Tag Archives: natural gas

Orica makes headway on decarbonisation plans, cuts 20% cut of GHG emissions from Kooragang Island

Orica says it has achieved another milestone in its decarbonisation journey, eliminating the first 250,000 t of carbon dioxide equivalent (CO2-e) from its Kooragang Island manufacturing facility with an Australian first deployment of tertiary catalyst abatement technology (pictured).

The installation of three tertiary abatement reactors at its Kooragang Island facility has eliminated the equivalent of 20% of the plant’s total greenhouse gas emissions, for the period from November 2022 to August 2023. This means that for every tonne of nitric acid produced at the facility to produce products for many businesses across New South Wales, including the mining, agriculture, health and food industries, there has been a reduction in nitrous oxide emissions of over 95% compared with 2019 levels.

To facilitate the project, the NSW Government’s Net Zero Industry and Innovation Program co-invested A$13.06 million ($8.33 million), together with Orica’s A$25 million financed by the Federal Government’s Clean Energy Finance Corporation. The Clean Energy Regulator also approved the project as eligible to generate Australian Carbon Credit Units.

Orica Group Executive and President Australia Pacific, Germán Morales, said: “This is another proud and critical milestone in Orica’s decarbonisation journey and ambition to achieve net zero emissions by latest 2050.

“We are accelerating action to reduce greenhouse gas emissions today, ensuring a sustainable future for our manufacturing facilities and supporting customers in achieving their sustainability goals. We are already seeing the benefit of this technology at our Kooragang Island facility, with an annual estimated reduction of 500,000 t of carbon dioxide equivalent. Now, as we continue our decarbonisation efforts, we will focus on installing the same proven technology at our Yarwun facility.”

Having invested to deliver significant reductions in net operational Scope 1 and 2 greenhouse gas emissions across some of its major manufacturing facilities, Orica says it is expecting a total reduction of at least 19% at the end of its 2023 financial year, from 2019 baseline levels. This supports Orica’s accelerated climate target to reduce net operational Scope 1 and 2 emissions by at least 45% by 2030, from 2019 levels.

Orica’s Kooragang Island facility is presently one of NSW’s largest industrial users of gas – using approximately 10-15% of total NSW gas per year. The next step for Orica in reducing these site-based emissions will be the use of renewable hydrogen as a feedstock, rather than natural gas used today. Orica hopes to further reduce its Scope 1 emissions while producing low-carbon ammonia for possible export and freeing up domestic gas supply for Australian households.

Partnering with Origin Energy on the Hunter Valley Hydrogen Hub, Orica is aiming to deliver a commercial-scale renewable hydrogen supply chain in the Newcastle industrial and port zone. The Hydrogen Hub will be located next to Orica’s Kooragang Island manufacturing site in Newcastle, in recognition of the competitive advantages of a strategic location on the Port of Newcastle and an established end market. It is also the only ammonia plant operating on Australia’s east coast with direct access to a deep-water port and the Port of Newcastle’s Clean Energy Precinct.

Penny Sharpe MLC, NSW Minister for Climate Change, Minister for Energy, Minister for the Environment, and Minister for Heritage, today announced funding from the NSW Government’s Hydrogen Hubs Initiative of A$45 million to progress the proposed Hunter Valley Hydrogen Hub on Kooragang Island. The NSW Government funding announcement follows a A$70 million contribution from the Federal Government announced in mid-July.

Orica and Origin recently signed a joint development agreement to progress plans and co-fund the proposed Hub through front-end engineering design, and continue to engage with the local community through the recent public EIS exhibition process.

Morales said: “We are deeply committed to continuing support for our customers by future-proofing our regional manufacturing, jobs and economies. As we progress plans to develop the Hunter Valley Hydrogen Hub, by leveraging our unique location, existing operations, experience and end markets, we will not only address some of our most material greenhouse gas emissions but also create future markets for Orica while supporting our customers as the world transitions.”

