Tag Archives: nickel

Shell Consortium previews Charge On haul truck electrification solution

Shell has become the latest Charge On Innovation Challenge winner to unveil details about its electric haul truck charging solution, outlining how its consortium of partners intend to combine an end-to-end and interoperable electrification system that reduces emissions without compromising on efficiency or safety, while aiming to be cost competitive versus diesel-powered operation.

The Charge On Innovation Challenge was launched in 2021 and invited vendors and technology innovators from around the world and across industries to collaborate with the mining industry to present novel electric truck charging solutions. The challenge received interest from over 350 companies across 19 industries, with more than 80 companies submitting expressions of interest. Twenty-one companies were then invited to present a detailed pitch of their solution, with the final eight – which included the Shell Consortium – chosen to progress from these 21.

The global challenge, launched by BHP, Rio Tinto and Vale, sought to accelerate commercialisation of effective solutions for charging large electric haul trucks while simultaneously demonstrating there is an emerging market for these solutions in mining.

The Charge On Innovation Challenge requested international solution providers to put forward charging concepts that are:

  • Designed with safety as the number one priority, using inherent defensive design and future-proof principles;
  • Able to supply a battery for 220-t payload electric haul trucks;
  • Capable of supplying 400 kW hours of electricity to a truck during each haul cycle;
  • Able to provide battery charging, or both propulsion and battery charging;
  • Cost effective, minimising complexity without reducing productivity; and
  • Interoperable, allowing different haul truck manufacturers to utilise the same charging infrastructure.

On a media call this week, Shell highlighted how its consortium of nine partners was working on a solution that could not only meet this brief, but also provide a commercial offering to electrify mining and other industries.

Skeleton, Microvast, Stäubli, Carnegie Robotics, Heliox, Spirae, Alliance Automation, Worley and Shell have come together to introduce Shell’s mining electrification solutions for off-road vehicles. This consists of:

  • Power provisioning and microgrids, with the aim to provide a consistent and reliable supply of renewable power in a safe and stable manner;
  • Ultra-fast charging whereby an approximate 90-second charge via flexible, hardwearing and resilient, on-site, ultrafast charge-points can provide assets with continuous operation of some 20-30 minutes depending on the haulage profile; and
  • In-vehicle energy storage: through a combination of advanced battery and capacitor technologies that aim to deliver long lifetimes, ultra-fast charging and high performance.

Some of the key components of the power provision and energy management solution come from Alliance Automation, a multi-disciplined industrial automation and electrical engineering company; Spirae, a technology company that develops solutions for integrating renewable and distributed energy resources within microgrids and power systems for economic optimisation, resiliency enhancement and decarbonisation; Worley, an engineering company that provides project delivery and consulting services to the resources and energy sectors, and complex process industries; and Shell Energy, which provides innovative, reliable and cleaner energy solutions through a portfolio of gas, power, environmental products and energy efficiency offers to businesses and residential customers.

The ultra-fast charging element involves solutions from Carnegie Robotics, a provider of rugged sensors, autonomy software and platforms for defence, agriculture, mining, marine, warehouse and energy applications; Heliox, a leader in fast charging systems within public transport, e-trucks, marine, mining and port equipment; and Stäubli, a global industrial and mechatronic solution provider with four dedicated divisions: electrical connectors, fluid connectors, robotics and textile.

Finally, Skeleton, a global technology leader in fast energy storage for automotive, transportation, grid and industrial applications, and Microvast, a leader in the design, development and manufacture of battery solutions for mobile and stationary applications, are in charge of the in-vehicle energy storage side of things.

As a result of this collaboration, mining operators, Shell says, are set to benefit from an integrated electrification solution that:

  • Is end-to-end, covering the full journey of the electron from generation to delivery in the drivetrain;
  • Is interoperable between different original equipment manufacturer make and models, giving mining operators greater flexibility;
  • Is modular in design to allow mining customers the opportunity to tailor solutions to their specific needs; and
  • Reduces emissions without compromising on operational efficiency or safety.

Sebastian Pohlmann, Skeleton Technologies’ Vice President Automotive & Business Development, revealed more details about the plans for the in-vehicle energy storage part of the equation, confirming that the fast energy storage solution set to be fitted on these 220-t payload haul trucks would leverage its SuperBattery.

The SuperBattery, Pohlmann said, offers a 100 times faster charging option compared with standard lithium-ion batteries, while also being free of cobalt, nickel, graphite and copper materials. He also mentioned that a SuperBattery-equipped haul truck could, in the right situation, offer higher utilisation than its diesel-powered equivalent.

The SuperBattery is due to start production in 2024, with Pohlmann saying the battery lined up for a prototype system as part of the Shell Consortium would weigh in at just over 12 tonnes. He also highlighted the potential for other applications in mining outside of 220 t haul trucks with this platform.

