Tag Archives: The University of Queensland’s Sustainable Minerals Institute

Vale’s Sustainable Sand wins plaudits as miner starts construction on ‘green pig iron’ plant

Vale’s sustainability efforts are continuing to be displayed to the rest of the industry, with the major miner making a significant contribution to a report on the sustainable use of sand in mining and starting construction on a ‘green pig iron’ production facility in Brazil.

On the former, the University of Queensland, through its Sustainable Minerals Institute (SMI), and the University of Geneva, recently released a report indicating that sand from the ore production process may contribute to solving two important environmental issues by reducing sand extracted from the natural environment and the mining tailings generation. Vale contributed to the report and facilitated the sampling of its Sustainable Sand produced at the Brucutu mine in Minas Gerais for an independent analysis.

Vale’s Sustainable Sand is a co-product of iron ore processing. Based on adjustments in the operation, the sandy material, previously disposed in piles and dams, is now processed and transformed into a product, following the same quality controls as in the iron ore production. This year, Vale will allocate around 1 Mt of sand, between sales and donations, for use in civil construction and tests in pavement, among other uses.

The company came up with the process after seven years of research and investment of about BRL50 million ($8.9 million), it said last year.

The SMI report carried out by the universities, ‘Ore-sand: A potential new solution to the mining tailings and global sand sustainability crises’, investigated whether sand from ore processing, described by the term “ore-sand”, could become a sustainable source of sand and at the same time reduce the volume of tailings generated by mining.

Material characterisation results from the report indicate that the sampled material is inert and non-toxic, and can be suitable for certain applications, either on its own or as a part of a blend, such as with coarser sand, in order to meet specific grading requirements. Separating and repurposing these sand-like materials before they are added to the waste stream would not only significantly reduce the volume of waste being generated but could also create a responsible source of sand, Vale said.

The report found that, from a technical perspective, sand from iron ore operations can be a direct substitute for sand extracted from the environment in brick making, pavement, in embankments and cement manufacturing. When mixed with coarser sand and other aggregates, it can be used in the production of concrete and mortar, drainage and soil improvement, and water treatment.

The life cycle assessment of “ore-sand”, based on the case of Vale’s Sustainable Sand, also shows that this material has the potential to present lower net carbon emissions during its production when compared with sand extracted from the environment. However, to get a better idea of the potential of this reduction, it is necessary to carry out an assessment of the product’s transport stage, which was not covered in this report, Vale added.

Last week, Vale inaugurated the first road in Brazil using “ore-sand” in all four layers of the pavement. The 425-m-long road at the Cauê mine, in Itabira, will be monitored for two years with pressure, temperature, deformation and humidity sensors. Tests carried out during five years in the laboratory showed an increase in lifespan of around 50% and a cost reduction of 20% when compared with the most commonly used materials for road construction, such as sand extracted from the environment, Vale said. In addition, each kilometre of pavement can consume up to 7,000 t of tailings.

‘Green pig iron’

Earlier in the month, Vale and the Government of the State of Pará held an event to mark the beginning of the construction works of the first commercial plant of Tecnored in Brazil. Tecnored’s technology allows the production of so-called ‘green pig iron’, by replacing metallurgical coal with biomass, thus reducing carbon emissions and contributing to the decarbonisation of the steel industry.

The unit will have an initial capacity to produce 250,000 t/y of green pig iron, with the possibility of reaching 500,000 t/y in the future. The start-up is scheduled for 2025 with an estimated investment of approximately BRL1.6 billion ($342 million).

Vale’s President, Eduardo Bartolomeo, said the implementation of Tecnored represents an important step in the transformation of mining, contributing to making the process chain increasingly sustainable.

“The Tecnored project is of great importance to Vale and to the region and will bring gains in competitiveness, environmental sustainability and development for the region,” he said.

Eduardo Bartolomeo greets the Governor of Pará, Hélder Barbalho, during the launch ceremony for the Tecnored commercial plant

In the implementation phase of the project, which will work in the area of the old Ferro-Gusa Carajás, in the industrial district of the municipality, it is estimated that around 2,000 jobs will be generated at the peak of works. In the operational phase, about 400 direct and indirect jobs should be created, according to progress and engineering studies.

The Tecnored furnace is much smaller in size than a traditional steel blast furnace and is flexible in its use of raw materials, which can range from iron ore fines and steel residues to dam sludge, Vale said.

As fuel, the furnace can be fed by carbonised biomass, such as sugarcane bagasse and eucalyptus. Both are transformed into briquettes (small compact blocks) and deposited in the furnace, generating green pig iron. The furnace also allows the use of thermal coal itself as fuel. In this first instance, fossil fuels will be used to evaluate the performance of the plant, Vale explained.

Leonardo Caputo, Tecnored’s CEO, said: “Gradually, we are going to replace coal with carbonised biomass until we reach the goal of 100% biomass.”

The flexibility in the use of fuels in the furnace allows operating costs to be reduced by up to 15% compared with a traditional blast furnace, Vale claims.

Developed over the last 35 years, Tecnored’s technology also eliminates the coke furnaces and sintering processes: stages prior to the production of steel in the steel mill that are intensive in their greenhouse gas (GHG) emissions. This also reduces capital costs by up to 15%, according to Vale.

In addition, the plant is self-sustaining in terms of energy efficiency, with all the process gas reused and a portion used for energy co-generation, the company said. The slag by-product can be used as raw material in the cement industry.

