Tag Archives: wind

Centamin’s Sukari solar power plant performing ahead of expectations

Centamin says the solar plant at its Sukari gold mine, in Egypt, has entered the final stages of commissioning and is delivering savings ahead of expectations.

Furthermore, it says continued progress has been made to assess the opportunity to use Egyptian grid power at Sukari.

The solar plant, which is made up of a 36 MW solar farm and 7.5 MW batteryenergy storage system, has been consistently delivering 36 MW DC, converting to 30 MW AC of power, since early September, the company said. This reduction in exposure to volatile fuel pricing with commissioning is saving the company up to 70,000 litres per day of diesel and averaging a reduction in diesel consumption of 22 million litres per year, according to Centamin.

Based on current diesel prices, this means the plant has the potential to provide annual cost savings of $20 million, alongside an expected reduction in Scope 1 greenhouse gas (GHG) emissions of 60,000 t/y CO2 equivalent and a subsequent reduction in volume of diesel trucked to site.

Full commissioning of the solar plant is expected this quarter, the company added.

Centamin previously awarded the engineering, procurement and construction contracts for the 36 MW solar farm and 7.5 MW batteryenergy storage system at Sukari to juwi AG and Giza Systems. juwi was contracted to design, supply and integrate the Sukari solar and battery plant into the current diesel power plant, while Giza Systems was contracted to install the Sukari solar plant. To maximise the total energy generation, the project is using bifacial solar photovoltaic modules and single axis tracking. juwi Hybrid IQ microgrid technology will enable the integration of the solar and battery system into the existing offgrid network and support the operation of the existing power station, according to the company.

On top of the solar plant news, Centamin revealed it is actively engaged with government and independent power providers to further reduce its reliance on diesel at Sukari. Its initial proposals to supply 3050 MW AC of grid power to Sukari have been received and an internal evaluation is underway for potential integration from 2024, it said.

Fifty megawatts of AC grid power supply creates the potential to fully displace the use of diesel for power generation at Sukari, Centamin said. The minimum 30 MW AC of grid power, combined with the existing 30 MW AC of solar power, creates the potential to operate during daylight hours without using any diesel power generation and substantially offsetting diesel consumption during night time hours, it said.

The Egyptian grid power is generated from natural gas and a mix of renewables, such as hydro, solar and wind, creating the opportunity to further reduce Sukari’s GHG emissions. Further, the Egyptian industrial grid tariffs are significantly cheaper than the cost of power
generation using diesel fuel, Centamin said.

Martin Horgan, CEO of Centamin, said: “Delivery of this critical project is instrumental to our ongoing commitment to reduce our reliance on diesel fuel, minimise greenhouse gas emissions and realising material cost savings. The solar plant and potential to integrate grid power will contribute materially to our environmental stewardship philosophy and our strategic objective of maximising returns for all stakeholders.

Aggreko urges miners to embrace renewable power generation now

With decarbonisation at the forefront of miners’ agendas, one of the world’s leading provider of mobile and modular power solutions, Aggreko, has released its top tips to help miners decarbonise now and into the future.

Aggreko’s Global Head of Mining, Rod Saffy, said while miners were embracing the global energy transition, some were unsure where to begin.

“For some miners it’s about knowing where to start and they may be weighing up the cost, risk and threat of new technology in the future,” he said.

“Fortunately, technology isn’t in the same place as it was five years ago or even two years ago. Some of the renewable power technologies available today, combined with thermal generation in a hybrid solution, offer the same – if not better – levels of reliability and competitiveness than traditional thermal technology.”

Saffy said power generation companies were taking significant steps to support miners on their respective paths to net-zero emissions.

“Increasingly, power companies are offering renewables such as solar and wind energy to off-grid mines, and we often integrate those with battery storage solutions and thermal microgrids,” he said.

“If you consider a hybrid power solution – where you switch in renewables to your power mix alongside fossil fuels – your operation will be more flexible and can scale up and down as needed.

“Our approach means miners can also partner with us, long term, without being tied down to one fuel type for their power source, and new technology is introduced as it becomes viable.

“Integrating renewables in this manner will result in greater cost savings and efficiencies for your project.”

One solar and thermal hybrid solution Aggreko delivered for a remote gold mine in Africa resulted in more than 12% savings in fuel (about 10,000 litres a day) and the contract offered meant the miner did not have to come up with capital to invest in the solar plant.

Another example Aggreko is working on, Saffy said, is a 25.9 MW hybrid solar and thermal power solution for the Salares Norte open-pit mine in Chile.

“It is a ground-breaking solution designed to provide power for the entire mine, which sits at an altitude of 4,500 m in the Andes mountain range and is 190 km from the nearest town,” he explained.

