Tag Archives: Brad Pronschinske

Martin Engineering marks 50-year anniversary of world’s first low-pressure air cannon

A leader in bulk handling solutions, Martin Engineering, is marking the 50th anniversary of its invention of the world’s first low-pressure air cannon.

Air cannons have transformed material flows in bulk processing systems, eliminating problematic internal buildups and blockages. After five decades of continuous innovation, Martin Engineering says it remains at the forefront of air cannon advancements, enabling industrial plants to run more profitably, efficiently and safely than ever.

The company launched the world’s first low-pressure pneumatic air cannon – its Big Blaster® – in 1974. It was devised and developed by Carl Matson, a member of Martin’s senior team and cousin of the firm’s founder Edwin F. Peterson.

The patented technology was designed to dislodge stubborn material stuck to the inside walls of hoppers and silos by firing precisely timed bursts of compressed air to keep bulk material flowing and preventing the growth of serious build-ups and blockages.

The air cannon was originally aimed at the same quarrying applications as the Vibrolator®, the Martin-patented industrial ball vibrator on which the company’s success had been built since its inception in 1944.

By the 1980s, as Martin Engineering expanded its global presence, the Big Blaster was already being reimagined for use in high-temperature industrial applications to maintain the flow of sticky materials through the process and minimise unscheduled downtime.

Martin air cannons soon proved to be transformational for sectors such as cement, for the first time signalling an end to workers having to access the interior of preheater vessels to manually break off hefty material build-ups using a high pressure water jet – one of the most unpleasant and hazardous jobs on a cement plant.

By the 1990s Martin Engineering had developed an extreme heat and velocity version of the Big Blaster, the XHV, with an all-metal construction capable of withstanding the harshest of conditions. In the 2000s Martin became the first to introduce safer positive-pressure firing valve with its Tornado air cannon – technology that prevents unintentional firing if there’s a drop in system pressure, and also allows solenoid valves to be positioned up to 60 m from the air cannon for easier access and maintenance. Designed with safety in mind, the positive firing valve also delivers a more powerful blast.

Soon after that came the introduction of the Hurricane valve, located in the rear of the air cannon tank rather at the tank and nozzle junction, greatly improving safety and ease of maintenance. The exterior-facing design eliminates the need for removal of the tank so maintenance is a simple one-worker operation requiring only minutes for replacement.

In 2008, Martin Engineering opened its industry-leading Center for Innovation, which accelerated the company’s air cannon technology advancements including:
SMART™ Series Nozzles with multiple nozzle tips, one of which features a retractable design that extends the 360° nozzle head into the material stream only when firing, protecting it from repeated abrasions and extreme temperatures. Its clever Y-shaped assembly means the nozzle can be installed, accessed and serviced without removing the air cannon or further disruption to the vessel structure and refractory.

The Martin® Thermo Safety Shield acts as a safety barrier to allow timely and safe maintenance of air cannon systems. It protects workers from exposure to severe temperatures so that maintenance can take place safely and production stays on schedule.

Martin Engineering’s current air cannon designs are the result of the research and development in the Center for Innovation, located at the company’s headquarters in Neponset, Illinois. The center will open its doors to visitors in the Summer of 2024 as part of the 50th anniversary celebrations.

Brad Pronschinske, Martin Engineering’s Global Air Cannon Product Manager, said: “From the very beginning our air cannons were specifically designed to produce a quiet but powerful, high-velocity discharge of plant-compressed air to dislodge buildups and enhance material flow. They were developed to be capable of handling the high temperatures, harsh gases and abrasive, corrosive materials associated with heavy industries, and yet have low maintenance requirements and low costs. Since the launch of the Big Blaster 50 years ago we have continued to innovate, introducing smarter and ever more powerful air cannon systems that improve efficiency, productivity and safety.

“We’re especially proud that Martin air cannons have become so important in reducing the health and safety risks associated with clearing blockages manually – such as working in confined spaces, working at height, falling materials, and working in hot and dusty environments. Our team is always working on new developments and we’re looking forward to bringing the next generation of air cannon technologies to our customers all over the world.”

Martin Engineering on preventing accumulation in mining hoppers and chutes

Accumulation or blockages in storage systems and build-up in process vessels at mine sites can impede material movement, causing bottlenecks that interfere with equipment performance, reduces process efficiency and put a choke hold on an operation’s profitability, according to Martin Engineering.