Centamin’s Sukari solar power plant performing ahead of expectations

Centamin says the solar plant at its Sukari gold mine, in Egypt, has entered the final stages of commissioning and is delivering savings ahead of expectations.

Furthermore, it says continued progress has been made to assess the opportunity to use Egyptian grid power at Sukari.

The solar plant, which is made up of a 36 MW solar farm and 7.5 MW batteryenergy storage system, has been consistently delivering 36 MW DC, converting to 30 MW AC of power, since early September, the company said. This reduction in exposure to volatile fuel pricing with commissioning is saving the company up to 70,000 litres per day of diesel and averaging a reduction in diesel consumption of 22 million litres per year, according to Centamin.

Based on current diesel prices, this means the plant has the potential to provide annual cost savings of $20 million, alongside an expected reduction in Scope 1 greenhouse gas (GHG) emissions of 60,000 t/y CO2 equivalent and a subsequent reduction in volume of diesel trucked to site.

Full commissioning of the solar plant is expected this quarter, the company added.

Centamin previously awarded the engineering, procurement and construction contracts for the 36 MW solar farm and 7.5 MW batteryenergy storage system at Sukari to juwi AG and Giza Systems. juwi was contracted to design, supply and integrate the Sukari solar and battery plant into the current diesel power plant, while Giza Systems was contracted to install the Sukari solar plant. To maximise the total energy generation, the project is using bifacial solar photovoltaic modules and single axis tracking. juwi Hybrid IQ microgrid technology will enable the integration of the solar and battery system into the existing offgrid network and support the operation of the existing power station, according to the company.

On top of the solar plant news, Centamin revealed it is actively engaged with government and independent power providers to further reduce its reliance on diesel at Sukari. Its initial proposals to supply 3050 MW AC of grid power to Sukari have been received and an internal evaluation is underway for potential integration from 2024, it said.

Fifty megawatts of AC grid power supply creates the potential to fully displace the use of diesel for power generation at Sukari, Centamin said. The minimum 30 MW AC of grid power, combined with the existing 30 MW AC of solar power, creates the potential to operate during daylight hours without using any diesel power generation and substantially offsetting diesel consumption during night time hours, it said.

The Egyptian grid power is generated from natural gas and a mix of renewables, such as hydro, solar and wind, creating the opportunity to further reduce Sukari’s GHG emissions. Further, the Egyptian industrial grid tariffs are significantly cheaper than the cost of power
generation using diesel fuel, Centamin said.

Martin Horgan, CEO of Centamin, said: “Delivery of this critical project is instrumental to our ongoing commitment to reduce our reliance on diesel fuel, minimise greenhouse gas emissions and realising material cost savings. The solar plant and potential to integrate grid power will contribute materially to our environmental stewardship philosophy and our strategic objective of maximising returns for all stakeholders.

Rio Tinto to provide Salzgitter with iron ore for hydrogen direct reduction steelmaking trials

Rio Tinto and the Salzgitter Group have signed a Memorandum of Understanding (MoU) to work together towards carbon-free steelmaking by studying optimisation of Rio Tinto’s high-quality Canadian and Australian iron ore products for use in Salzgitter’s SALCOS® green steel project in Germany.

Under the MoU, the two companies will explore optimisation of iron ore pellets, lump and fines for use in hydrogen direct reduction steelmaking. The two companies will also explore the potential for greenhouse gas emission certification across the steel value chain.

Rio Tinto produces iron ore pellets and concentrate at Iron Ore Company of Canada and iron ore lump and fines in Western Australia’s Pilbara region. The partnership will focus on the potential use of these products in the SALCOS – Salzgitter Low CO2 Steelmaking – program, which is targeting virtually carbon-free steel production, starting step-by-step in 2025 using hydrogen direct reduction.

Rio Tinto Chief Commercial Officer, Alf Barrios, said: “We welcome the chance to work with Salzgitter on ways to accelerate green steelmaking, in keeping with our commitment to reduce emissions across the steel value chain.