“Once complete, the hybrid power plant is expected to achieve $7.4 million in cost of energy savings over the next decade, a further $1.1 million in carbon tax offset over the life of the mine, in addition to 104,000 t of carbon emissions savings.

“The system will surpass the Chilean government’s environmental standards as well as Gold Fields’ requirement for a minimum of 20% renewable power generation for mining operations.”

Saffy said the pathways to decarbonisation that held the most appeal for miners currently included:

  • Hybrid power plants (as mentioned): These combine renewables (eg solar, wind) with thermal generation and battery storage, benefitting areas with limited or no access to permanent power. These are generally cost-competitive. Once solar or wind plants are installed, their generation running costs are relatively low and at zero emissions;
  • Virtual gas pipelines: Gas power generation can offer a greener and more cost-effective alternative to diesel and heavy fuel oil. A virtual pipeline is a substitute – and an alternative – for a physical pipeline. Gas is instead transported as LNG or CNG to the point of use by sea, road, or rail. For mines not connected to a physical pipeline and looking to switch to gas from diesel, a virtual pipeline model simply imitates their current supply solution. For users who are connected to a gas pipeline but are looking to supplement insufficient or unreliable pipeline capacity, the virtual power plant solution has several advantages over diesel; and
  • Renewable energy: Renewable energy power systems are an effective way of tapping into natural resources to provide power, such as wind farms, hydro power and solar. The challenge is their reliability related to weather, hence why, if power is interrupted for any reason, it is important to ensure they’re backed by with batteries or a temporary thermal power solution.

A significant future fuel in this space will be hydrogen. Investment in hydrogen is on the rise because of the role it can play in supporting a global transition to net-zero. Its versatility and compatibility with existing furnaces, engines and generators make it particularly appealing for the mining industry, according to Aggreko.

Saffy said energy sources likely to become more prevalent in mining during the next 10 years included biofuels (would become less expensive), hydropower, energy storage (such as pumped, mechanical flywheel), and gas generation which runs with a hybrid renewable system. While it is increasingly used now as power source, wind and solar power are also expected to gain more momentum.

Aggreko is also experimenting with mobile wind solutions, re-deployable solar panels and tidal wave power (though tidal wave power might not be for the mining industry yet). The company is also accelerating its investments in hydrogen technology, with trials underway in Europe on two different technologies, where Aggreko is collaborating with lead customers and partners trialling hydrogen generators and fuel cell battery hybrids.

“It’s a very exciting time in the mining sector, and it will be amazing to see the innovations presented during the next few years as miners and energy companies collaborate and come up with new ideas for a greener future,” Saffy said.

“The key though is to start now – you can embrace renewables now into your energy mix because, done correctly, cost and emission savings can be greatly reduced without compromising reliability.”

Aggreko has its own net-zero goals by 2050 and has a 2030 target to reduce diesel use in its customer solutions by 50%.

Hindustan Zinc accelerates growth plans as it partners with industry leaders

Hindustan Zinc Ltd (HZL), a Vedanta Group Company and the world’s second largest integrated producer of zinc and lead, is in acceleration mode, embarking on aggressive expansion and collaboration plans with technology and innovation partners from across the globe.

One of the first mining companies to commit to going “Net Zero” by 2050, it has a strong focus on ESG reinforced by plans to deploy battery-electric vehicles, tap into more solar and wind power potential and recycle waste heat from its captive power plants. Such ambitions are being delivered with up to $1 billion of finance in the next five years to “go green” and, by 2025, achieve focused sustainability goals.

At the same time as it is looking to become an ESG leader, it is boosting its mine and metal production by leveraging “smart mining” and an extensive resource and reserve base.

IM put some questions to Arun Misra, Hindustan Zinc CEO, to find out how the company intends to deliver on its lofty ambitions.

IM: HZL’s 2021 financial year to March 31, 2021, was characterised by record production volumes and profitability; how were you able to achieve such results given the COVID-19-affected constraints on your operations?

AM: The uncertainty has evolved continuously. If I give you an example, we started the year with the uncertainty of COVID only; that is people getting infected leading to absenteeism. It was so contagious, it spread so fast, half of our workforce were down. So, that struck us heavily, but, nevertheless, because we had experience of last year, and this time there was no lockdown of industry, we were able to figure out how to manage and we did manage well, compared to last year’s same quarter, which was also COVID-affected. We had introduced various measures to change the way of working to ensure a safer working environment for the employees. We also got our workforce vaccinated along with their families to further minimise the risks associated with the pandemic.

Hindustan Zinc CEO, Arun Misra, says Hindustan Zinc has been at the forefront of ensuring personal health, be it of its employees or local communities

Furthermore, the automation and digitalisation efforts at Hindustan Zinc are equipped to better withstand these testing times while ensuring quick revival to a normal level of operations.