Efficient material flow is a critical element of wet mining processes such as stoping, hydraulic mining and wet dredging, the company says. Poor material flow also raises maintenance expenses, diverting manpower from core activities and, in some cases, introducing safety risks for personnel.

“Most systems suffer from some amount of accumulation on vessel walls, which can rob plant owners of the storage systems in which they’ve invested,” Brad Pronschinske, Global Director of Air Cannons Business Group for Martin Engineering, said. “These buildups reduce material flow, decreasing the ‘live’ capacity of the vessel and the efficiency of the bulk handling system overall.”

Pronschinske said the accumulations tend to take one of several forms: arches, plugs, build-ups or “rat holes”.

He added: “If they become severe enough, flow problems can bring production to a complete stop.”

Although many plants still use manual techniques to remove buildup, the cost of labour and periodic shutdowns has led some producers to investigate more effective methods for dealing with this common production issue, according to the company.

Buildup versus throughput

Even well-designed processes can experience accumulations, which have a significant impact on output and profitability. Changes in process conditions, raw materials or weather can all influence material flow, and even small amounts of accumulation can grow into a serious blockage.

Beyond moisture content, there are many causes of raw material buildup on vessel walls, according to Martin Engineering.
Some metals contain naturally occurring magnetic properties; nearly 90% of the earth’s crust contains silica, and the sharp crystalline structure can contribute to buildup. Other factors can include the surface friction of the silo walls, the shape of the vessel, the angle of the slope and the size of the material being loaded.

Lost production is probably the most conspicuous cost of these flow problems, according to the company, but the expense can become apparent in a variety of other ways.

Shutdowns to clear the restricted flow cost valuable process time and maintenance hours, while wasting energy during re-start. Refractory walls can be worn or damaged by tools or cleaning techniques. When access is difficult, removing material blockages may also introduce safety risks for personnel. Scaffolds or ladders might be needed to reach access points, and staff can risk exposure to hot debris, dust or gases when chunks of material are released.

Many of the most common problem areas for accumulation are classified as confined spaces, requiring a special permit for workers to enter and perform work.

“The consequences of untrained or inexperienced staff entering a silo or hopper can be disastrous, including physical injury, burial and asphyxiation,” Martin Engineering says. “Disrupted material adhered to the sides of the vessel can suddenly break loose and fall on a worker. If the discharge door is in the open position, cargo can suddenly evacuate, causing unsecured workers to get caught in the flow. Cleaning vessels containing combustible dust – without proper testing, ventilation and safety measures – could even result in a deadly explosion.”

Getting professional help

“While some large facilities choose to make the capital investment to purchase their own cleaning gear to clear process equipment and storage vessels – as well as train personnel – others are finding it more sensible to schedule regular cleanings by specially-trained contractors,” Pronschinske says. “Given the costs of labour, lost time and potential risk to employees, this can often be accomplished for less than the total investment of in-house cleanouts.”

Safe, effective cleaning requires tools that work inside the silo
from the top, controlled by personnel outside

At one location, for example, the blockage was so severe in one silo that it had been out of use for years. While it took the outside contractor almost two weeks to fully evacuate the vessel, the process restored 3,500 tons (3,175 t) of storage capacity, according to the company.

At another facility, the crew was able to remove enough ‘lost’ product that the value of the recovered material actually paid for the cost of the cleaning.

“In short, regular cleaning of storage vessels can quickly turn into an economic benefit – not an expense, but rather an investment with a measurable return on investment,” the company says.

The costs of cleaning

There are a few types of equipment used for this purpose.

“One operates like an industrial-strength ‘weed whip’ rotating a set of flails against the material in the vessel,” Martin Engineering says. “This approach eliminates the need for confined space entry and hazardous cleaning techniques, typically allowing the material to be recaptured and returned to the process stream.”

The whip can be set up quickly outside the vessel, and it is portable enough to move easily around various bin sizes and shapes, according to the company. Typically lowered into the vessel from the top and then working from the bottom up to safely dislodge accumulation, the pneumatic cutting head delivers powerful cleaning action to remove buildup from walls and chutes without damaging the refractory.

Technicians lower the device all the way down through the topside opening, then start at the bottom of the buildup and work their way up, undercutting the wall accumulation as it falls by its own weight, the company explains. “In extreme cases, a ‘bin drill’ can be used to clear a 12 in (305 mm) pathway as deep as 150 ft (45 m) to start the process.”

Flow aids

Regular cleaning is one approach to keeping materials flowing freely by removing buildups from silo walls, but there are other flow aids which may reduce the need for cleaning or even eliminate it, according to Martin Engineering.