“Salzgitter has one of the world’s most advanced green steelmaking projects. Rio Tinto is excited at the opportunity of supplying our product and combining our technical expertise with that of Salzgitter to help advance the SALCOS project.”

Salzgitter Flachstahl GmbH Chairman of the Management Board, Ulrich Grethe, said: “With this alliance, we want to combine the knowledge of both companies to make further progress with low-carbon steel production.

“In this context, the Salzgitter Group is relying on strong partners, as set out in our ‘Salzgitter AG 2030’ Group strategy, in line with its motto of ‘Partnering for Circular Solutions’.”

The agreement follows a similar technical cooperation pact signed with LKAB last week, which could see the Europe-based iron ore miner supply high-quality iron ore pellets to Salzgitter for its SALCOS project.

Rio Tinto says it is committed to reaching net zero emissions by 2050 and is targeting a 15% reduction in Scope 1 & 2 emissions by 2025 (from a 2018 baseline) and a 50% reduction by 2030. Rio Tinto’s approach to addressing Scope 3 emissions is to engage with its customers on climate change and work with them to develop the technologies to decarbonise.

Under the SALCOS program, Salzgitter’s carbon-based blast furnace route will gradually be replaced from the middle of this decade by direct reduction plants, initially operated by natural gas and then with a steadily increasing proportion of hydrogen.

Metso Outotec launches Ferroflame LowNOx burner for pelletising plants

Metso Outotec has launched the Ferroflame™ LowNOx burner for travelling grate pelletising plants to enable pellet plant operators to, it says, achieve the stringent nitrogen oxide emission targets with ease.

The new burner is part of the company’s Planet Positive offering focused on environmentally-efficient technologies.

The Ferroflame LowNOx burner uses high-speed dilution, which is an effective way to improve the combustion process and reduce NOx emissions. It works seamlessly with natural gas, and tests demonstrate that can also be used with diesel and coke oven gas, according to Metso Outotec.

“We are very excited about the Ferroflame LowNOx burner, our emission- and cost-efficient alternative to minimise NOx emissions from the combustion process,” Dr Andreas Munko, Senior Product Manager, Ferrous and Heat Transfer at Metso Outotec, said. “Its functionality and performance with natural gas have been proven on site. The burners have been operating successfully at a client site since 2019.”

Metso Outotec says its Ferroflame LowNOx burner offers an up to 80% reduction of NOx emissions, an expected thermal penalty on natural gas circa-10% and an increased pellet homogeneity and quality.

IMARC ready to explore the race to decarbonise the energy sector

The global effort to decarbonise the energy sector is underway, and the race to net zero is shaping up to be an investment opportunity to define the decades to come, the organisers of the IMARC conference report.

Research suggests that as the price of adopting green energy continues to fall, so will the global demand for fossil-fuelled energy sources. Eventually a tipping point will be reached, and fossil fuel dependent energy companies’ assets will become ‘stranded’ unless they can adapt or pivot toward new sustainable energy practices.

As nations in the first world expand and those from the second and third world modernise, their energy needs will do the same, meaning more electricity, more hydrogen, more nuclear and more yet-to-be-discovered energy sources will be needed than ever before.

For the companies participating in Australia’s biggest mining conference, the International Mining and Resources Conference (IMARC) in 2022, staying in the race to decarbonise is essential.

Tipping point

Research suggests the tipping point for fossil-fuelled energy providers will come when costs for renewables reach parity with the lowest-cost traditional fossil alternatives, and this could be much sooner than 2050.

For such companies, demonstrating the long-term value to investors in a soon-to-be stranded asset class is becoming an increasingly hard sell. But it does not have to be. By pivoting toward renewable energy and investing in a low-carbon future, companies can ensure their survival after net zero.

EDL CEO, James Harman, said the industry was making the slow but sure transition to decarbonisation.

“The world has long relied on cheap, plentiful fossil fuels to power economies,” Harman said.

“In the early 2010s, EDL started looking to solar and wind generation as alternatives to fossil fuels across our portfolio, particularly for off-grid customers in remote Australia who were largely dependent on diesel- or gas-fuelled generation.