IM: During the height of the pandemic, HZL – like other socially responsible mining companies – supported communities within or close by to its operations. Can you highlight some of the actions you took over this period and what impact they had?

AM: We at Hindustan Zinc have been at the forefront of ensuring personal health, be it of our employees or local communities. We have gone beyond and extended our support to the state of Rajasthan and the nation at large by contributing significantly to the PM Cares Fund and Rajasthan Chief Minister Relief Fund.

To meet the requirement of oxygen during the second wave of the pandemic, we had set up an oxygen bottling plant at our Dariba unit (Rajsamand district) in a record time of five days and had supplied over 14,000 cylinders of medical oxygen. We even arranged 500 oxygen concentrators to be imported and distributed for use across the state.

We had provided an insulated vaccine van to the Udaipur district medical health office to support a smooth vaccination drive and extended support to the local health administrations, by disinfecting villages by spraying and fumigating with sodium hypochlorite solution and providing medical gear like masks, sanitisers and PPE to local communities.

We even constructed an 8,000 sq.m air-conditioning dome hospital, based on German technology, which has a capacity of 100 beds – including 20 ICU beds – to accommodate patients and provide them with essential COVID treatment and medical facilities.

IM: ESG is obviously a major focus area for HZL, as these examples illustrate. Where specifically are you investing in your mining, power and smelting operations to make them more environmentally friendly?

AM: As a COP26 business leader, we have always been active in tackling the repercussions of climate change and have a strong focus on reducing carbon emissions. We are pioneers in India, declaring our ambition to convert all our mining equipment to battery-operated electric vehicles and will invest $1 billion over the next five years to make our mining operations environmentally friendly.

We are continuously expanding our renewable power of 274 MW of wind and 40 MW of solar under our greenhouse gas reduction goals by converting 50% of our total power to renewable forms in the next five years. We are among the only two metal and mining companies globally – and among four Indian companies – to be part of the coveted CDP (Carbon Disclosure Project) ‘A List’ 2020.

Furthermore, we have even published our first Task Force on Climate-related Financial Disclosure (TCFD) Report this year and have also joined the Taskforce on Nature-related Financial Disclosures (TNFD) forum to understand nature-related risks and opportunities and accelerate the transition towards a nature-positive and carbon-neutral future.

We have set Sustainability Development Goals to 2025 for ourselves where we are aiming towards sustainable operations for a greener tomorrow.

Hindustan Zinc has embarked on a major growth push at its mining operations with six ongoing expansion projects that will see over 100 km of tunnels developed for underground infrastructure and ore access

IM: At the same time as this, HZL has embarked on a major growth push at your mining operations with six ongoing expansion projects that will see over 100 km of tunnels developed for underground infrastructure and ore access. How are you able to balance your sustainable expansion plans with pledges to reduce your overall footprint?

AM: We strive for operational excellence and cost efficiencies and continue to stay on the growth track while being equally cognisant of our environmental, social and governance commitments, as well as our sustainability goals. We are leveraging more digitalisation and automation than we ever have, as well as engaging with technology leaders to do ‘more with less’.

The SmartDrive equipment we plan to use enables higher productivity, lower operating costs and, most importantly, zero local emissions, featuring in-built energy recuperation technology to make the most of regenerative braking energy during downhill driving and deceleration.

Being a power-intensive business, our key focus is always on reducing dependence on non-renewable sources of energy and enhancing our renewable power base.

IM: How important has it been to partner with like-minded technology and solution providers to ensure you meet these ambitious goals? Can you provide some examples here?

AM: We always look for partners who align with our philosophy of running sustainable operations to achieve company goals. We don’t need one-off solutions from companies to meet our targets; we need companies that will engage throughout our medium- and long-term projects and provide an element of customisation that factors in the realities of operating in our underground mines. We look for global partners to work with us where we exchange ideas, insights and knowledge with them in our growth journey.

We believe in providing opportunities to our business partners to leverage collaboration on technology, innovation and digitalisation, for long-term value creation and mutual growth.

To support our expansion plan, it is crucial for Hindustan Zinc to collaborate with mine development and operation partners who share a similar vision to ours, which is to leverage cutting-edge technology to create a positive impact on the entire mining fraternity. We are currently working with companies like Sandvik, Epiroc, Normet, Barminco, RCT, Siemens, etc as our global partners. We have engaged with them to provide end-to-end solutions rather than sourcing a specific supply or service.

Hindustan Zinc has given an equal platform for women engineers in its mining operations, appointing India’s first female underground mine manager in 2021

IM: You have already stated a goal of 1.5 Mt/y of zinc production in the upcoming years and extending your lead as India’s largest integrated zinc-lead producer; what is your vision for the company to 2030 and beyond?