The ultra-fast charging solution that the consortium partners were working on assumed a peak power delivery of 24 MW, Pohlmann said, explaining that the charge points would be positioned around areas where haul trucks normally come to a stop – during dumping or loading, for instance – meaning charging would not interrupt the haul cycle and ensure high utilisation of the truck at all times.

With such a high power draw envisaged by the partners, Grischa Sauerberg, Vice President, Sectoral Decarbonisation & Innovation at Shell, explained that a stationary power element – renewable energy and battery storage – may also be provided if the grid power available cannot support such a peak draw.

The commercial offering from the partners is expected in 2025, however Sauerberg confirmed a pilot solution was set to be tested at a Shell facility in Hamburg, Germany, next year, followed by final field trials at selected mine sites in 2024.

OZ Minerals’ West Musgrave copper-nickel plan receives board approval

The OZ Minerals Board has greenlit the build of the West Musgrave copper-nickel project in Western Australia, paving the way for the development of a remote asset using dry grinding technology, autonomous haulage and a significant volume of renewable power.

West Musgrave is set to become OZ Minerals’ fourth operating asset when it starts producing concentrate in the second half of 2025, in the process becoming the company’s cleanest and greenest mine with plans to reach net zero Scope 1 emissions by 2038.

The feasibility study the board signed off on details a 13.5 Mt/y operation with average production of circa-28,000 t/y of nickel and circa-35,000 t/y of copper over a 24-year operating life. Coming with a A$1.7 billion ($1.1 billion) direct initial capital expenditure bill, West Musgrave could provide cash flow generation of circa-A$1.9 billion during the first five years of production based on OZ Minerals’ projections.

One of the interesting additions to the process flowsheet – which has been mentioned in previous economic studies – is the use of LOESCHE’s Vertical Roller Mill (VRM) technology.

Two VRMs will operate in parallel after the primary and secondary crushing circuit at West Musgrave, with OZ Minerals noting benefits in reducing power consumption by around 20%, supporting higher flotation recovery and the operational flexibility to be ramped up and down. The latter is particularly important given OZ Minerals plans to make West Musgrave one of the largest fully off-grid, hybrid renewable powered mines in the world with an initial circa-80% renewable penetration rate, powered off wind and solar energy with a battery energy storage system in tow.

Dr Thomas Loesche, Managing Shareholder and owner of LOESCHE, said: “As a mining engineer with a degree in mineral processing, it has always been a vision of mine to develop dry-comminution technologies that enable better sorting efficiencies, reduced power and consumables. We are very pleased to be involved in such an important project. OZ Minerals is breaking new ground and proving that sustainability does not stand in the way of project development, but rather makes such projects possible.”

The application of the VRM technology has been peer reviewed for the project by independent experts and has been de-risked through pilot test work campaigns, OZ Minerals added.

Further upstream of the VRMs, OZ Minerals has stated plans to operate the mining fleet remotely from day one at West Musgrave, with the acquisition of an autonomous haulage system-enabled fleet on a leasing basis in the feasibility study outline.

OZ Minerals did not include details of the size of truck involved in the latest study, but the prefeasibility study originally released in 2020 highlighted the use of up to 25 220-t payload haul trucks.

There is also potential for these haul trucks to be electric in the future, with OZ Minerals saying its pathway is aligned with the potential transition to an electric haulage fleet at the first engine change out.

While OZ Minerals says it has the capacity to fully fund West Musgrave with a new A$1.2 billion syndicated facility supported by key relationship banks awaiting final binding agreements, it said potential strategic partnership in the project via a minority interest was being explored.

The next steps for the project involves award of contracts with major partners – it has already signed up GR Engineering to build the process plant; increasing the capacity of its camp to around 250 beds by early 2023; mobilisation of equipment to commence earthworks; finalise the power purchasing agreement and Living Hub – the latter of which has 350 permanent ensuite rooms; and increasing its owner team resources in line with the plan, including operational-readiness personnel.

Metso Outotec aims for higher capacities as ore sorting offering develops

The entry of Metso Outotec into the bulk ore sorting space arguably heralds the beginning of a new stage of market adoption – one that is focused on significant throughputs across multiple commodities.

In May, the mining OEM announced a collaboration agreement with Malvern Panalytical, a company that has been using Pulsed Fast Thermal Neutron Activation (PFTNA) technology onboard its cross-belt analysers to analyse and help divert ore and waste streams with improved accuracy.

Up until that announcement, Metso Outotec had mooted the benefits of bulk ore sorting in several industry articles. On the smaller scale, it had also renewed its ongoing agreement with particle ore sorting major player, TOMRA.

The company said its agreement with Malvern Panalytical, which has previously worked on bulk sorting projects with Anglo American among others, brought together its expertise in crushing and bulk material handling solutions with Malvern Panalytical’s ore analysis nous to offer an industry-leading portfolio of solutions for bulk ore sorting.