“In recent years, we have enjoyed great success with our hybrid energy solutions, helping our customers reduce their carbon footprint, but importantly maintaining and improving reliability whilst holding or reducing price. For example, our Agnew Hybrid Renewable Microgrid at Gold Fields’ Agnew Gold Mine provides the mine with energy that is an average of 50-60% from renewable sources, with 99.99% reliability.”

“EDL was one of the pioneers in the Australian landfill gas sector in the 1990s and, today, we are leading the way in high renewable energy fraction islanded microgrids. We are also exploring the introduction of landfill gas to renewable natural gas/biomethane technology to the Australian market, and the economic production of green hydrogen.”

ESG reinvigorating investment

Environmental, social and governance (ESG) frameworks are, at their core, risk assessment tools that consider the effect climate change will have on investors’ value creation opportunities. In June 2021, research and advisory experts, Gartner, released some jaw-dropping facts about the growing importance of ESG credentials.

According to Gartner, more than 90% of banks monitor ESG, along with 24 global credit ratings agencies, 71% of fixed income investors and more than 90% of insurers. Media mentions of ESG data, ratings or scores grew by 30% year-over-year in 2020, and 67% of banks screen their loan portfolios for ESG risks.

Harman acknowledged that it was important for attitudes and practices across the energy sector to change.

“Given that electricity generators are some of Australia’s biggest carbon emitters and most of the product generated is carbon intensive and derived from fossil fuels – the most important ESG themes for energy companies are climate change action and environmental stewardship,” he said.

“This includes investment in research and development into zero emissions technologies such as distributed energy solutions, energy storage and alternative renewable fuels as well as carbon capture & storage.”

ABB Australia Head of Mining, Nik Gresshoff, is encouraged by the innovation and progress he’s seeing in electrification and hydrogen technologies. ABB Australia is a Gold Sponsor of IMARC in 2022.

“The challenge for mining companies now is to map out their own journey, and to weigh up the gains that can be achieved now through automation, along with the investment required to get to net zero,” Gresshoff said.

Gresshoff recommends companies first define what their carbon footprint is, and what falls within their scope for decarbonisation, before beginning a net-zero journey. “Are they focusing on direct and indirect emissions initially or including the whole supply chain from the outset?” he asked.

“The next step is to examine the technology and what is currently possible to decarbonise. Having a clear understanding of where the company assets are in their lifecycle is critical, as well as an understanding of what technology is available and what technology could fit with the current operation.”

Can dinosaurs survive the Ice Age?

Fossil fuels may be going the way of the dinosaurs that created them, but economies of the future will still require the massive infrastructure frameworks and operational capacities to meet current and future energy needs.

In fact, economists have suggested an overnight collapse of the energy giants could result in massive job cuts and instability leading to a global economic recession.

As was made clear at the Glasgow COP 26 Summit, there is a ‘wall of money’ that will be available for the energy companies of the future – whether that is retrofitting existing gas pipelines for transport of liquid hydrogen or utilising closed coal mine sites for new nuclear power sites, or any number of ways that energy companies can and are pivoting.
EDL believes there is an opportunity for many technologies to play their part.

“There won’t be a one-size-fits-all energy solution that achieves affordability, reliability and sustainability for our diverse country,” Harman said.

“Large conventional power stations are and will continue to be replaced with lower emissions plant with support to make them more dispatchable, allowing cheaper renewable energy to be scheduled when available.

“For shorter-term storage, batteries are feasible but longer-term storage is currently uneconomic. There are a few potential options to resolve this including pumped hydro, new kinds of batteries and hydrogen.

“Based on our experience in the USA, we also see the potential for renewable natural gas (RNG), or biomethane, to play a significant part in the transition from fossil fuels to renewables in the industrial, heating, power and transport industries. RNG production is a technologically mature, ready-to-scale product that is deployable now.”

EDL’s James Harman will be sharing further insights on net zero at the upcoming IMARC in Melbourne, Australia, taking place on January 31-February 2, 2022.