AM: We are excited about our next phase of expansion to take mining capacity from 1.2 Mt per annum to 1.35 Mt/a. We will surely cross 1 Mt and we should be above our guidance if we achieve the desired run rates in our third and fourth quarters.

While our growth plans are a key part of the company’s future, we are also focused on becoming the leading zinc-lead-silver producer from an environmental, social and governance point of view. Our DJSI Ranking of being among the Top 5 companies in the metal and mining sector is testament to this. We are already winning significant awards for our ESG and CSR efforts, and expect this recognition to continue and grow as we head towards mapping out our 2025 sustainability goals.

Also, the mining value chain is changing across the globe and more consumers are becoming aware of the origins of the products they buy and the emissions that come with their production.

To collaborate with Hindustan Zinc on its green growth mission, email [email protected]

State of Play mine electrification report sheds light on benefits, hurdles and risks

More than half of mining industry executives say they would electrify their mine sites for cost reasons, according to the latest State of Play report on electrification.

With the mining industry rapidly adopting new technologies to decarbonise their operations, the Australia-based State of Play platform has, again, sought to gather industry perspectives on the reasons companies are pursuing their shift away from fossil fuels.

The latest report follows the inaugural State of Play: Electrification report, released in 2020. This report, in part, led to the formation of the Electric Mine Consortium, a collaboration between mining and service companies aiming to accelerate progress towards the fully electrified zero CO2 and zero particulates mine.

The findings from the latest report – which took into account 450-plus individual surveys, five industry webinars and workshops and five interviews with “thought leaders” – have reinforced that mine electrification is a foundation enabler for the clean energy transformation of mine sites.

“The mining industry sees it as one of the most pressing transformation imperatives for the industry, facilitating precision automation and the digitisation of mine operations, whilst improving environmental and health outcomes,” it said.

At the same time, the report acknowledges that mine electrification technology is currently undergoing a “maturation process” with 49% of mining CEOs referenced in the report believing it will take existing mines on average five-to-10 years to electrify.

“Much of the technology for full electrification of mine sites is available today, however a significant knowledge gap exists across industry relating to the capability of electrified mines and the strategy for implementation,” it said.

Of the industry executives surveyed for the report, 57% expect the energy transition to be ‘the’ global trend that will have the biggest impact on the industry over the next 15 years.

Close to 90% (89%) expect mine sites will electrify within the next 20 years and 61% expect the “next generation” of mines will be all-electric.

In keeping with this, 83% expect renewable energy technologies will significantly change mining operations over the next 15 years; and 98% view mine automation as ‘the’ technology to benefit the most from electrification.

The responses related to benefits expected from this transition brought up some of the most interesting insights into the mine electrification evolution, indicating there are environmental, cost and reputation risk advantages associated with electrifying operations.

For instance, of the survey respondents, just over 90% (91%) expected the shift to an electrified system to create opportunities for new business models, while just over half (53%) say they would electrify their mine sites for cost reasons. The latter indicates that the cost of operating, establishing and maintaining new electrified equipment and infrastructure is now at a point where it could not only compete, but provide an economic advantage over fossil fuel-powered operations in the long term.

Close to four-fifths of respondents (79%) expect there to be a health-related industry class action in the next 15 years – indicating the reputational risk that could come with maintaining the operational status quo.

Some 71% view processing and 68% view extraction as having the greatest leverage in decarbonising the mining value chain, the report confirmed, while 46% expect innovation in carbon emissions and 42% expect innovation in diesel replacement will have the greatest environmental benefit in their business. Close to 90% (86%) expect transparency of the source of raw materials to become a significant driver of mining company value.

In key areas of the value chain, miners are faced with distinct choices of which technology to invest in (eg what type of battery storage technology, swap versus fast charging, etc). Of the survey respondents:

  • 60% believe miners should begin transitioning to an all-electric system with installing renewables. Electrical infrastructure was second with 37%, with heavy mobile equipment third with 32%;
  • 87% expect solar will become the most widely used energy source in the industry in the next 15 years, followed by gas, wind and diesel (58%, 44% and 39%, respectively);
  • 76% expect remote mine sites will use batteries to supplement renewables, followed by diesel with 53% and demand management at 42%;
  • There is no consensus as to which energy source will power heavy mobile equipment between lithium batteries, hybrids and diesel (28%, 21% and 18% respectively); and
  • 54% expect infrastructure to be the main challenge for transitioning mine sites to electric.

Of these stats above, the lack of consensus as to which energy source will power heavy mobile equipment is as enlightening as it is expected.