Rashmi Kasat, Vice President, Digital technologies at Metso Outotec, said in the press release that the pact with Malvern Panalytical would allow the company to meet the industry’s increasing sustainability and resource efficiency needs in an enhanced way in the early comminution stage.

“Sensor-based bulk ore sorting and data-driven analysis upgrades low grade or waste stockpiles, making them economical and far less energy-intensive to treat,” she said.

There are obvious positive benefits up- and down-stream of sensor-based sorting too, with the ability to carry out a low-cost mining method (upstream), as well as reduced capital investments in downstream equipment already shown with early-adopter projects.

That is before considering the relative energy and water reduction requirements that come with applying the technology.

Kasat later told IM that the company’s existing portfolio of material handling modules, crushing stations or mobile crushing equipment, as well as bulk material handling solutions, already “complement” the concept of bulk sorting.

“The addition of the bulk sensor is easily achieved,” she clarified. “The diversion mechanism will be included as well to be able to offer the whole plant out of one hand.”

With crushing stations – at least in the in-pit crushing and conveying (IPCC) space – that can go up to 15,000 t/h (see the company’s Foresight™ semi-mobile primary gyratory station), the prospect of Metso Outotec making a concerted effort to get into the bulk ore sorting space bodes well for the rising throughputs of projects.

NextOre recently claimed it had commissioned the world’s largest bulk ore sorting system at First Quantum Minerals’ Kansanshi copper mine in Zambia. This installation, which uses the company’s magnetic resonance technology, comes in at a 2,800 t/h-rated capacity.

Scantech, meanwhile, recently confirmed it has a GEOSCAN GOLD installation using prompt gamma neutron activation analysis technology for bulk sensing/sorting up and running that uses a diversion system at conveyed flow rates of more than 6,000 t/h.

Kasat, without naming a range, confirmed Metso Outotec was targeting “higher capacities” in line with the sensors available on the market. She also clarified that the agreement with Malvern Panalytical was “non-exclusive”.

“We will choose all our sensor/analyser partners strategically,” she explained. “Malvern Panalytical has a leading position and history in this field with proven technology for ore sensing. We will leverage our and their Tier 1 position in the industry for our bulk ore sorting offering.”

Malvern Panalytical uses Pulsed Fast Thermal Neutron Activation technology onboard its cross-belt analysers to analyse and help divert ore and waste streams with improved accuracy

As the type of sensor to be employed varies based on several factors including mineralogy, plant capacity, application of bulk ore sorting, etc, Metso Outotec will identify the right partners for the right need, she explained.

The major constraints for these sensors are often measurement times and sensor penetration, according to Kasat.

“There are very few sensors out there that can do sensing of a 500-mm-deep bed of rock on a conveyor belt, moving at 5-6 m/s,” she said. “But our current and future prospective partners are working on developing the technologies to reduce measurement times without compromising the accuracy of measurement.”

The mining OEM is looking to, in most cases, provide ‘plug and play’ flowsheets for bulk ore sorting and then carry out the required customisation per sensor.

This plan reinforces Kasat’s assertion that there is no ‘one-size-fits-all’ concept in bulk ore sorting applications.

For new projects, the process could see the company start with metallurgical testing, progress to mobile/fixed pilot plants in the “backyard” to test the accuracy of the sensors for the given application, and then find the right solution for the customer’s use case.

Renato Verdejo, Business Development Lead for Bulk Ore Sorting at Metso Outotec, added: “For existing plants, we will install the sensor over the belt conveyor and analyse the results after selecting the right sensor for this sorting application.”

Metso Outotec intends to focus on major commodities like copper, iron, nickel and gold, among others, with applications such as waste/ore sorting, low grade re-crushing and beneficiation process optimisation.

Within this wide remit – and in line with its non-exclusive agreements with Malvern Panalytical and TOMRA – the company is also considering the combination of both bulk and particle sorting in flowsheet designs.

Metso Outotec, in 2021, renewed its ongoing agreement with particle ore sorting major player, TOMRA

“The combination of the superior throughput of a bulk application with the selectivity of particle sorting in a rougher-scavenger setup is something that can bring sorting to high volume mines in the future,” Kasat said.

“Plant concepts and flowsheets have already been conceptualised and we expect the first deliveries to be in pilot stations to test the sensors on site,” she added, saying that the tonnage requirements for bulk ore sorting sensor validation meant a bulk sensor would have to be piloted in the field to get statistically meaningful data about the properties of the deposit.

Metso Outotec’s crushing system offering will form the “base” for these solutions, with ore sorting optionality available to all customers, she said.

This sensor-based optionality also overlaps with another in-demand part of Metso Outotec’s business: IPCC.

The company’s dedicated team in Germany are responsible for this area, developing projects backed by comprehensive studies.

