a minimum impact design.

“We hope this can show a way of how mining can be done in the future,” McCulley said of this approach at Woodsmith.

When it comes to Sakatti, Alison Atkinson, Projects & Development Director, said the development could end up being “our next greenfield project”.

The project is a rich multi-metal deposit with not only copper, nickel and cobalt resources, but also platinum, palladium, gold and silver.

“High concentrations of metal combined with consistency of the mineralisation between the boreholes make Sakatti a unique deposit,” Anglo American says of the project. Its resources are estimated to be sufficient for mining operations to last more than 20 years.

Atkinson said Sakatti is being designed as the next generation of FutureSmart Mining, building on what it has learned from Quellaveco and Woodsmith, particularly when it comes to ensuring there is minimal surface footprint and “using technology and innovations to deliver even better sustainability outcomes”.

She added: “Sakatti is set to be a remotely operated, low carbon-underground mine with an electric mining fleet using technology and mining methods that will create zero waste and enable high degrees of water recycling, contributing to a sustainable supply of critical minerals.”

The company also sees the potential to use sorting technologies for coarse particle rejection and material recovery opportunities.

New block cave operation starts up at BHP Nickel West

In what BHP says is a major milestone for its Nickel West operations at Leinster, in Western Australia, the B11 block cave is now fully operational following the firing of the last drawbell last month.

The block cave is now one of Nickel West’s most innovative operations and will be a producer of nickel at Leinster for approximately the next seven years.

BHP Northern Operations General Manager, Mike Moscarda, said the project would have a huge impact on production at Leinster.

“This is a first for BHP and was a huge commitment for the business to take on,” Moscarda said. “Now that it’s complete, it will contribute up to 50% of the ore in production at Leinster.”

Block caving allows for safe, low cost continued production and reduces the impact of seismic activity in the workplaces. It removes people from the most hazardous areas of the mine while remotely targeting the ore above.

BHP Manager Mining Leinster, Brendon Shadlow, said the block cave project began as a way to make mining more sustainable at B11, an area known for seismic activity.

“The mine had to close following some major seismic activity in 2013,” Shadlow explained. “With the new block cave, we can safely and efficiently continue mining even in the event of seismic activity.”

The block cave will now be established as a technical centre and the learnings from this project will help shape the future of mining techniques at Nickel West and beyond.

BHP Head of Planning and Technical, Chris Stone, said: “None of this would have been possible without the many highly capable and committed team members who have worked over many years to help deliver the result we have today. Thank you to everyone who has helped bring this project to fruition.

“We are so grateful to the project team, the Leinster crew and all of the contractors who have worked so diligently throughout the life of the project.”

The B11 block cave is planned to recover over 80,000 t of nickel.

Canada Nickel to leverage trolley assist, IPT carbon capture & storage at Crawford

Canada Nickel Company has released the results of a bankable feasibility study (BFS) on its wholly-owned Crawford nickel sulphide project in Ontario, Canada that highlights the potential use of trolley-assist trucking and the company’s proprietary carbon capture and storage technology.

The BFS, prepared by Ausenco Engineering Canada, displayed an after-tax NPV (8% discount) of $2.5 billion and an internal rate of return of 17.1%. This is based on a long-term nickel price of $21,000/t, a C$:$US of $0.76 and an oil price of $70/bbl.

Crawford, in Timmins, Ontario, is the world’s second largest nickel reserve, according to Wood Mackenzie. Once in production, it is also expected to become one of Canada’s largest carbon storage facilities and be a net negative contributor of CO2 over the project life.

The study was based off proven and probable reserves of 3.8 Mt contained nickel from 1,700 Mt of ore grading 0.22% Ni, providing annual average nickel production of 38,000 t over a 41-year life, with production of 48,000 t/y of nickel, 800 t/y of cobalt, 13,000 oz of palladium and platinum, 1.6 Mt/y of iron and 76,000 t/y of chrome over 27-year peak period.