Battery-electric technology has matured to the point where one would expect it to dominate in the underground space, followed closely by fuel cell power, hybrids and some form of trolley, but it is a lot harder to predict the winner in the open-pit mining space, with major miners pursuing different developments related to hydrogen, batteries, trolley assist and alternative fuels.

“The mass adoption of electrification technology and storage systems to power mine sites has so far been slow,” the report stated. “It is clear that as an industry, this knowledge gap will need to be confronted largely through testing and piloting, which allows for the development of case studies for application, economic models and best practice guidelines.”

Of survey respondents:

  • 88% see cost as being the major risk of electrifying a mine site;
  • 63% report that risk aversion is holding back the implementation of electrification technologies;
  • 18% are willing to accept increased risk in asset design to increase financial returns; and
  • 41% are primarily focusing their innovation efforts on energy.

The report authors say the industry should focus on collaborating to overcome the barriers that are beyond the capacity of any one individual company to address, with such efforts requiring the mobilisation of policy makers, miners, service companies, investors and researchers in order to achieve the scale, capital and influence to drive success.

Of survey respondents:

  • The preferred partnering approach for achieving breakthrough innovations is collaborating with selected partners (65%);
  • The majority believe the best way the government can support innovation is through regulation and collaboration (#1 and #2, respectively);
  • 85% believe broad industry standards for battery types are required.
  • 52% see miners as the biggest group driving investment in electrification followed by suppliers and investors (39% and 38%, respectively); and
  • 60% believe the industry should focus its health risk innovation on airborne particulates.

Aggreko to energise mine power space with investment proposition

Mobile power provider Aggreko says it is making the transition from being a pure power provider to a long-term mining project investor that is helping miners navigate the energy transition.

Aggreko has built an almost 60-year-long reputation for powering many sectors around the globe. It has also supplied power and underground cooling to the mining sector for more than 35 years and has evolved into life-of-mine contracts and renewables.

In its latest report – which details its future energy transition – Aggreko cites mining as a major growth sector. Aggreko Australia Pacific Managing Director, George Whyte, stated that Aggreko’s global team’s unique offering is with build-own-operate investments across all continents.

As well as continuing to invest upward of £250 million ($347 million) annually in technology and innovation, the company says it is ready to further boost its investments in the natural resources industry.

Whyte said: “Investor partnerships can support the rapid changes in technology and emissions compliance that our mining customers are facing. Investing millions of dollars in capital for a mine’s power plant is a risk for any company, and, as a partner, Aggreko takes on this risk instead of the mining company. It is a smart way for miners to do business in the post-COVID and renewables era.”

Aggreko’s Global Head of Mining, Rod Saffy, said miners struggling to get funding for capital expenditure projects were looking to outsource, and there was a trend toward creating partnerships with providers.

“Partnerships provide more value beyond de-risking project finances,” Saffy said. “There are technology and emissions risks, so by partnering with us, for example, we aren’t just supplying equipment and labour, we share in decision making and project milestones, we invest and update technology on-site and navigate social and environmental impacts together.”
Saffy said companies looking to build power stations for the first time particularly benefited from supportive partnerships with Aggreko.

“Power stations are our core business, and they have become much more complex on mine sites than they have been in the past,” he said. “It is challenging to get funding to build power stations, and miners are needing support to integrate renewables into their plans immediately or in the future, or needing solutions designed from scratch.

“Partnering with us is a sustainable and beneficial business solution. Miners are wanting hybrid power stations that might utilise a mix of energy sources such as diesel, gas, solar or battery, for example. They also want that power to be scaled up or down and upgraded as their needs change and new technology comes online.”

Saffy said mines throughout the world were becoming less dependent on mass-scale thermal plants to deliver baseload power through national grids.

“With the cost of renewable power generation falling, there is also growth in localised microgrids, which means less dependence or complete independence from the grid,” he said. “Miners in Australia, Africa and South America, where there is less infrastructure in remote locations, are finding it particularly helpful to partner with us from the start of a major project.”

One such example is the Gold Fields Salares Norte Mine in northern Chile where Aggreko has become a major investor, and partner for the mining project for at least 10 years. The mine is located 190 km from the nearest town and is 4,500 m above sea level, and Aggreko is creating an off-grid hybrid power solution, comprising of diesel and solar for the harsh environmental conditions. Aggreko estimates the mine will experience $7.4 million in cost energy savings across the 10 years.

Saffy said the benefits for Aggreko in partnering and investing with miners from the beginning of their project to the end of the life of mine was beneficial for both parties.

“As a partner, Aggreko de-risks the threat of future innovation and technology for miners,” he said. “Our build, own, operate and maintain model frees up working capital without increasing the debt ratio for mining projects. Modular equipment also gives miners the ability to leverage innovation at low risk and not be concerned about having the latest equipment.