They – like most of the industry – are aware of the potential application for sensor-based ore sorting in IPCC projects.

Markus Dammers, Senior Engineer of Mine Planning for Metso Outotec and one of the team members in Germany, said there were applications for both bulk and particle sorting in IPCC applications, with the former likely integrated after primary crushing and the latter after secondary/tertiary crushing.

“Bulk ore sorting in an IPCC application should be integrated after primary crushing in order to recover marginal material determined as waste in the block model, or reject waste from the ore stream,” he said.

Bulk ore sorting in an IPCC application should be integrated after primary crushing in order to recover marginal material determined as waste in the block model, or reject waste from the ore stream, according to Markus Dammers

If integrated after secondary or tertiary crushing, it becomes less effective, with the ore’s heterogeneity decreasing every time the ore is rehandled, transferred, crushed, blended, etc.

“In this manner one can take advantage of the natural variability in the deposit, rather than blending it out, with bulk ore sorting,” he said.

After secondary and tertiary crushing, particle sorting may be applied as a “standalone or subsequent ‘cleaner’ process step”, he added.

With Metso Outotec open to the inclusion of ore sorting in fully-mobile, semi-mobile and stationary crushing stations within an IPCC context, the company has many potential customers – existing and new – out there.

And that is just in IPCC applications.

The company also has hundreds of crushing stations on fixed plant installations that could represent potential sorting opportunities.

Metso Outotec, on top of this massive install base, has a few advantages over traditional ore sorting vendors in that it understands the plant that goes around the analysis and diversion process associated with ore sorting; knows how important uptime is to its customers; and, through sophisticated modelling, realises what impact changes in the flowsheet will have up- and down-stream of such equipment.

“The key point here is to have all the equipment to handle and process the ore to feed the sorter and, later, having the technology to divert the material and retain the availability of the plant without changes,” Kasat said.

Energised by its Planet Positive aims of responding to the sustainability requirements of its customers in the fields of energy or water efficiency, emissions, circularity and safety, the company is now ready to flex its processing plant muscles to increase the industry’s adoption of bulk and particle sorting technology.

Martin Engineering air cannon tech keeps the fines flowing at Lundin’s Eagle mine

Martin Engineering, a leader in industrial bulk handling, has helped Lundin Mining’s Eagle Mine in Michigan’s Upper Peninsula with clogging and downtime issues, resolving these problems and improving material flow with powerful and compact air cannon technology.

Martin Engineering installed the cannons in a chute carrying damp fines through the refining process at Eagle, with the cannons mitigating blockages and facilitating the movement of material. The result was improved safety, reduced labour costs, greater production, less downtime and a calculated circa-1,000% saving to the cost of operation over existing solutions.

“Safety is a top priority for us,” Ted Lakomowski, Lead Reliability Technician at Eagle Mine, said. “When we experienced clogging and downtime at the processing mill, our crew naturally swung into action to resolve it, but we immediately sought a safer long-term solution.”

Eagle Mine is the only primary nickel mine in the USA, producing 1.5% of the world’s total nickel production. The company extracts approximately 2,000 t/d from the underground nickel-copper mine using a bench-and-fill stoping process. Ore from the mine is stored in a covered coarse stockpile facility prior to transport to the Humboldt Mill. A former iron ore processing plant, the Humboldt facility’s three-stage crushing circuit reduces the material to 3/8 in-minus (9.5 mm-minus), then a single stage ball mill grinds it further and it is mixed into a slurry.

To liberate the nickel and other minerals from the waste materials, a refining process of selective flotation is used. During the crushing process, a mesh screen separates the fines from the remaining aggregate, which are fed back through the process. Fines that pass through a screen fall into a wide-mouthed hopper, leading to a chute that narrows to approximately 2.5-m wide by 0.6-m high and – after a dead drop of several feet – slopes in a circa-45º of decline. This slope slowed the descent of the fine material for a low impact and centred discharge onto a conveyor belt leading to the ore bins. Material buildup began at the hopper and at the discharge slope, but could also occur at virtually any point, blocking the chute, according to Martin Engineering.

Such accumulation would stop the entire crushing process approximately three-to-four times per shift for as long as an hour, blocking input of material all the way back to the ore storage area. Workers attacked the clog with 4.5-m long air lances from the top of the hopper and bottom of the chute. The method used a tremendous amount of compressed air and diverted manpower from other essential duties. Moreover, air lances caused excessive splash-back of wet material, which was extremely messy and potentially hazardous.

Eagle first installed a polymer lining in the chute. Offering a low coefficient of friction, the lining was bolted to the chute wall and acted like a smooth slide for the material to ride down. Less effective against the adherent qualities of the material than hoped, Eagle next installed pneumatic vibrators onto the vessel wall, intended to agitate the adhered material and promote its descent down the chute slope. But the fact that the polymer lining was bolted to the vessel caused it to dampen the vibration of the units, limiting the force to only the impact zone and not much farther.