IM is a media sponsor of IMARC

Fortescue Future Industries, Incitec Pivot to study ‘green’ hydrogen options at Gibson Island

Fortescue Future Industries (FFI) says it is partnering with Incitec Pivot, Australia’s largest fertiliser supplier, to conduct a feasibility study to convert its ammonia-production facility at Gibson Island in Brisbane, Queensland, to run on green, renewable hydrogen.

The ammonia-production facility at Gibson Island currently uses natural gas as a feedstock and has a contract in place for this supply until the end of 2022.

FFI also plans to construct an on-site electrolysis plant, which will produce up to 50,000 t/y of renewable, green hydrogen for conversion into green ammonia.

The project, if successful, will create a new domestic and export market for green, renewable ammonia, according to FFI. The resulting green ammonia could also provide a low-carbon fuel supply to the Port of Brisbane and Brisbane airport.

Decarbonising existing industrial plants remains a major challenge in the transition to a green, renewable future, FFI says. The company aims to demonstrate that infrastructure conversion is both technically and economically feasible, in order to accelerate decarbonisation while protecting jobs.

FFI says today’s announcement aligns with the Queensland and Commonwealth governments’ strategy to develop an innovative and competitive green hydrogen industry that delivers reliable domestic supply and new export opportunities.

Incitec Pivot produces around 2 Mt/y of fertilisers for use in Australia’s grain, cotton, pasture, dairy, sugar and horticulture industries. The first step of the project will be a feasibility study, with preliminary results available by the end of 2021.

This is the second major announcement by FFI this week in Queensland, following an announcement to establish the world’s largest electrolyser, renewable industry and equipment manufacturing centre, the Global Green Energy Manufacturing Centre, at Gladstone.

FFI says it is committed to generating 15 Mt/y of green hydrogen by 2030, rising to 50 Mt/y in the decade thereafter. While FFI’s green hydrogen will supply both domestic and export markets, it will also enable Fortescue to achieve its industry-leading target of carbon neutrality by 2030.

FFI Chief Executive Officer, Julie Shuttleworth, said: “FFI’s goal is to become the world’s leading, renewable energy and green products company, powering the Australian economy and creating jobs for Australia as we transition away from fossil fuels.

“FFI’s partnership with Incitec Pivot is an exciting opportunity to harness existing infrastructure at Gibson Island, fast tracking the production of green ammonia at an industrial scale.”

Incitec Pivot Managing Director, Jeanne Johns, said: “We are pleased to be partnering our world-class manufacturing and ammonia expertise in Australia with FFI’s hydrogen and renewable energy capabilities to contribute to Australia’s potential as a green ammonia powerhouse.

“If feasible, this project would sustain highly skilled manufacturing jobs at Gibson Island and allow us to leverage our existing capabilities and assets to create a thriving renewable hydrogen ecosystem in Australia in the near term.”

Yamana Gold retains electrification path for Wasamac in new study

Yamana Gold has reiterated a plan to minimise the amount of carbon emissions generated with the development and operation of the Wasamac gold project in Quebec, Canada, in its first study since acquiring the asset from Monarch Gold.

Monarch, prior to being taken over by Yamana Gold, had laid out plans for an underground mine at Wasamac producing 6,000 t/d, on average, with an expected mine life of 11 years. It expected to use a Rail-Veyor® electrically powered, remote-controlled underground haulage system in addition to an almost entirely electric fleet of production and development equipment.

The December 2018 feasibility study by BBA indicated the Wasamac deposit hosted a measured and indicated mineral resource of 29.86 Mt at an average grade of 2.7 g/t Au, for a total of 2.6 Moz of gold, and proven and probable mineral reserves of 21.46 Mt at an average grade of 2.56 g/t Au, for a total of 1.8 Moz of gold. The study forecast average annual production of 142,000 oz of gold for 11 years at a cash cost of $550/oz.

