Tag Archives: lead

GR Engineering awarded with Abra EPC contract

GR Engineering Services has been awarded a conditional engineering, procurement and construction (EPC) contract to deliver a 1.2 Mt/y lead sulphide flotation process plant and ancillary infrastructure for Galena Mining’s Abra Base Metals project in Western Australia.

The award, worth some A$74 million ($50 million), follows work carried out by the ASX-listed engineering company on the feasibility study and at the preliminary design stage of Abra.

The work will be undertaken on a guaranteed maximum price basis, according to GR Engineering, which confirmed that the contract remained subject to GR Engineering being issued with a full notice to proceed. This is dependent on Abra Mining Pty, Galena’s operating subsidiary, achieving financial close on its proposed project financing facilities. Galena, which owns 86.16% of the project through Abra, has said it will require A$170 million of pre-development capex to get the mine up and running.

GR Engineering has already commenced early engineering works up to an agreed capped amount, it said.

Geoff Jones, Managing Director of GR Engineering, said: “We are pleased to have been awarded the contract for the delivery of the Abra Base Metals project, which has followed GR Engineering’s involvement to date in the project’s feasibility study and preliminary design work.”

Galena completed a definitive feasibility study on Abra last year for development of a mine and processing facility with a 16-year life producing a high-value, high-grade lead-silver concentrate containing around 95,000 t/y of lead and 805,000 oz/y of silver after ramp-up.

Earlier this month, the construction of the Abra box cut commenced (pictured).

Glencore Tech draws McArthur River parallels at Ozernoye polymetallic project

Glencore Technology says it and Hatch are helping the Ozernoye project in Buryatia, Russia, come up with a process flowsheet suited to the complex composition of ore at the polymetallic asset.
The mining and processing operation would produce zinc and lead concentrates.

Ozernoye’s Grigory Koldunov said the company is currently preparing the area for the Ozernoye polymetallic mine and concentrator in the Yeravninsky region, 60 km away from the Sosnovo-Ozerskoye regional centre.

“We’ll start mining works and stripping waste by November. Expected stripping volume by the end of the year will exceed 350 000 m3 of waste,” Koldunov said. In November, the company will begin the construction of temporary roads and a tailings storage facility.

Glencore Technology’s Adam Price said the ore mineralogy at the site was remarkably similar to Glencore’s McArthur River zinc-lead-silver mine, which originally brought about the need to create the IsaMill ultrafine grinding technology (an example pictured) – an innovation that turns 25 this year.

“Ozernoye’s mineralogy is complex, and it’s going to need the right flowsheet to improve the recovery and concentrate quality and therefore ensure the economic viability of the project,” Price said. The fine-grained lead-zinc ore at the Australia operation made for an obvious benchmark, he said.

This year, Ozernoye has been embarking on mining, capital works and construction of infrastructure facilities. Major construction of the plant’s facilities is planned for 2020-2022 and the company plans to reach design capacity of 8 Mt/y in 2024.

In September, Glencore Technology worked with Hatch, AMC and Ozernoye to finish a geotechnical drilling program, test work and analysis. The camp was recommissioned and the company began clearing the site for construction. Capital mine development and drill and blast works have started to provide contractors with structural materials and to begin stripping, according to Glencore Technology.

“But the main challenge with the Ozernoye deposit is the complex composition of the ore,” Glencore Technology said. “The task of the current geotechnical and test work program is to design and develop the flowsheet.”

Glencore’s McArthur River Mine in northern Australia contains a complex ore that remained uneconomical until the IsaMill was created to produce a steep particle size distribution without needing internal screens or closed circuit cyclones, according to Glencore Technology. The horizontal plug-flow design prevented short circuiting and provided for a reliable and easy to operate technology.

The original 1994 IsaMills are still operating at McArthur River Mine, but the IsaMill technology has been refined to occupy a small footprint, very high availability and significant energy efficiency, Glencore Technology says.

FLSmidth FerroCer wear panels increase uptime at Hindustan Zinc operation

FLSmidth’s FerroCer® Impact wear panels have proven their worth in the mineral processing circuit at Hindustan Zinc’s Rampura Agucha operations in Rajasthan, India, having significantly outlasted the previous manganese liners the lead-zinc mine was using.

By the end of 2018, the mine couldn’t say exactly just how good FerroCer wear panels were as they were still in place over a year since installation.