“We benefit too, by showcasing our expertise and innovations throughout a project’s lifecycle and support mining companies to reduce emissions and increase their operational efficiencies.”

Late last year, Aggreko committed to achieving net zero emissions by 2050.

Teck and AES shake on renewable power agreement for Carmen de Andacollo copper mine

Teck Resources and The AES Corp’s Chile affiliates, Compañía Minera Teck Carmen de Andacollo SA (CdA) and AES Gener SA, have entered into a long-term power purchase agreement to provide 100% renewable power for Teck’s Carmen de Andacollo Operation in Chile.

Under the agreement, CdA will source 72 MW (550 GWh/y) from AES Gener’s growing renewable portfolio of wind, solar and hydroelectric energy.

The transition to renewable power will replace previous fossil fuel power sources and eliminate around 200,000 t/y of greenhouse gas emissions, the equivalent to removing over 40,000 passenger vehicles from the road, Teck says.

Don Lindsay, President and CEO of Teck, said: “Teck is tackling the global challenge of climate change by reducing the carbon footprint of our operations and working towards our goal of becoming carbon neutral. This agreement takes Teck a step closer to achieving our sustainability goals, while also ensuring a reliable, long-term clean power supply for CdA at a reduced cost to Teck.”

Andrés Gluski, AES Corporation President and Chief Executive Officer, said the company was honoured to continue working with Teck to help the miner progress towards its goal of carbon neutrality.

“By providing Teck with innovative renewable energy solutions, AES Gener is helping build Chile’s sustainable and reliable grid of the future,” Gluski said.

As part of its updated Sustainability Strategy, Teck has set the goal of being a carbon-neutral operator by 2050. In support of that long-term objective, Teck has established milestone goals including sourcing 100% of all power needs in Chile from renewable power by 2030 and reducing the carbon intensity of operations by 33% by 2030. Teck previously announced an agreement with AES Gener to supply renewable power for the Quebrada Blanca Phase 2 (QB2) project currently under construction. Once effective, more than 50% of QB2’s total operating power needs will be from renewable sources.

The Carmen de Andacollo renewable power arrangement is in effect as of September 1, 2020, and will run through to the end of 2031.

Alejandro Vásquez, Vice President, South America, Teck, said: “Switching to clean, renewable power for Carmen de Andacollo is another step forward in our ongoing commitment to responsible resource development across our operations and activities.”

Carmen de Andacollo is an open-pit copper mine located in the Coquimbo Region of central Chile, around 350 km north of Santiago. Teck owns a 90% interest in the mine, with Empresa Nacional de Minería holding the remaining 10%. It produced 54,000 t of copper in 2019.

EDL brings 56 MW hybrid renewable energy project online at Gold Fields’ Agnew mine

Global energy producer EDL says it has successfully completed the 56 MW Agnew Hybrid Renewable project for Gold Fields’ Agnew gold mine in Western Australia.

All five wind turbines are now up and running and successfully integrated into Australia’s largest hybrid renewable microgrid, and the first in the country to power a mine with wind-generated electricity, it said.

In favourable weather conditions, the project has delivered up to 70% of Agnew’s power requirements with renewable energy, according to the company. This is significant as the Agnew mine consists of two underground complexes and one 1.3 Mt/y processing plant consisting of a three-stage crushing circuit, two-stage milling circuit, gravity circuit and carbon-in-pulp circuit.

Upon announcing the project in June 2019, Gold Fields and EDL said the A$112 million ($78 million) investment would help create a “world-leading energy microgrid combining wind, solar, gas and battery storage”.

The project comprises four key components controlled by an advanced microgrid system. This includes five 110 m wind turbines, each with a rotor diameter of 140 m, delivering 18 MW; a 10,710-panel solar farm generating 4 MW; a 13 MW/4 MWh battery system; and an off-grid 21 MW gas/diesel engine power plant.

The Australian Renewable Energy Agency (ARENA) provided A$13.5 million ($8.7 million) in funding to the project as part of its Advancing Renewables Program.

EDL Chief Executive Officer, James Harman, said: “We applaud Gold Fields for their vision in embarking on this journey with us, and their role in leading the Australian mining industry’s transition to clean, reliable renewable energy.

“We also acknowledge the incredible achievement of the EDL project delivery team and our contractors. We faced transport challenges during the bushfires and impacts on personnel from COVID-19 restrictions, as well as geographical, logistics and technical challenges to safely construct this innovative energy facility in the remote WA Goldfields region.”

Gold Fields Executive Vice President Australasia, Stuart Mathews, said the completion of the project was an important milestone for Gold Fields, EDL and the broader mining industry.

“We are proud to be able to showcase this project with EDL as an outstanding example of the capacity of the hybrid renewable energy model to meet the dynamic power requirements of remote mining operations.