“We were forced to default back to air lances, but kept on looking for a better solution,” Lakomowski explained. “Having worked with Martin Engineering in the past, we asked them to come in, examine the issue and offer a safe, effective and affordable solution.”

Lakomowski advocated for the initial installation of five 35 litre Martin® Hurricane Air Cannons, followed by two more placed in essential spots in the chute. One unit was placed at the area where material discharged into the hopper, two others were positioned at the hopper slope where the most accumulation was observed and two more were placed along the drop chute. All of the tanks were accompanied by a 101 mm pipe assembly ending in fan jet nozzles.

Offering more force output than designs double their size with considerably less air consumption, the compact air cannon tanks measure only 406 mm in diameter 633-mm long, weighing 35 kg each, Martin Engineering says. The units fire a shot of air at up to 120 psi (8.27 bar) through the pipe assembly to a fan jet nozzle. The nozzle spreads the air stream 304 mm at the exit point, distributing the blast pattern across the surface of the wall.

Operating on a regular firing schedule of every 1-10 minutes – readjusted for production volume, time of year and moisture level – revealed the seven-cannon configuration reduced clogging issues and downtime, according to the company. This significantly lowered the risk to operators and reduced the cost of operation.

“When I did the cost assessment, I was surprised to discover that there was a 1,000% compressed air savings in using the air cannons over the air lances,” Lakomowski said. “It’s a significantly lower effect on our system than initially predicted, and managers are very happy about that.”

The project also improved safety, as workers spent less time diverted from other assignments to use air lances or create vibration by beating on the vessel walls, Martin Engineering said. By being able to perform maintenance on wear parts like valves from the outside of the cannon without tank removal, upkeep can be safely performed by a single technician with no heavy lifting involved, it added.

“Just from a safety aspect, this solution has paid for itself,” Lakomowski concluded. “The Martin Engineering team was easy to work with, and they were cognisant of our budget restrictions. Overall, this was a successful project.”

Gradiant concentrating its mining proposition

There are plenty of mining applications one can see Boston, Massachusetts-based Gradiant’s end-to-end water technology solutions serving.

A spinout of the Massachusetts Institute of Technology, the company calls itself the “experts” of industrial water, water reuse, minimum liquid discharge (MLD) and zero liquid discharge (ZLD), and resource recovery of metals and minerals.

That is a big remit, hence the reason why it caters to at least nine industries on a global basis in mission-critical water operations, with over 70% of its clients being Fortune 100 companies in the world’s essential industries.

Mining companies have historically been wary of suppliers that serve a variety of industries, believing their needs rarely cross over with the requirements of other industries. Gradiant believes it is different in that its solutions incorporate not only the hardware and software to fine-tune water technologies, but also the artificial intelligence (AI) to ensure the tools being used are effective regardless of the inputs.

This includes the RO Infinity™ (ROI™) platform of membrane-based solutions for complex water and wastewater challenges, which combine Gradiant’s patented counterflow reverse osmosis (CFRO) technology with reverse osmosis and low-pressure membrane processes. ROI solutions enable customers around the world to achieve sustainability goals to reduce their water and carbon footprint, the company says.

This platform is complemented with AI-backed SmartOps™, an integrated digital platform for asset performance management to optimise and predict plant operations using historical and real-time process data, resulting in performance and cost efficiencies.

Prakash Govindan, Co-Founder and COO of the company, says most water solutions on the market are built for consistent liquid/solid feeds and work effectively when the input is in accordance with these specifications. When the feed changes, they often become ineffective, needing to be updated or changed out, which costs money and impacts the various processes on either side of the water treatment section.

“The machine-learning algorithms we use – neural networks and time-series algorithms – ensure we consistently optimise the operation of our solutions,” Govindan told IM. “These tools make sure we always use the right performance metrics and don’t lose efficiency in the face of variability.”

The algorithms cannot change the hardware built into the water treatment plant, but it can, for instance, change the speed of the pumps or blowers. “We call it balancing, which is all part of our IP portfolio,” Govindan said.

SmartOps is an integrated digital platform for asset performance management to optimise and predict plant operations using historical and real-time process data

For mining companies looking to employ water treatment tools at their operations, this results in Gradiant’s technology being able to concentrate metals to a higher degree than any other solution on the market, according to Govindan.

“We can concentrate an aqueous solution to the point where you can produce a solid material that miners can then process,” he said.

Considering desalination applications represent a significant portion of the company’s work to this point – through its CFRO process – the mining sector has already provided some wins.

The CFRO process enables remote inland desalination and water reuse that was not previously possible due to a lack of viable brine management solutions, according to Gradiant, concentrating brines to saturation for disposal or crystallisation while producing a purified product water stream for beneficial reuse.