With drilling, due diligence and further studies, Yamana Gold, in studies forming the new feasibility level studies, has come up with baseline technical and financial aspects of the Wasamac project that, it says, underpin the decision to advance the project to production.

This has resulted in a few changes to the Wasamac plan.

For starters, the company plans to use the extract the now 1.91 Moz of reserves quicker than Monarch’s strategy, with a rapid production ramp-up in the first year followed by sustained gold production of approximately 200,000 oz/y for at least the next four years.

Including the ramp-up phase, average annual production for the first five years of operation is expected to be 184,000 oz, the company said, with life of mine production of 169,000 oz/y. Mill throughput has been increased to 7,000 t/d, on average, but the plant and associated infrastructure were being sized for 7,500 t/d. Production could start up in the December quarter of 2026, the initial capital expense was expected to be $416 million and all-in sustaining costs over the life of mine had been calculated at $828/oz.

The use of a conveyor is still within this plan, but a company spokesperson told IM that Yamana was now considering a conventional belt conveyor rather than the Rail-Veyor system.

Yamana explained: “The optimised materials handling system uses ore passes and haul trucks to transport ore from the production levels to a central underground primary crusher. The haul trucks will be automated to allow haulage to continue between shifts. From the underground crusher, ore will be transported to the crushed-ore stockpile on the surface using a 3-km-long conventional conveyor system in two segments.”

Yamana added: “Using a conveyor rather than diesel trucks to transport ore to surface reduces CO2 emissions by 2,233 t/y, equivalent to taking 500 cars off the road. Over the life of mine, the company expects to reduce CO2 emissions by more than 20,000 t.”

The aim to use electric vehicles wherever possible remains in place.

“The Wasamac underground mine is designed to create a safe working environment and reduce consumption of non-renewable energy through the use of electric and high-efficiency equipment,” the company said. “Yamana has selected electric and battery-electric mobile equipment provided that the equipment is available at the required specifications.

“Battery-electric underground haul trucks are not yet available at the required capacity with autonomous operation, so diesel trucks have been selected in combination with the underground conveyor. However, Yamana continues to collaborate with equipment suppliers with the expectation that the desired battery-electric equipment will be available before Wasamac is in operation.”

In tandem with this, the company plans to use a ventilation on demand solution and high-efficiency fans to reduce its power requirements. This will likely rely on an underground LTE network.

“Heating of the underground mine and surface facilities is designed with the assumption of propane burners, but an opportunity exists to extend the natural gas line to the project site,” it added. “Yamana has initiated discussions with the natural gas supplier and will study this opportunity further as the project advances.”

The site for the processing plant and offices is confined to a small footprint strategically located in a naturally concealed area, and the processing plant has been designed with a low profile to minimise the visual impact as well as minimise noise and dust, according to Yamana.

The primary crusher, previously planned to be located on surface, has been moved underground, with the crushed material transported to surface from the underground mining area using conventional conveyors and stored on surface in a covered stockpile to control dust.

Several design improvements to the previous Wasamac plans have also been made to reduce consumption of fresh water to minimise the effect on watersheds, according to Yamana. Underground mine water will be used in the processing plant, minimising the draw of fresh water and reducing the required size of the mill basin pond.

The Wasamac tailings storage strategy is designed to minimise environmental footprint and mitigate risk, it added.

“Around 39% of tailings will be deposited underground as paste fill and 61% of tailings will be pumped as a slurry to the filter plant located approximately 6 km northwest of the processing plant and then hauled to the nearby dry-stack tailings storage facility,” Yamana said.

Strategic phasing of the tailings storage facility design allows for the same footprint as previously planned, even with the increase in mineral reserves, the company clarified. Also, the progressive reclamation plan for this facility minimises the possibility of dust generation and expedites the return of the landscape to its natural state.

Suncor backs Svante and its carbon dioxide capture technology

Suncor has backed the decarbonisation and hydrogen production ambitions of carbon capture technology company Svante, joining a number of firms in its latest equity raising.