“For our people and our stakeholders, this is a very clear demonstration of our commitment to reducing our carbon footprint whilst strengthening our security of supply.

“Having built our internal technical capability and developed strong relationships with our business partners, we are well placed to continue to implement renewables solutions elsewhere in our business.”

BHP builds its ‘green’ copper credentials at Escondida, Spence

BHP says new renewable energy contracts it has recently signed in Chile will reduce energy prices for its Escondida and Spence copper mines by around 20% and help displace up to 3 Mt/y of CO2 emissions from these operations.

These agreements not only benefit BHP’s business but generate strong environmental and social value, according to Daniel Malchuk, President Operations for BHP’s Minerals Americas business.

BHP operates and own 57.5% of the Escondida mine, a leading producer of copper concentrate and cathodes from a copper porphyry deposit, in the Atacama Desert in northern Chile. Spence, which is 100% owned by BHP, is also in northern Chile.

He said: “Population growth and higher living standards combined with greater electrification are expected to push up demand for copper. This means that copper in products such as electric cars and renewable energy infrastructure, which are vital to the world’s sustainable growth, must be produced to the highest environmental aspirations.”

The new energy contracts, along with BHP’s investment in desalinated water in Chile, demonstrate social value in action and help drive the wider agenda for sustainable green copper, according to Malchuk.

Social value is one strategic pillar the company embeds in all its decision-making and informs the way in which it provides resources and generates long-term, sustainable value. This was the subject of BHP Chief External Affairs Officer, Geoff Healy’s speech in London earlier this month.

Malchuk said the company has negotiated four new power contracts that will meet its energy requirements at Escondida and Spence from 100% renewable energy sources by the mid-2020s.

“When fully operational, these renewable supply arrangements will eliminate virtually all of Escondida and Spence Scope 2 emissions (emissions from purchased energy), effectively displacing up to 3 Mt of CO2 annually compared to the fossil fuel contracts they replace,” he said. “This is the equivalent to annual emissions from about 700,000 combustion engine cars and accounts for around 70% of BHP’s Minerals Americas total greenhouse gas emissions.”

These actions also support Chile’s wider “Energia 2025” power policy target for 20% of all Chilean energy to come from renewable sources by 2025.

Following a competitive tender process, Escondida and Spence agreed separate 15-year contracts for 3 TWh/y and 10-year contracts for 3 TWh/year with ENEL Generación Chile and Colbún respectively. The ENEL contracts will begin in August 2021 and the Colbún contracts in January 2022, BHP said, with power supplied from solar, wind and hydro sources.

Malchuk said: “These contracts are practical examples of our commitment to social value that are linked to a sound business case. We estimate the agreements will reduce energy prices at our Escondida and Spence copper mine operations by around 20%, provide our operations flexibility and security of supply, and strengthen our ability to deliver sustainable copper across our supply chain.”

On top of this, the company has confirmed that its Spence operations will begin using desalinated water as the main source of supply from mid-2020 upon completion of a 1,000 l/s capacity desalination plant. This was part of a plan the company outlined in 2017 to grow the Spence operation.

This is on top of the more than $4 billion, 2,500-l/s desalination plant the company built at Escondida.

Malchuk said: “Water is a precious commodity that is critical to our operations in Chile and to the communities where we operate in the Atacama Desert, one of the driest regions in the world. We recognise our operations have an impact on the environment given the immense amount of water they consume.”

He added: “Our Water Stewardship position statement, launched last month, outlines our vision for a water secure world by 2030. It sets out our actions to improve water management within our operations and contribute to more effective water governance beyond the mine gate.

“We strongly support the UN Sustainable Development Goals on access to clean and affordable water. That’s why we will set public targets and engage industry, communities and governments to improve governance, transparency and collaboration in water management.”

OZ Minerals to trial hybrid energy solution at Carapateena as part of renewables project

OZ Minerals says it has launched the Energy and Mining Collaboration (EMC) in an initial collaboration with six other organisations to investigate renewable energy and demand management related activities on a mine site.

The six other organisations are Adelaide University, CSIRO, the Department of Energy and Mining, the Rocky Mountain Institute, SunSHIFT and the Tonsley Innovation Precinct.

The first project as part of this program will be a trial installation of a circa-250 kW hybrid energy solution facility including solar, wind and a battery in the first half of 2020, located at OZ Minerals’ Carrapateena mine site in an area demarcated for piloting and prototyping. Carrapateena, in South Australia, is on track for first concentrate production in the December quarter, after which the project will ramp up to full production over the following 18 months. Carapateena is expected to produce an average of 65,000 t/y of copper and 67,000 oz/y of gold over a 20-year mine life.