Crawford will produce two concentrates with life-of-mine average concentrate grades as follows:

  • Nickel concentrate: 34% Ni, 0.7% Co and 4.1 g/t combined Pd and Pt; and
  • Iron ore concentrate: 55% Fe, 0.3% Ni, 2.6% Cr.

The project’s carbon footprint has been calculated at 4.8 t CO2 per tonne of nickel in concentrate, or 2.3 t CO2 per tonne of nickel equivalent, largely due to the use of an electrically powered mining fleet, including trolley-assist trucks, that are expected to reduce diesel consumption by over 40% compared to diesel powered equipment.

Crawford will mine two separate open pits that contain approximately equal tonnages of ore. Approximately 89% of material mined will be rock, which will be drilled and blasted before being loaded by electrically powered rope shovels or large hydraulic excavators into 290 t trucks equipped with trolley assist. Over 70% of uphill hauls by this fleet will be conducted on trolley, reducing diesel consumption by approximately 1.5 billion litres, while faster speeds will reduce the fleet by 12 units, the company says. The remaining material will be overburden that will not require drilling and blasting and will be loaded and hauled with a mixed fleet of smaller equipment.

The concentrator will process ore using a conventional milling circuit. Unit operations include crushing, SAG and ball mill grinding, desliming, nickel flotation, magnetic separation on the flotation tailings and carbon storage using the company’s proprietary IPT (In-Process Tailings) Carbonation technology.

Crawford, and the company’s other properties in the Timmins Nickel District, are hosted in ultramafic rock, which contain minerals such as brucite that naturally absorb and sequester CO2. Canada Nickel has developed the novel IPT Carbonation process which involves injecting a concentrated source of CO2 into tailings generated by the milling process for a brief period of time. This simple process stores CO2 chemically in the tailings while they are still in the processing circuit, rather than after they have been finally deposited.

This technology is anticipated to allow capture and storage of 1.5 Mt/y of CO2 during the 27-year peak period, the bulk of which will be sold to third parties.

Mark Selby, CEO of Canada Nickel, said: “This BFS is a significant milestone for Crawford and a major step forward in demonstrating the value of our Timmins Nickel District and its potential to anchor a Zero Carbon Industrial Cluster in the Timmins-Cochrane region. Crawford is poised to be a leader in the energy transition through the large-scale production of critical minerals, including nickel and cobalt, and is expected to become the sole North American producer of chromium, while also supporting Canada’s climate objectives through industrial-scale carbon capture and storage.

“I am very proud of our team for accomplishing this milestone in a very short amount of time. Just four years ago, Crawford had only five drill holes. Today, we believe it is a world-class project with tremendous momentum. We are fully focused on pursuing our next milestones of obtaining permits, developing a financing package, and moving towards a production decision by mid-2025, with a goal of first production by the end of 2027.”

Terrafame leveraging Kelluu hydrogen-powered airship mine monitoring solution

Terrafame, a responsible battery chemicals producer for electric vehicles, has selected Finland-based airship development company Kelluu to provide accurate and geo-referenced terrain data for continuous monitoring of its 60 sq.km industrial site.

The aerial monitoring has been done mainly using satellites or helicopters, battery-powered drones, or land-based surveys.

Kelluu develops long-distance, self-flying and hydrogen-powered airship concepts mounted with several spectral cameras, sensors and scanners that can gather real-time data on terrain, vegetation and infrastructure. It then processes the data to create an accurate 3D digital twin of the environment, enabling Terrafame in this instance to monitor and forecast dynamic changes at the industrial site and optimise its infrastructure maintenance and production processes, and further strengthen the environmental safety of the site, Kelluu says.

Aki Ullgren, Senior Geotechnical Engineer at Terrafame, said: “The combination of high-resolution RGB, multispectral and Flir images, combined with the same 3D mesh, is a fascinating tool, especially in heap leaching and open-pit slope stability modelling. We’re happy to welcome Kelluu to the group of monitoring services we use to promote safety and efficiency at our Terrafame site.”