Currently, Vale maintains a demonstration plant of this technology in Pindamonhangaba, with a rated capacity of 75,000 t/y, where tests were carried out to develop the technology and technical and economic feasibility.

Tecnored’s commercial plant in Marabá is part of Vale’s effort to offer its steelmaking customers technological solutions to help decarbonise their production processes.

In 2020, the company assumed the goal of reducing Scope 3 net emissions by 15% by 2035. Of this total, the company will contribute up to 25% through a high-quality products portfolio and technological solutions, including green pig iron. Today, the steel industry represents 94% of Vale’s Scope 3 emissions.

Vale also announced the goal achieving net zero Scope 1 and 2 emissions by 2050 and, to that end, it is investing between $4-6 billion, as well as committing to recover and protect another 500,000 ha of forest in Brazil.

Mining Indaba to host Innovation & Research Battlefield

A new annual event calling for innovative research proposals to address the mining industry’s toughest sustainable development challenges is coming to the Mining Indaba conference agenda this year.

On May 9 and 11, the Innovation & Research Battlefield, an event convened by Investing in African Mining Indaba (Mining Indaba), Business for Development and the Development Partner Institute (DPI Mining), will act as a high-profile platform to showcase early-stage innovations focused on this year’s challenge: Building Sustainable Post-Mining Economies, the partners said.

The event organisers intend to attract a pool of global applicants by connecting academics, researchers, the private sector, NGOs and young people with a vested interest in sustainable mining to decision makers in the sector.

DPI Mining Executive Director, Wendy Tyrrell, said: “We want the Innovation & Research Battlefield to be a catalyst for closer, more agile collaboration between the private sector, academia and the mining sector to solve critical issues facing the industry, and to bridge the gap between proposed solutions and the funding needed for their implementation.”

Business for Development CEO, Karen James, added: “It is essential we develop and test innovative solutions to the sector’s tough sustainability and development challenges against a backdrop of climate change, automation, reduced global mobility, a growing ESG agenda and rising stakeholder expectations.”

Mining Indaba Advisory Board Co-Chair and Head of Content, Tom Quinn, said: “We are thrilled to be the platform of choice for our partners, DPI Mining and Business for Development, to help launch this essential, timely and innovative event forging deep links between the worlds of academia, business and technology to ensure mining grows sustainably and helps to meet the sector’s ESG mandates.”

Ten participants, shortlisted through pre-defined evaluation criteria, will have the opportunity to pitch their research proposals to judges and attendees at Mining Indaba. The pitch can be done virtually or in person. BHP and The University of Queensland’s Sustainable Minerals Institute are the sponsors of the $28,600 prize.

The event is hosted by Sheila Khama, former CEO of De Beers Botswana and natural resources policy advisor at the World Bank and African Development Bank. The judging panel includes a representative from BHP, the University of Queensland’s Sustainable Minerals Institute, Business for Development, and DPI Mining.

Applications are open until April 6, 2022. Successful first-round applicants will be invited to pitch on 15 April. Applicants need to be affiliated with an organisation.

For more information on the Innovation & Research Battlefield and to apply, click here.

International Mining is a media sponsor of Mining Indaba

Anglo American, Glencore, Newcrest and Newmont join coarse particle recovery consortium

Researchers from The University of Queensland’s Sustainable Minerals Institute (SMI) have signed an agreement with industry partners to form a consortium to develop improved energy efficiency for mineral processing operations.

The Collaborative Consortium for Coarse Particle Processing Research will run initially for five years and tackle multidisciplinary aspects of coarse particle processing such as flotation, comminution, classification, and equipment design and process chemistry, SMI says.

It will also contribute towards global challenges such as the reduction of greenhouse gas emissions and mitigation of human-made climate change.

The processing of coarse particles is considered one of the key research areas for developing improved energy efficiency of mineral processing operations, according to SMI.

The consortium includes researchers from SMI’s Julius Kruttschnitt Minerals Research Centre (JKMRC) and representatives from Anglo American, Aeris Resources, Eriez Flotation Division, Glencore, Hudbay Minerals, Newcrest Mining and Newmont.

The program Chair is SMI Director, Professor Neville Plint (far left). JKMRC’s Associate Professor, Kym Runge (right), and Dr Liza Forbes (middle) are the Technical Directors.

Professor Plint said SMI and JKMRC have a long history of successful industry engagement.

“This consortium brings together depth and breadth of expertise and significant technical skill, and it shows the willingness of industry to work closely with university researchers to tackle complex problems and have an impact,” he said.

“The team in JKMRC have worked hard and consulted with all our industry partners to create this important forum.”

Newmont’s Director of Processing, Dr Ronel Kappes, said the company had identified coarse particle recovery (CPR) as a key enabling technology to focus on, in order to improve future processing efficiencies.

“The UQ CPR Consortium project is an important step in technology development in order to leverage future CPR applications,” Dr Kappes said.

Eriez Flotation Division’s, Dr Eric Wasmund, said the company was pleased to be a founding sponsor of the consortium.

“This consortium fits EFD’s vision to enable sustainable technology solutions through strong customer partnerships,” he said. “As demonstrated by our leading-edge HydroFloat® technology, coarse particle flotation is a key disruptive technology for improving mineral recoveries, reducing power and water consumption and producing safer tailings.”

The CPR Consortium held its first technical workshop at the end of September.