The trial installation will have approximately 250 kW hybrid energy solution consisting of solar, wind, battery storage, connected to existing diesel generators, and have a Smart Grid controller for data access and tracking.

The EMC brings these organisations together into a collaboration platform with a view to developing and identifying renewable energy opportunities for an international showcase that optimises electrical and fuel demand and the integration of renewable energy systems, OZ said.

“This will be done via the creation of true partnerships around the testing of energy and technology hypotheses to unlock transformational value in mining,” the company added.

“Over the next six months, the parties, as the founding collaborators, are committed to formalising the partnerships from this collaboration, inviting in other first partnership collaborators and creating a broad and global membership of all those who would like to participate.”

CEEC’s latest workshop to examine new gen energy options for miners

With more and more mining sector interest in energy efficiency and uptake of renewables, the global not-for-profit communication hub for energy efficient mineral processing, CEEC, says it is running a series of workshops to share the latest developments in this field.

The next one-day Mineral Processing and Innovation Workshop on Energy Curves, Productivity and New Gen Energy, will be held at the National Wine Centre in Adelaide on June 19.

This event is due to kick off with a keynote address from OZ Minerals CEO and MD, Andrew Cole, who will share his vision for steering smart energy and productivity for sustainable mining, processing and communities.

Marc Allen, CEEC Director and Technical Director at engeco, said there was a worldwide trend towards new-generation energy options such as solar, battery-electric power and hydrogen – not only in the sector but for global power generation to combat climate change.

“The paradox is that these low carbon technologies are minerals intensive, and metals such as copper, nickel, lithium and cobalt will be required in greater volumes to make this transition possible,” Allen said.

“The shift towards a decarbonised energy future has significant ramifications for the global mining industry, particularly given the energy intensive nature of comminution and mining, coupled with the remoteness of most mineral deposits.”

Allen said renewable energy sources with low carbon energy backup options and/or energy storage were becoming more and more common in mines, with one leading example being the solar project at Degrussa Copper-Gold Mine in Western Australia.

Sandfire Resources’ Degrussa Solar project, commissioned in 2016, is reported to be the world’s largest integrated off-grid solar and battery storage facility. It supplies about 20% of the mine’s annual power requirements and has reduced emissions by close to 12,000 t/y of carbon dioxide, according to CEEC.

“South Australia is also leading the way with adopting new-gen energy. BHP is trialling zero-emission light electric vehicles at its Olympic Dam mine and has plans to progressively replace diesel fuel with lithium-ion batteries,” Allen said.

Canada’s first all-electric mine (Borden) is also on the cards, being constructed by CEEC sponsors Newmont-Goldcorp, Sandvik and MacLean Engineering.

Allen said: “Newmont-Goldcorp’s target is to increase energy efficiency by 15% over five years and source 5% of its energy from renewables. It’s pleasing to see that other major mining companies are fast following suit, introducing bold targets to shrink their carbon and energy footprint.”

Another standout country is Chile, with reports of nine companies, including copper miners Codelco and Antofagasta Minerals, introducing renewable energy such as wind and solar power.

In addition to transitioning to clean energy technologies, mining operations are striving to improve the energy efficiency of comminution. In Australia, alone, copper and gold mines’ comminution processes consume 1.3% of national electricity production, as well as being key constraints to site productivity, value and mining footprint.

Speakers and panellists at the CEEC Mineral Processing and Innovation Workshop in Adelaide on June 19 will share the latest technologies and methodologies being employed to boost energy efficiency, value and productivity in processing plants and mine sites, according to CEEC.

Keynote speaker Cole will be joined by leading mining, METS and research experts from across Australia, including Energy Curve researcher Dr Cathy Evans, Senior Research Fellow, University of Queensland Sustainable Minerals Institute; Professor Stephen Grano, Executive Director, Institute for Mineral and Energy Resources, University of Adelaide; and Professor Bill Skinner, Research Leader, Future Industries Institute, University of South Australia.

With data science and AI also being key drivers for improving operational efficiency and dispatch of electrical energy, workshop participants will hear from PETRA Data Science’s Managing Director, Dr Penny Stewart, and Technical Director, Dr Zeljka Pokrajcic.

Innovative METS leaders, including Greg Lane, Ausenco; Sandy Gray, Gekko Systems; and Bear Rock Solutions’ Dr Ted Bearman and Adjunct Professor Rob Dunne, will present practical advances in comminution technology.

Insights into South Australia mining and mineral processing innovations will be provided by Joe Seppelt, OZ Minerals Processing Manager at the Carrapateena copper-gold project, north of Port Augusta, and Enzo Artone, BHP Area Manager, Mill and Process Minerals, BFX Project, Olympic Dam.

To register or find out more about the workshop, which will be held at the National Wine Centre, click here.