However, by March 2019, it was confirmed the FerroCer liners had completed about 480 days (16 months approximately) in operation and had withstood some 2.45 Mt of lead-zinc ore conveyed through the U-13 tripper chute, located after the primary crusher at the mine.

This is a significant improvement on the previous 40 mm-thick manganese steel liners, which had a life span of only 23-25 days, according to FLSmidth.

The constant wear on these liners meant the material handling system needed to be frequently shutdown so the worn-out liners could be replaced with new manganese steel liners, which weighed about 50 kg each.

“Because of the elevated location of several chutes, replacement of the liners required safety preparations (such as scaffolding and other access and handling arrangements), with five to six workers required to get inside the chutes to handle the liners,” FLSmidth said.

FLSmidth visited officials at the Rampura Agucha mines in June 2017 and recommended FerroCer wear panels to address the high wear issues in the material handling chutes.

“Each panel comprises a set of abrasion-resistant ceramic inserts enclosed in a matrix of malleable steel, which ensures only the top surface of the insert is exposed to material impact,” FLSmidth said. “The sides of the inserts are tapered within the matrix, keeping them in place and preventing material particles and fluids from damaging the panels.”

Some in-situ results from the 220-day mark showed the wear on the panels measured only 8-10 mm and had withstood around 1.5 Mt of lead-zinc ore conveyed through the U-13 tripper chute.

“This means FerroCer outlasted the previous panels by over 10 times, meaning a much longer replacement cycle,” FLSmidth said.

Clearly delighted with this outcome, Hindustan Zinc is now looking to use FerroCer impact wear panels across its high-impact wear locations, according to FLSmidth.

Praveen Bhardwaj, Assistant General Manager (Mechanical), HZL – RA Mines, Rajasthan, said: “FerroCer has reduced maintenance time due to the much longer replacement cycle, eliminated possible damage to the mother plate and spillage of material due to the highly abrasive nature of ore, and significantly reduced safety hazards. HZL intends to install FerroCer impact wear panels in all the high impact wear locations.”

The results at the Hindustan Zinc site follow on from results from two mines in Australia. One mine operated for more than a year without replacing its wear liners and the other site is on the same track, approaching its first year without the need for liner replacement.

Meanwhile, in a Peruvian copper mine, 24 smaller and lighter FerroCer panels, each made of steel plates with ceramic inserts, replaced six generic liners. After a total of 12.6 Mt passed, with a feed of 7,500 t/h, wear was no more than 3%, FLSmidth said.

“At that rate, FerroCer lasts at least 10 times longer than the most expensive and recognised wear liner on the market.”

RCT brings teleremote options to Hindustan Zinc’s Rampura Agucha mine

Autonomous solutions specialist RCT has entered into its first automation project in India, commissioning its technology on machinery at Hindustan Zinc’s Rampura Agucha zinc-lead mine in Rajasthan province.

The agreement with Hindustan Zinc Limited and its mining services provider Barminco will see ControlMaster® Guidance Automation installed on two Cat R2900 underground LHDs at the mine. These loaders will now undertake teleremote mining in open stopes developed by Barminco.

Barminco, in February, was awarded a three-and-a-half-year underground mining services contract at Rampura Agucha. The mine, meanwhile, is currently undergoing an expansion to boost production to 5 Mt/y of ore.

RCT will install two underground ControlMaster Automation Centres, as well as four ControlMaster Area Access Cabinets into mine stopes, as part of this package. These will collectively enable machine operators to safely manage the machines away from the mine face, according to RCT.

The Automation Centres will also be equipped with Multiple Machine Selection and Multiple Machine Control options, enabling a single operator to manage both machines at one time, according to RCT.

The project represents the first time RCT has deployed its proprietary digital communications network RCT Connect into a mine site anywhere in the world, the company said, adding that RCT will carry out training programs to empower local operators and maintenance personnel then machine servicing works on an ongoing basis.

Orica turns wireless blasting dream into a reality at Europe’s deepest mine

In Europe’s first demonstration of wireless blasting, Orica has enabled First Quantum Minerals’ (FQM) Pyhäsalmi underground mine in Finland to recover ore it previously thought inaccessible.

Orica’s WebGen™ 100, the first truly wireless rock blasting system, has been used in trials at the zinc-copper-pyrite mine since September 2018, with FQM, to date, carrying out five blasts.