Kelluu’s airships are highly efficient, emitting 99.5% less CO2 emissions than traditional aerial monitoring, and frequently cover mission times of over 12 hours, the company claims. The airships are effectively operational in sub-zero temperatures.

Kelluu says its facility in Finland is the only airship factory and product development laboratory in northern Europe.

Janne Hietala, CEO of Kelluu, said: “It is truly mesmerising to see the Kelluu’s airships in the air at Terrafame. We felt a strong connection with Terrafame’s commitment to positively impacting the world by reducing emissions of electromobility. What Terrafame does for mobility, we do it for aviation. Together, we provide increased safety using Kelluu’s breakthrough intelligent airship technology.”

Terrafame has one of the world’s largest production lines for chemicals used in electric car batteries on its industrial site in Finland. The plant can produce nickel sulphate for around 1 million electric cars per year, it claims. The carbon footprint of the nickel sulphate produced by Terrafame is among the smallest in the industry.

As Terraframe produces hydrogen onsite and the airships are powered by hydrogen, Kelluu has built a ground base for its airships on Terrafame’s industrial site. Kelluu will autonomously transfer its airship from its current base in Joensuu, Finland, to Terrafame’s base in Sotkamo.

In addition to Kelluu, Terrafame has multiple other partners helping to monitor its site and develop its operations and occupational and environmental safety.

Giga Metals lines up trolley assist and autonomous haulage for Turnagain

Giga Metals Corp has announced the results of a prefeasibility study (PFS) on its majority-owned Turnagain nickel-cobalt project in British Columbia, Canada, that could use both trolley assist technology, as well as an autonomous haulage system.

Turnagain is owned by Hard Creek Nickel Corp, a joint venture owned by Giga Metals (85%) and Mitsubishi Corporation (15%).

The PFS outlined annual production averaging 37,288 t/y of nickel and cobalt in concentrate over the nominal full operating rate period (years 3 to 28) based on a 30-year project life with a strip ratio of 0.4 tonnes waste per tonne of ore

It also highlighted Scope 1+2 carbon intensity of less than 1.8 tonnes of CO2 per tonne of Ni in concentrate.

The PFS builds on significant metallurgical and engineering studies and confirms the ability of Turnagain to produce high-quality nickel concentrate, Giga Metals said. It has been led and prepared by Tetra Tech Canada Inc along with input from industry expert consultants.

Giga Metals said: “The PFS demonstrates a long-life, large-scale project that will deliver high-grade nickel sulphide concentrate with no significant deleterious impurities, into commercially proven processes such as pyrometallurgical smelters or hydrometallurgical refining using pressure oxidation facilities.”

The project, Giga Metals says, has notable responsible mining characteristics beyond the low-carbon production including the following:

  • Sequestration of CO2 through naturally occurring mineral carbonation, transforming the tailings management facility into a permanent carbon mineralisation facility;
  • Safe and efficient tailings storage using centreline and downstream tailings dams in sub-aerial valley impoundment;
  • A near-neutral water balance; and
  • Being located in a well-regulated and experienced mining jurisdiction that has adopted First Nations’ rights to achieve informed consent during the permitting process.

The capital cost associated with the project has been slated as $1.89 billion with a post-tax IRR and NPV of 11.4% and $574 million at a long-term nickel price of $9.75/lb, with 78% payability for nickel in concentrate.

The Turnagain open-pit deposit will be developed using large haul trucks (227 t capacity), loaders, and electric shovels to minimise unit costs, the company says.

“Proven trolley-assist technology and autonomous haulage technology have been selected for reduced total costs and environmental footprint,” it added.

The mining operations are scheduled for a 28-year mine production period to support a 30-year processing plant operating period, and include the Horsetrail, Northwest and Duffy mineralized areas (collectively, the Horsetrail zone). The orebody is mined as a single main pit with five pushback phases through the life of mine and a small satellite pit for the Duffy zone. Overall main pit dimensions are approximately 2 km x 1.5 km.