One significant nickel miner in Australia with a brine stream is using this solution to recover large amounts of concentrate it can feed through to its captive processing plant to produce an end-use product.

“Gradiant’s technologies enable clients to recover more than 50% of the nickel and cobalt from leached brine – this stream would have otherwise been wasted without our solutions,” Gradiant said. “Overall, this was a client benefit of about 20% increase in nickel and cobalt production across the entire operation.”

When considered together with the energy savings (75%), freshwater savings (25%) and environmental benefits, Gradiant continues to see high interest from miners around the world to adopt its solutions, it says.

That is before even factoring in the other complementary benefits that come with using SmartOps.

“All our products benefit from in-built sensors that not only allow us to update the operating parameters based on the detected materials, but also carry out scheduled maintenance on the hardware using these algorithms,” Govindan said. “This allows us to carry out 30-40% less service intervals than many conventional suppliers as we only take the solution out of operation based on what the data is telling us.

“Not only this, but we also have complete oversight of these parameters from remote locations, meaning you can monitor the systems from remote operating centres and not remain on site after installation.”

With mines getting more remote and hiring local employees getting even harder with the well-documented skills shortages, Gradiant feels its solutions will continue to win miners over.

Copa receives second major contract at Horizonte’s Araguaia nickel project

Horizonte Minerals has awarded the industrial civil works contract for the construction of its 100%-owned Araguaia nickel project, in Brazil, to Companhia Paranaense de Construção S.A. (Copa).

Copa is a leading Brazilian construction company with extensive experience in mining projects and civil infrastructure, according to Horizonte. It was also awarded the earthworks services contract at the project earlier this year, demonstrating a safe and reliable operating performance at the project to date, with a track record of creating employment opportunities for local community members, Horizonte said. All its contracted services have been delivered ahead of schedule.

Copa’s track record is complemented by its extensive experience in delivering civil construction projects for several large mining and industrial clients across Brazil. These projects range from roads, viaducts, hydroelectric power plants, ports, dams and industrial plants. In total the company has installed a portfolio of more than 2.5 billion cu.m of concrete throughout Brazil and all with the requisite quality management certification, Horizonte says.

The award of the industrial civil works contract is another important step in the construction of Araguaia. The scope of the contract incorporates the supply and installation of the process plant foundations and related civil works for the supporting infrastructure.

The contract scope has been designed to leverage Copa’s reduced mobilisation requirements and familiarity with the project. This will assist to accelerate the installation of the foundations for the furnace allowing commencement of furnace shell installation during the December quarter, Horizonte says.

The civils package will also see Copa undertaking the installation of all engineered and concrete structures for the processing facility, including piling, structural foundations, concrete slabs and bolted connections to enable process equipment to be directly installed.

Jeremy Martin, CEO of Horizonte, said: “The extension of our relationship with Copa, as a partner in the development of Araguaia, is another key milestone in the project’s construction schedule. With Copa’s strong track record of successfully delivering infrastructure and mining projects across Brazil, as well as the safe and effective delivery of our earthworks contract at Araguaia, the award of this contract enables us to continue Araguaia’s progress with confidence.”

The Araguaia project comprises an open-pit nickel laterite mining operation that delivers ore from a number of pits to a central rotary kiln electric furnace (RKEF) metallurgical processing facility. The metallurgical process comprises a single line RKEF to extract FeNi from the ore. After an initial ramp-up period, the plant will reach a full capacity of approximately 900,000 t/y of dry ore feed to produce 52,000 t of ferronickel, in turn containing 14,500 t/y of nickel. The FeNi product will be transported by road to the port of Vila do Conde in the north of the State for sale to overseas customers.

OZ Minerals turns down BHP’s A$25/share cash offer

OZ Minerals says it has rejected an unsolicited, conditional and non-binding indicative proposal from BHP to acquire all shares in the company for A$25/share ($17.3/share) in cash, valuing the company at an reported A$8.34 billion.

Having assessed this proposal, which represents a 13.1% premium to the volume weighted average price (VWAP) of OZ’s share price for the six months prior, the Board has unanimously determined that the offer significantly undervalues OZ Minerals and, as such, is not in the best interests of shareholders.

For its part, BHP points out in a separate press release that the consideration represents an “attractive premium” of 32.1% to OZ Minerals’ closing price of A$18.92/share on August 5 and 41.4% to OZ Minerals’ 30-day VWAP of A$17.67/share up to and including August 5.

OZ Minerals says the proposal is subject to a number of conditions including:

  • The completion of extensive financial, legal, technical and operational due diligence over a proposed six-week timeframe;
  • Various financial assumptions;
  • A unanimous recommendation of the OZ Minerals Board; and
  • Entry into a scheme implementation agreement subject to a range of conditions including no material adverse change, regulatory, shareholder and court approvals and conduct of business restrictions.