Since the invention of the safety fuse by William Bickford in 1831, there has been three revolutions in blast initiation methods – electric detonators (1930s), shock tube (1980s) and electronics (~2000s). Every new initiation method development has increased the safety, precision and possibilities of initiating blasts.

The new Safety Integrity Level 3 certified WebGen system could end up being the fourth revolution in this line-up, Orica believes.

Still in its infancy with, as of August, more than 250 blasts fired using wireless initiation, the WebGen technology has already led to the development of several new mining techniques such as Temporary Rib Pillar (TRP), Temporary Uppers Retreat Pillar, Reverse Throw Retreat, Longitudinal Transverse Retreat and Pre-Loaded Retreat that would not be viable or possible without wireless blasting technology.

WebGen comprises the following components:

  • WebGen primer and accessories – including the high explosive Pentex™ W booster, i-kon™ plugin electronic detonator, the Disposable Receiver (DRX) and the encoder controller;
  • Transmission system – including transmitter, antenna and transmitter controller; and
  • Code Management Computer (CMC) – including the unique global blast and arm codes.

The system achieves wireless blasting through very low frequency magnetic induction (MI) signals communicated to the in-hole primer, with the special site-specific group ID, arm and firing codes embedded in the MI signals. The system eliminates the lead wires of conventional initiation systems, thereby also eliminating the ‘hook-up’ process at the blastholes.

The operation works as follows: The i-kon plugin detonator plugs into the DRX, energising the device and initiating a self-test. After passing the self-test, the device can be encoded with the blast code and the delay timing. The booster is attached after encoding the device. At this stage the WebGen primer is ready to be placed into the blasthole.

The transmitter controller – a magnetic induction system connected to an antenna – sends the arming signal to the transmitter. Once the arming process is successful the firing window is presented to the blaster.

The CMC is the data hub of the system and supplies the identification and firing codes as well as the mine specific codes. Orica explained: “It culminates in the ready to fire file for transmission.”

Game changer

With the elimination of lead wires, it is possible to pre-charge a full stope (eg sub-level caving mining method) and fire every ring when required without sending personnel back to the dangerous brow area to connect lead lines, Orica says. “Misfires related to damaged wires are eliminated and primers can be fired regardless of any dislocations of blasthole and/or charge.”

The Ernest Henry mine, in north-eastern Australia, engaged Orica in 2016 to perform a demonstration of sub-level caving using WebGen. The mine wanted to reduce the time spent by personnel at the brow of the cave. With the use of WebGen they were successful in pre-loading the stope production rings and eliminating the need to return to the brow for hooking up.

At Newmont Goldcorp’s Musselwhite mine, productivity and ore recovery were the main drivers for looking into wireless blasting. Together with Orica, Musselwhite developed the TRP mining method where a temporary pillar is used to withhold backfill while the second mass blast (i-kon electronic detonators) of the stope is mucked out.

Orica explained: “Once the stope is mucked out, the TRP is fired remotely and the ore can be recovered.”

With this method the mine established a 93% reduction in dilution, increase in mucking of 27% and a two-week saving in time per stope, the company said.

FQM – Pyhäsalmi

In March 2018, a team of Orica Technical Services Engineers commenced preparations and planning for the first wireless demonstration in Europe with the FQM Pyhäsalmi mine, in Finland, the deepest mine in the continent.

At the time, the mine was scheduled to close in September 2019; most of the stopes had been mined out and the remaining stopes and pillars were becoming increasingly challenging to mine. Orica said: “Pyhäsalmi had developed a system to mine the stranded pillars, but this was incurring considerable time and costs. Pyhäsalmi mine acknowledged that WebGen 100 could be a solution for the problems in retrieving remaining ore in difficult areas.”

As a first stop, the Orica team of blasting specialists had to assess if the WebGen system would successfully function in Pyhäsalmi mine. “Before firing the WebGen shot it was important to investigate if the system would work in the mine and what the maximum signal reach would be for both the quad loop and cable loop antenna,” the company said.

Signal strength testing provides positive confirmation of coded signals being received through the mine and also validates if there are any parts of the mine where the system has a reduced range.

A smaller antenna and a larger antenna were tested.

Pyhäsalmi experiences occasional sulphur dust explosions and, therefore, personnel are not allowed to be underground while blasting, Orica said. As a result, blasting takes place at the end of the shift after the shift explosives supervisor checks everyone has vacated the mine.