The mine plan will deliver an annual processing plant feed rate of 32.85 Mt/y (90,000 t/d) after the installation of the second processing train in Year 1. The resource will be selectively mined with low-grade materials placed on a low-grade ore stockpile for later recovery. The maximum low-grade ore stockpile size has been reduced by 82% from the 2020 preliminary economic assessment to 34 Mt, which represents an approach that accounts for regulatory expectations to minimise stockpiling as well as practical mining operations.

Processing of Turnagain ore is conventional, Giga Metals says, with the processing plant consisting of the following:

  • A primary crusher followed by two trains of closed-circuit secondary crushing and HPGRs;
  • Two grinding trains, each comprising two closed-circuit ball mills in series;
  • Two rougher flotation trains, each comprising two banks of rougher cells;
  • Two trains of three-stage cleaning circuits plus cleaner-scavenger flotation;
  • Concentrate thickening and two trains of pressure filtration; and
  • Associated utility and reagent systems.

The processing plant will be installed in slightly offset stages to maximise the efficiency of construction and commissioning. The second processing train will be installed and commissioned parallel to the first train in the first full year of operations. The primary crusher is located adjacent to the mine to reduce haul distances and the crushed ore is conveyed to the processing facility located across the Turnagain River and above the tailings management facility. This allows for energy-efficient conveying of crushed ore and eliminates high-pressure pumping of slurries. All equipment selected is commercial-scale industry-standard, including mechanical flotation cells, the company added.

Turnagain concentrate is expected to be high grade, averaging 18% Ni and 1.1% Co, with low levels of deleterious impurities. Iron, sulphur and magnesium are expected to be within typical ranges for smelter operation, with nominally 30-35% Fe, 20-25% S and 4-6% Mg.

Getech geoscience exploration solutions boost Asian Battery Minerals’ nickel mining hopes in Mongolia

Getech, a locator of subsurface resources, says it has successfully finished an exploration project for Asian Battery Minerals, a participant in the 2023 BHP Xplor accelerator program, targeting potential nickel deposits in Mongolia.

Getech was invited by BHP to the accelerator to offer its geoscience exploration solutions to the program’s cohort. Asian Battery Minerals, targeting nickel in Mongolia, elected to contract with Getech.

Getech employed its pioneering methodologies, such as terrain and structural analysis, gravity and magnetics data analysis, to assist Asian Battery Minerals. The team provided an extensive report analysing the structural and paleotectonic elements in the exploration area of interest.

The project has been deemed successful by Asian Battery Minerals, as the results have the potential to significantly enhance its exploration strategy in Mongolia, Getech says.

Richard Bennett, Executive Chairman of Getech, said: “While we are known to have extensive experience in mineral exploration for sedimentary basin ores, this project focused on ‘hard rock’ exploration. This challenge proved that our mineral systems analysis capabilities and data extend into deeper and older deposits such as magmatic nickel. Leveraging our proprietary data amassed over 30 years and our geological exploration expertise, complemented by AI-driven analytics, we can successfully locate potential new search spaces for a wide range of minerals.”

Gan-Ochir Zunduisuren, Managing Director at Asian Battery Minerals, said: “We are delighted with the results of our partnership with Getech. Their in-depth analysis and innovative approaches have provided us with valuable insights for our nickel exploration in Mongolia.”

The BHP Xplor program is a global accelerator initiative that supports innovative early-stage mineral exploration companies in finding the critical resources necessary for the energy transition. Over a period of six months, the program has aided seven selected companies in de-risking their geologic concepts and becoming investment-ready.

GlencoreTech-AtlanticCopper

Freeport’s Atlantic Copper enlists Glencore Technology’s ISACYLE solution for waste recovery project

Glencore Technology is to help Atlantic Copper, owned by Freeport-McMoRan, to create the first waste recovery plant for metal fractions of e-material in southern Europe.