Svante is looking to accelerate the commercialisation of its novel second generation CO2 capture technology, aiming to decarbonise industrial emissions and hydrogen production in North America. Its technology, Svante claims, captures carbon dioxide from flue gas, concentrates it, then releases it for safe storage or industrial use.

Combined, Suncor and a number of family office investors have invested $25 million of equity financing, bringing the total proceeds raised under Svante’s Series D financing to $100 million, completing what Suncor says is the largest single private investment into point source carbon capture technology globally to date.

Svante has now attracted more than $175 million in total funding since it was founded in 2007 to develop and commercialise its breakthrough solid sorbent technology at half the capital cost of traditional engineered solutions.

Claude Letourneau, President & CEO of Svante Inc, said: “Svante has generated a pipeline of potential new project opportunities capturing over 40 Mt of CO2/y before 2030 from natural gas industrial boilers, cement and lime, and blue hydrogen industrial facilities, mainly in North America and spurred by both US and Canada federal CO2 tax credits and prices on CO2 emissions.”

According to Mark Little, President & CEO of Suncor, “carbon capture is a strategic technology area for Suncor to reduce greenhouse gas emissions in our base business and produce blue hydrogen as an energy product. An investment in Svante is expected to support the acceleration of commercial-scale deployment of a technology that has the potential to dramatically reduce the cost associated with carbon capture. We are excited to become both an investor in and a collaborative partner with the company.”

Letourneau added on Suncor’s investment: “We are pleased to partner with a leading Canadian player in the energy industry, alongside existing investor Cenovus, and to benefit not only from their financial support but also their commitment to deliver low-carbon fuels and blue hydrogen to transform the energy system.”

Svante says its approach is tailored specifically to the challenges of separating CO₂ from nitrogen contained in diluted flue gas generated by industrial plants such as cement, steel, aluminium, fertiliser and hydrogen, which is typically emitted in large volumes, at low pressures, and dilute concentrations.

It uses tailor-made nano-materials (solid adsorbents) with very high storage capacity for carbon dioxide. It has engineered these adsorbents to catch and release CO₂ in less than 60 seconds, compared with hours for other technologies.

The company’s carbon capture technology consists of a patented architecture of structured adsorbent laminate (spaced sheets), proprietary process cycle design, and a rotary mechanical contactor to capture, release and regenerate the adsorbent in a single unit.

In January, Lafarge Canada, Svante and Total announced they had reached a major milestone at its Project CO2MENT, a first-of-its kind partnership to capture industrial levels of CO2 emissions from a cement plant. The multi-phase project celebrated the completion of Phase II construction to have the technology to capture and filter the CO2 from the flue gas. This was a crucial component to achieving the next stage of capturing CO2 flow at the Lafarge Richmond cement facility in British Columbia, Canada.

Kobe Steel demonstrates new, cleaner steel production technology

Kobe Steel says it has successfully demonstrated technology that can significantly reduce CO2 emissions from blast furnace operations, combining the technologies of Midrex in the engineering business and the blast furnace operation technology in the iron and steel business.

This achievement is a result of the integrated efforts of the Kobe Steel Group (also known as the KOBELCO Group) leveraging its diverse businesses, it said. The demonstration test was conducted for a month at a large blast furnace (4,844 cu.m) of the Kakogawa Works in Hyogo Prefecture, Japan, in October 2020.

The quantity of CO2 emissions from the blast furnace is determined by the reducing agent rate (RAR), or the quantity of carbon fuel used in blast furnace ironmaking. In the demonstration test, it was verified that RAR could be stably reduced from 518 kg per tonne of hot metal (thm) to 415 kg/thm by charging a large amount of hot briquetted iron produced by the MIDREX® Process. The results indicate that this technology can reduce CO2 emissions by approximately 20% compared with the conventional method, the company said.

In addition, the world’s lowest level of coke rate (239 kg/thm) has been achieved in the demonstration test of this technology, the company claimed.

Kobe Steel sees this as a promising solution that could become readily available soon at a lower additional cost compared with other CO2-reduction measures.