Initial signal testing with the smaller antenna validated the system was working with a range of at least 200 m. Further signal testing was performed using the larger antenna.

It was validated the system could send and receive signals from the production level to the furthest stope, which was 450 m away, Orica said.

After assessing the MI signal test results, it was decided it would be more convenient to use the smaller antenna.

In September 2018, the EMEA WebGen team returned to Pyhäsalmi mine for the first wireless blast in Europe. The final three rings of stope 18b10-11 on Level 1,175 were selected for the demonstration blast.

On September 4, 2018, at 22:00, the first wireless blast in Europe was fired without any issue.

Since the introduction of wireless blasting, Pyhäsalmi mine has fired a total of five blasts in challenging areas.

For one of the wireless blasts, a stope would not be accessible after the first blast, but, as the stope could be pre-loaded with wireless detonators, the mine could blast and produce 4,000 t of extra ore that otherwise would have been sterilised.

Katja Sahala, Mine Planning Engineer, FQM Pyhäsalmi mine, said she saw the WebGen wireless system as helping operations in several applications such as when ore needs to be left behind to support pillars, or where there is weak rock, or fill and selective mining is required.

She said: “In uphole charging, you need to work close or even below an open face during drilling and blasting. If it’s possible to drill and charge an entire stope before the first hole is fired, then safety will surely be improved.”

Orica said wireless blasting is a new and exciting technology that eliminates the use of cumbersome and complex wiring hook-ups while having the accuracy of an electronic detonator. It has already enabled safer work methods and mining techniques that increase recovery, productivity and efficiency, according to the company.

It concluded: “Many technical and regulatory challenges will be faced by wireless blasting, but it is a fundamental step in the automation of the explosives charging and blasting process. With the first WebGen blasts at FQM Pyhäsalmi mine, wireless blasting is no longer a dream in Europe, but a reality.”

Telstra lays the groundwork for major underground LTE network at Cannington mine

Telstra Mining Services has announced a new partnership with South32 for a private 4G LTE network at its Cannington underground silver-lead-zinc mine in northwest Queensland, Australia.

Telstra is now in the pre-deployment stage at Cannington, with the network set to “drive improved safety, automation and mechanisation” at the site and connect staff to vehicles and sensors around the mine at all times, it said.

The underground mine produces about 3 Mt/y and the Cannington team is made up of about 550 full-time employees and up to 300 contractors.

Jeannette McGill, Head of Telstra Mining Services, said: “The high throughput and low latency offered by the system means that staff will be able to control critical equipment without interruption, and South32’s digitalisation strategy will be achievable throughout the mine.”

By adopting 4G LTE underground, the Cannington mine will be able to achieve better operating transparency, condition monitoring and production improvements for staff, machines and other mining systems, driving safety, productivity and efficiency, she added.

Telstra will be building an initial underground network 6.5 km in length using a “private, virtualised core” and LTE radio technologies distributed over leaky feeder cable using LTE-capable bi-directional amplifiers.

McGill said: “Our analysis indicates this to be the most effective solution for underground miners and is capable of adapting to the unique geology and composition of the Cannington mine. It enables access to the latest advances in 4G LTE and NB-IoT, and is also upgradeable to 5G in the future.”

The network being private means it will be a completely standalone mobile network, independent from others, like Telstra’s own public network, she explained. “South32 Cannington will have its own equipment, SIM cards and unique network codes for full autonomy and complete control.”

Providing a modern connectivity platform will allow for more flexible operations as well as scalability and choice in applying various digital solutions, according to Telstra.

“The combination of Ericsson mobile network equipment, Telstra radio spectrum, and leaky feeder solutions from specialist manufacturer METStech provides a unique capability that has made extending LTE underground a more commercially realistic and safer prospect,” McGill explained.

At its full deployment, the Cannington installation will become one of the largest underground mining LTE networks in the world using leaky feeder, according to Telstra.

“We’re excited to help drive South32’s Cannington mine further with this new private network, as it looks to pay dividends to safety, productivity and more,” McGill concluded.

XRF ore sorting shows potential at Yukon zinc project

X-ray fluorescence (XRF) ore sorting technology has found another fan after Fireweed Zinc reported positive results from preconcentration test work at its Macmillan Pass zinc project in the Yukon of Canada.