The ‘CirCular’ project will feature Glencore Technology’s ISACYLE™ technology to process 60,000 t/y of e-material, and is expected to be operational in the March quarter of 2025.

According to Atlantic Copper, the works will begin in September. The company is investing €310 million ($345 million) in the project, which will move Spain from a recycling rate of 50% to 100% of electronic material, Glencore Technology says.

The ISACYCLE-based project will recover, among other metals, copper, gold, silver, platinum, palladium, tin and nickel from what Atlantic Copper describe as waste electrical and electronic equipment or WEEE.

In 2019, Spain generated around 890,000 t of WEEE, of which only around 370,000 t were managed by authorised recyclers. The other 520,000 t of disused electrical and electronic equipment are stored in homes, end up in landfills or are exported to countries where the metals might be recovered in an environmentally unfriendly way, Glencore Technology says.

Atlantic Copper, Spain’s leading copper producer, will use ISACYCLE technology to divert that kind of waste from landfill and instead recover significant value from it.

The CirCular project is aligned with Sustainable Development Goals and with the EU’s Green Deal and the Plan of Reconstruction, as copper is among the key raw materials that Europe will need to achieve that goal of a sustainable, environmentally neutral economy.

Glencore Technology’s Manager for Pyrometallurgy and Hydrometallurgy, Dr Stanko Nikolic, said the project is expected to be the first of many to use the company’s ISACYLE technology, which is a direct evolution from its ISASMELT™ technology.

“ISACYCLE has been purposefully evolved and proven to take residual waste, including e-waste, and transform it into saleable commodities,” he said. “It’s a very scalable technology. This is a project featuring a plant toward the larger scale. But it is also a technology that works in a small scale, ideal for urban utilities and waste processing companies.”

Nikolic said the ISACYCLE technology, on any scale, can virtually eliminate landfill and instead produce recovered metals, a safe slag that can be used as a construction product, energy and clean offgas.

He concluded: “We’re proud to be able to work with such an innovative company as Atlantic Copper. They’re building a major milestone for the region and what will become a showcase for others.”

Eriez Magnetic Mill Liners boost safety, energy efficiency and durability at Nexa Resources mine

A new report from Eriez® reveals how a set of Magnetic Mill Liners (MML) are significantly improving safety standards, energy efficiency and operational longevity at a Nexa Resources operation in Peru.

The MML is a wear-resistant steel-encased magnet that combines the best qualities of steel and magnetic liners, according to Eriez.

The report highlights the superiority of MMLs over conventional liners by describing the numerous benefits these advanced liners offer. Each MML is composed of individual sections that are much lighter than traditional liners, facilitating safer and easier installation procedures, Eriez says. Weighing only 20-40 kg per section, the MML eliminates the requirement for specialised cranes within the mill, streamlining operations and enhancing safety protocols. Nexa even credits the MML installation with contributing to the company’s achievement of a major Peruvian safety award.

There are considerable environmental advantages associated with the implementation of MMLs, according to Eriez. Heavier steel liners require significant fuel consumption for transportation and material handling while lightweight MMLs can be installed by hand. Additionally, Nexa reports a significant reduction in noise levels with the MML, creating a more favorable work environment overall.

The case study also highlights the energy-efficient aspects of MMLs. In traditional ball mills, small ball chips do not contribute to the grinding process, leading to wasted energy. However, MMLs effectively eliminate the presence of small ball chips, resulting in energy savings of up to 11% during the grinding process, according to Eriez.

The exceptional durability of MMLs is another standout feature discussed in the report. Unlike conventional liners that necessitate frequent replacement, the Eriez MML has garnered a track record of success through many installations in diverse mining operations worldwide, including iron ore, copper, nickel and gold mines, as well as other non-ferrous mines. These installations provide evidence that MMLs outlast rubber or metallic liners by two to three times, Eriez states.