The MIDREX Process uses natural gas as the reductant and pellets made of iron ore as the source of iron to make direct reduced iron through the reduction process in the shaft furnace. In comparison with the blast furnace method, the MIDREX Process can reduce CO2 emissions by 20-40%.

The company said: “We will keep improving this CO2-reduction solution technology while further reducing CO2 emissions and achieving lower costs for CO2 reduction. Beyond our own efforts to reduce emissions from our facilities, we will strive to contribute to the acceleration of CO2 reduction through introducing this solution to blast furnaces around the world.

“In addition, we believe that the success of the demonstration test on an actual blast furnace has made a significant step forward in providing low CO2 steel products to customers. As moving forward with our environmental efforts on the scale of the whole supply chain, we will establish production and sales systems and define the terms and conditions for sales so that we can provide customers with low CO2 steel products that offer new added value.”

Cleveland-Cliffs commits to new greenhouse gas emission goals

Iron ore miner and steelmaker Cleveland-Cliffs Inc has set a target to reduce its greenhouse gas emissions by 25% by 2030, with the use of carbon capture technologies and natural gas/hydrogen in the production of hot briquetted iron (HBI) just some of paths it is pursuing.

This goal represents combined Scope 1 (direct) and Scope 2 (indirect) greenhouse gas emission reductions on a mass basis (t/y) compared with 2017 baseline levels.

Prior to setting this goal with its newly acquired steel assets from AK Steel and ArcelorMittal USA, the company said it exceeded its previous 26% greenhouse gas reduction target at its mining and pelletising facilities six years ahead of its 2025 goal. In 2019, it reduced its combined Scope 1 and Scope 2 GHG emissions by 42% on a mass basis from 2005 baseline levels, it said.

Lourenco Goncalves, Chairman, President and Chief Executive Officer, said: “We at Cleveland-Cliffs acknowledge that one of the most important issues impacting our planet is climate change. The American steel industry is one of the cleanest and most energy efficient in the world, and therefore the utilisation of steel Made in the USA is a decisively positive move to protect the planet against massive pollution embedded in the steel produced in other countries.”

He added: “In the past year, Cleveland-Cliffs has transformed itself into the largest flat-rolled steel producer in North America. As a company currently employing more than 25,000 people, the vast majority of them in good paying middle-class union jobs, our commitment to operating our business in an environmentally and socially responsible manner remains our priority.

“As we continue to grow the company going forward, we will vigorously pursue the opportunities we have outlined in our Greenhouse Gas Reduction Commitment, and will be transparent with our stakeholders by regularly reporting on our progress.”

Cleveland-Cliffs’ plan is based on its execution of the following five strategic priorities:

  • Developing domestically sourced, high quality iron ore feedstock and utilising natural gas in the production of HBI;
  • Implementing energy efficiency and green energy projects;
  • Investing in the development of carbon capture technology;
  • Enhancing its greenhouse gas emissions transparency and sustainability focus; and
  • Supporting public policies that facilitate carbon reduction in the domestic steel industry.

Only last year, Cleveland-Cliffs completed the construction of its first Direct Reduction Plant (pictured) to make it the first HBI producer in the Great Lakes Region of North America.

The company said: “To further reduce our GHG footprint at the new Direct Reduction Plant, we will evaluate partnering with hydrogen producers to replace natural gas use with hydrogen when it becomes commercially available in significant quantities.”

Without any modifications to the plant’s configuration, the company says it can replace up to 30% of the plant’s natural gas consumption with hydrogen to reduce GHG emissions by approximately 450,000 t/y.

“With limited equipment modifications and investments, we could increase hydrogen usage up to 70% and reduce over 1 Mt of GHG emissions per year,” it added.

The company said it is also currently working to implement numerous energy efficiency projects, which include, but are not limited to: improving furnace fuel efficiency; upgrading mobile mining fleet and locomotive engines to high efficiency/low emission models; investing in electrical energy efficiency projects; replacing traditional lighting with LED lamps; and cogenerating electricity from by-product gases.