Samples from Macmillan Pass’ Boundary Zone, a discrete bulk-tonnage, exploration target 15 km northwest of the Jason zinc-lead-silver deposit, were put through XRF, X-ray transmission, electromagnetic and dense media separation sorting tests by Canada’s Sacré-Davey Engineering at the University of British Columbia, with XRF showing the most promising results, Fireweed said.

The principal results of the 436 rock samples tested in the XRF trials included the potential to upgrade the feed grade from 2.5% Zn to 5% Zn and a rejection rate of 70-50%, with zinc recoveries ranging from 80-85%.

Fireweed pointed out that the analysis in the study assumed that 25% of the feed had fines (-12 mm) which cannot be processed in the ore sorter. As a result of this, the fines would bypass the sorter and combine with the ore sorter product, with the final grade of 5% Zn achieved after combining the ore sorter product with the fines assumed to have a grade of 2.5% Zn.

XRF sorting is currently used at over 50 operations across the world, including Hecla Mining’s San Sebastian mine, in Mexico, and Anglo American’s Mogalakwena mine, in South Africa, according to Fireweed.

Typically, it uses an XRF sensor to distinguish and measure surface metal abundances on rock pieces moving on an enclosed conveyor belt unit. The XRF readings for each individual rock are then analysed by high speed software to distinguish and flag rocks with metal values above and below a set threshold.

At the end of the conveyor belt, focused high pressure air jets or mechanical levers then separate the designated higher-grade rock pieces for processing and reject low grade and waste pieces. The amenability to ore sorting depends on the material characteristics of a deposit.

Fireweed said: “The Boundary Zone samples responded positively to XRF testing because zinc values on the surfaces of individual rock pieces correlate closely with the overall zinc assays of those rocks.”

Fireweed Zinc CEO, Brandon Macdonald, said the ore sorting results imply there is potential to improve the economics of the Macmillan Pass project.

He continued: “These results suggest that we may be able to reject 50% to 70% of low-grade and waste rock at low cost near a potential open-pit operation at Boundary with less than 15% loss of zinc mineralisation before material is transported to a central processing plant at Tom.”

Macdonald said the company has now moved the drill to Boundary to both confirm and step out from historic holes, as well as obtain a 2 t sample to confirm these ore sorting results may be obtained on a larger scale.

“If the larger test is successful, we can then incorporate the benefits of an XRF ore sorting system at Boundary into a revised preliminary economic assessment economic study along with upgraded information from recent drilling at Tom, Jason and End Zones.”

A 2018 preliminary economic assessment at Macmillan Pass showed that a 4,900 t/d operation could be constructed for an initial capital C$404 million ($305.9 million) using starter-pits on the Tom West and Jason Main zones.

This plan would result in average yearly contained-metal production of 85,000 t of zinc, 48,000 t of lead and 2 Moz of silver over an 18-year life, with an after-tax net present value (8% discount) of C$448 million generated.

Construction begins at Jiangxi Province’s largest lead-zinc mine

The groundbreaking ceremony for Jiangxi Province’s largest lead-zinc mine took place late last month, according to the EPC contractor for the project.

China Nerin Engineering said the event – celebrating construction starting on Jiangxi Copper’s lead-zinc-silver project in the Yinzhushan mining area – took place on June 28 and was attended by various guests from the contractor, mining company and government.

China Nerin said in a news release (translated into English) that it would actively introduce foreign advanced engineering project management concepts, and actively apply BIM technology in the whole process to make the Yinzhushan lead-zinc-silver project the first 3D collaborative construction in China.

Jiangxi Copper’s investment in Yinzhushan, which is set to have a production capacity of 1 Mt/y, is part of the company’s three-year innovation and development plan, China Nerin said. It also plays a part in the provincial government’s plan to enlarge and strengthen the lead and zinc industry.

SNC-Lavalin wins EPCM contract for NEXA Aripuanã polymetallic project

SNC-Lavalin has been awarded an engineering, procurement and construction management (EPCM) contract from NEXA Resources for its majority-owned Aripuanã zinc-copper-lead project in Mato Grosso, Brazil.

The Montreal-based professional services and project management company will deliver EPCM services for the project out of its Belo Horizonte office, in Brazil, and will include all operations required for copper, zinc and lead ore processing, including crushing, grinding, flotation, thickening, filtration and storage of concentrates and tailings, as well as load out of the final concentrated products and all related surface infrastructure, it said. The mandate also includes waste backfill, mine ventilation, and mine dewatering.