OZ Minerals says the Board has been advised by BHP that it has accumulated an interest in OZ Minerals shares via derivative instruments amounting to an interest of less than 5%.

OZ Minerals Managing Director and Chief Executive Officer, Andrew Cole, said: “We have a unique set of copper and nickel assets, all with strong long-term growth potential in quality locations. We are mining minerals that are in strong demand particularly for the global electrification and decarbonisation thematic and we have a long-life resource and reserve base. We do not consider the proposal from BHP sufficiently recognises these attributes.”

In coming to its decision, OZ Minerals says the Board considered that the proposal does not adequately compensate shareholders for:

  • The unique nature of OZ Minerals’ core business which represents a high-quality portfolio of copper and nickel assets, located in a Tier-1 mining jurisdiction with long mine lives, first quartile cost positioning and extensive strategic optionality;
  • The unique investment proposition which OZ Minerals provides as the only primary copper company in the ASX 100;
  • The low carbon intensity of OZ Minerals’ assets relative to its peers with a defined and market- leading plan for further decarbonisation to meet our target of net zero Scope 1 and 2 operational emissions by 2030;
  • The high-quality nature of OZ Minerals’ growth projects which include the West Musgrave project (final investment decision scheduled for H2 2022), the Carrapateena Block Cave and the Prominent Hill Extension which together are expected to generate significant production growth over the next five years;
  • The strong long-term outlook for both the copper and nickel markets underpinned by increasing geological scarcity, global electrification and accelerating decarbonisation, to which OZ Minerals is highly leveraged; and
  • The strong and consistent returns that the OZ Minerals management team has delivered with a total shareholder return of circa-145% over the past five years.

In addition to the above, OZ Minerals would deliver significant synergies and other benefits to BHP which the Board considers are not reflected in the value of BHP’s indicative proposal.

Among there are the operational synergies in both South Australia (between Olympic Dam, Carrapateena and Prominent Hill) and in Western Australia (between Nickel West and West Musgrave).

BHP says the cash offer it has made would deliver immediate value to OZ Minerals shareholders and de-risk any value which may (or may not) eventually be reflected in the company’s share price.

BHP CEO, Mike Henry, said: “Our proposal represents compelling value and certainty for OZ Minerals shareholders in the face of a deteriorating external environment and increased OZ Minerals operational- and growth-related funding challenges.

“We are disappointed that the Board of OZ Minerals has indicated that it is not willing to entertain our compelling offer or provide us with access to due diligence in relation to our proposal.”

FLSmidth, Metso Outotec, UHT and Inteco awarded Horizonte Araguaia nickel work

Horizonte Minerals says it has awarded all major and long-lead-time process plant equipment contracts for its flagship Araguaia nickel project in Brazil, with FLSmidth, Metso Outotec, Uvån Hagfors Teknologi AB (UHT) and Inteco Melting and Casting Technologies GMBH named as recipients.

Following completion of the competitive tender processes and detailed negotiations, the company has now secured equipment supply and technical support services for the balance of the Araguaia process flowsheet from these leading suppliers, it said. This is in line with the strategy employed for the award of the furnace contract to Hatch Ltd earlier this year.

“The successful completion of these contract awards is a significant de-risking event for the project,” it said. “Importantly it provides more certainty on costs for a material portion of the overall capital expenditure and builds confidence in the project schedule by gaining commitments for the delivery of key equipment on site in the timeframe required.”

To date, the company has awarded contracts totalling $293 million (including the $135 million of process equipment noted above) on budget and on time, according to CEO Jeremy Martin.

The rotary kiln, rotary dryer and associated dust handling equipment supply contract has been awarded to FLSmidth. FLSmidth, Horizonte says, is a market-leading supplier of engineering, equipment, and service solutions, particularly to the ferronickel industry, notably to Anglo American’s Barro Alto and Vale’s Onca Puma nickel operations in Brazil. FLSmidth has a strong track record of providing equipment and technical support services, with extensive experience in processing ore with characteristics similar to Araguaia, it said.

The ore preparation equipment contract involves the provision of primary, secondary and tertiary crushing, as well as the apron feeder that feeds the dryer. A primary dust control system for the reduction and refinery furnace, in addition to the secondary dust removal system, will also be supplied. This contract has been awarded to Metso Outotec, a leader in end-to-end solutions and services for the minerals processing and metals refining industries. Metso Outotec, Horizonte says, has extensive experience in providing equipment for the mining industry, including for operations worldwide with similar processing plants. It has a substantial presence in Brazil to provide ongoing technical support.

Horizonte has also awarded a contract for the supply of metal granulation equipment to UHT and a contract for the supply of the refinery equipment package to Inteco, which will transform the crude ferronickel produced by the electric arc furnace to high grade ferronickel for sale to customers.