The Aripuanã project is an underground polymetallic mine and concentrate processing facility to extract zinc, copper and lead. Once completed, it will have an anticipated mine life of 13 years and a processing capacity of 1.8 Mt/y of ore per year, according to SNC-Lavalin.

The project’s zinc process flowsheet has been developed by considering conventional technologies for treatment, including sequential flotation for the recovery of zinc, copper, and lead as separate concentrates, according to NEXA.

SNC-Lavalin said the project will rely on “data-centric engineering” for development and design, and the use of immersive technologies for training operations personnel.

Work has begun and is slated for completion by the beginning of 2021.

Maria de Lourdes Bahia, General Manager of SNC-Lavalin Brazil, said: “Our Mining & Metallurgy sector has a long history in reimbursable EPCM services, and this award is testament to our continued recognition in this model of project delivery.

“This mandate is well aligned with our services-based strategy for mining and metallurgy projects. We look forward to continuing our trusted relationship with NEXA Resources in the successful execution of the project.”

CRC ORE grade engineering trial pays off for Minera San Cristóbal

A successful full-scale production trial of Australia-developed grade engineering techniques is paying dividends for a South American mine, and its local workers, according to CRC ORE.

Once fully implemented, this is expected to generate an additional A$451 million ($312 million) in profit for the mine and reduce its energy consumption, it said.

Located in the south-western Bolivian province of Nor Lípez, and owned by Sumitomo, Minera San Cristóbal (MSC) is the country’s largest mine. Operating since 2007, the mine produces around 1,500 t/d of zinc-silver and lead-silver concentrates. To achieve this result, MSC needs to move a daily average of 150,000 t of rock – ore and waste.

Part of MSC’s vision is to “develop a model mining operation through safe operations, at low cost, with innovative technology”.

Through its wholly-owned subsidiary, Summit Mining International, Sumitomo is a participant of the Cooperative Research Centre for Optimising Resource Extraction (CRC ORE). Based in Brisbane, Australia, CRC ORE works to minimise the impact of declining grades and radically improve the productivity, energy and water signatures of mining operations, CRC ORE said.

The centre is jointly funded by what it calls ‘Essential Participants’, which includes mining companies such as Sumitomo; mining equipment, technology and services (METS) companies; research organisations; and the Australia Government.

One of CRC ORE’s key solutions developed for the mining industry is grade engineering. “This solution deploys a range of waste rejection technologies that integrate with a suite of separation technologies relevant to ore specific characteristics,” CRC ORE said. “A deeper understanding of the orebody can be achieved, leading to the ability to exploit inherent ore deposit heterogeneity and variability.”

For mining operations such as MSC, this involves an innovative approach to the early separation of ore from waste material, minimising the impact of declining grades and productivity.

CRC ORE and MSC teams conducted site studies and analysis in 2017 to determine the level of opportunity available at the mine by deploying grade engineering, and a great deal of potential was evident.

Since late 2018, CRC ORE and Sumitomo have been working together on a full-scale production trial of grade engineering using screening at MSC. A Metso Lokotrack ST2.8 mobile screening plant, which can process up to 450 t/h, was deployed on site to assist in providing a production-scale testing capability.

The trial focused on upgrading mineralised waste from the pit to determine if grade engineering could efficiently produce a new economic stream of valuable material that could then be combined with run of mine feed through to the concentrator and produce a positive net smelter return.

CRC ORE Chief Executive Officer, Ben Adair, said initial results of the trial were impressive and encouraging, with 66% of value now contained in just 25% of the grade engineered mass.

“So far, results show that by applying grade engineering to areas previously designated as ‘mineralised waste’, the value of grade engineered feed to the mill can be increased by over 2.5 times,” Adair said.

“This has the potential to convert this waste material into high-grade ore feed with associated opportunity to increase metal production and reduce process power and water intensities.”

A 15-20% reduction in energy has been evident in the mine’s SAG mill when processing a combined grade engineered and direct run-of-mine feed, according to CRC ORE.

The success of the grade engineering trial has led to Sumitomo considering deployment of grade engineering techniques for life of mine extensions, CRC ORE said.

MSC Operations Director, Dave King, said: “The big benefit of grade engineering is its potential ability to extend the life of the mine and add over A$451 million in profit to its value.”

To fulfil its goals of knowledge transfer and for its technology to directly benefit the local mining industry, CRC ORE says it has recently commenced similar production trials at Australia mining operations.