The Araguaia project comprises an open-pit nickel laterite mining operation that delivers ore from a number of pits to a central rotary kiln electric furnace (RKEF) metallurgical processing facility. The metallurgical process comprises a single line RKEF to extract FeNi from the ore. After an initial ramp-up period, the plant will reach a full capacity of approximately 900,000 t/y of dry ore feed to produce 52,000 t of ferronickel, in turn containing 14,500 t/y of nickel. The FeNi product will be transported by road to the port of Vila do Conde in the north of the state for sale to overseas customers.

Brazilian Nickel achieves NHP heap leaching milestone at Piauí Nickel Project

Brazilian Nickel plc has announced that, after an 18-month construction and commissioning period, continuous nickel production has begun from the Piauí Nickel Project (PNP) in Brazil.

The first nickel hydroxide product (NHP) was produced from the world’s first standalone nickel laterite heap leaching operation recently, with initial production from the PNP1000 ramping up to produce 1,400 t/y of nickel in NHP at a later date.

In 2016 and 2017, Brazilian Nickel successfully demonstrated large scale heap leaching, purification and recovery of nickel and cobalt from Piaui ore. The company has expanded the existing demonstration plant to develop the PNP1000 operation.

The annual production guidance from the PNP1000 operation for 2022 is 300 t of nickel and 3 t of cobalt. This is anticipated to grow to 1,400 t of nickel and 35 t of cobalt in 2023.

The full-scale PNP operation could produce an average of 25,000 t/y of nickel and 900 t/y of cobalt, according to the company.

Mike Oxley, Chief Executive Officer, said: “We are a producer! Although only a junior mining company with a small team and budget, we have successfully put the PNP1000 into operation. The production of nickel and cobalt at PNP1000 is a great achievement for the company. We are particularly proud to be bringing online a new stream of critical metals in this current environment where there is a growing need for a secure supply of nickel and cobalt which is required in green technologies, such as electric vehicles and solar panels.

“I would like to publicly share my enormous appreciation for the great work carried out by the team. Given the global disruptions of the last couple of years, what they have achieved is stunning and I am immensely proud of them, particularly because so many of the team are from the local project area. Through their hard work and dedication, they have shown how the simplicity of the heap leach processes can lead to rapid commissioning and start-up such that the challenge of supplying ever increasing demand for nickel to global markets can be met. Well done!”

Anne Oxley, Technical Director, added: “This is a huge step for Brazilian Nickel as we become a nickel laterite heap leach producer. Producing nickel in NHP from our low-carbon process will help the planet’s race to combat climate change. The product will feed the ever growing demand from electric vehicles.

“The knowledge and skills that have been developed over this process will be invaluable to the final delivery of the larger PNP operation. Production at PNP1000 will further develop the skills of our team and capabilities of our systems and processes.”

Hatch identifies opportunities to cut Australian tailings generation by as much as 30%

A new report from multi-disciplinary engineering, operational and development project, Hatch, estimates Australia’s mining waste can be reduced by 30% using already available technologies.

One of the biggest challenges currently facing the mining industry is managing the volume of tailings generated as minerals mining ramps up to meet the demands of the transition to renewable energy.

Undertaking an in-depth analysis to identify the technologies required to reduce or eliminate tailings of six key commodities (copper, gold, nickel, iron ore, coal and bauxite), Hatch investigated how tailings production would be impacted by applying the key technologies ‘themes’: advanced geometallurgy, ore sorting, advanced sensing and particle sorting, in-situ extraction, and preferential fracturing.

The company’s analysis revealed that technologies available today could reduce tailings by 20-30%, also identifying that, in the next 10-20 years, the integration of these technologies in future projects or expansions could provide an opportunity to reduce tailings by more than 50%.

Managing Director of Australia and Asia at Hatch, Jan Kwak (pictured), says the challenge of reducing tailings is a complex effort that is best solved utilising the innovative capacity of the entire mining supply chain.

“A balanced spread of researchers, METS (mining equipment, technology and services) companies, and operators in the mining industry are actively commercialising technologies,” he said. “Half (50%) of stakeholders identified are METS companies, whose core business is the supply of equipment and services of these technologies, indicating commercialisation is underway. This group was also present across the technologies that our analysis has shown to have higher TRLs (Technology Readiness Levels).”

The TRL ranking system measures the maturity of technologies, whereby Hatch graded technologies from zero (idea stage) to nine (commercial application).

For in-situ mining and preferential fracturing technology themes, there is a larger representation of research organisations and partnerships. This suggests collaboration is required to advance technological development, according to Hatch.

“It is vital that these stakeholders are highly engaged in the tailings reduction challenge in order to achieve the greatest cut through and introduce real change and advancement in the reduction of tailings, which will be needed to support the increase in mining activity while meeting emissions reduction targets,” added Kwak.