Industrial vibrators for bin & chute applications can reduce or even eliminate the need for cleaning

One method is through industrial vibrators designed for bin and chute applications.

“Electric vibrators are generally the most efficient, delivering the longest life, low maintenance and low noise,” it said. “The initial cost for an electric vibrator is higher than for pneumatic designs, but the operating cost is lower. Turbine vibrators are the most efficient and quietest of the pneumatic designs, making them well suited to applications in which low noise, high efficiency and low initial cost are desired.”

Air cannons (pictured) are another approach to maintaining good material flow, according to the company, particularly in larger vessels. Also known as an air blaster, the air cannon is a flow aid device that can be found in mining, coal handling and many other industries. Applications vary widely, from emptying bulk material storage vessels to purging boiler ash to cleaning high-temperature gas ducts.

“In the mining industry, air cannons are frequently specified to eliminate build-ups in hoppers, storage vessels, transfer chutes, bins and other production bottlenecks,” the company said. “They can also be found in mineral processing plants where metals are extracted using processes creating slurries and other wet, tacky tailings.”

Air cannon technology has been used in mining and material processing for many years, helping to improve flow and reduce maintenance, according to the company. The timed discharge of a directed air blast can prevent accumulation or blockages that reduce process efficiency and raise maintenance expenses.

In underground mines with potentially explosive dust, manual firing of cannons without the use of electrical solenoids is an option, the company says. “By facilitating flow and minimising build-up, air cannons help bulk material handlers minimise the need for process interruptions and manual labour,” Martin Engineering claims.

The two basic components of an air cannon are a fast-acting, high-flow valve and a pressure vessel (tank). The device performs work when compressed air (or some other inert gas) in the tank is suddenly released by the valve and directed through a nozzle, which is strategically positioned in the tower, duct, chute or other location. Often installed in a series and precisely sequenced for maximum effect, the network can be timed to best suit individual process conditions or material characteristics, the company says.

Pronschinske concluded: “The core message for mines and material processors is that they don’t have to put up with accumulation problems and the additional expenses they can cause. There are a number of approaches that can help resolve those issues before they turn into expensive downtime, lost material and safety hazards.”

Martin Engineering brings automation to conveyor belt maintenance game

Martin Engineering has announced a belt cleaner position indicator that monitors the blade, tracking and reporting remaining service life in conveyor and bulk material handling applications.

The Martin N2® Position Indicator (PI) monitors primary belt cleaner blades, notifying Martin Engineering service technicians and plant operations personnel when re-tensioning or replacement is required and/or when abnormal conditions occur.

The PI can be part of a new installation or directly retrofitted to existing mainframes that use the company’s replacement blades, the company said, with managers and service technicians able to quickly access information on any networked cleaner via cell phone.

“With approximately 1,000 operating systems currently in service and installations continuing daily, the technology has been embraced by bulk material handlers in a wide range of industries and applications,” Martin Engineering said.

The N2 Position Indicator was designed in-house by the engineering team at Martin’s Center for Innovation, and the firm also engineered and built the proprietary equipment used to manufacture the new devices.

Martin offers the equipment, monitoring service and batteries free of charge to qualifying customers, it said. “The company will also support the PI components and provide customer alerts without cost as needed, with mainframes and tensioners replaced free for users of Martin belt cleaner blades,” the company added.

Martin Engineering Global Marketing Director, Brad Pronschinske, said: “There are no annual maintenance fees, and no add-on charges for cell phone access. Most customers using our cleaner blades can take advantage of this technology.”

Position indicators can be mounted anywhere from 3-800 m from the cellular gateway and the robust, sealed construction means it is virtually immune from damage, according to Martin Engineering. Up to 50 units can be monitored by a single gateway connecting to the Internet, usually located at the highest point in the plant, where the cell signal is strongest. The system does not require a cellular line for each PI, instead communicating via radio frequency from each sensor to the gateway.

Operating independently of any plant communications infrastructure, the small physical size and low power requirements deliver a projected battery life of two years, according to Martin Engineering, with the self-contained model developed by Martin Engineering in order to minimise the dependency on in-plant resources. Only the gateway requires a constant 110 V power point, it said.

The company explained: “The device eliminates the need for manual inspections by giving technicians precise information, delivering critical real-time intelligence and reducing exposure to moving conveyors, improving both efficiency and safety. Maintenance planning is simplified by having detailed information available on demand, allowing service personnel to deliver and install replacement wear parts during scheduled outages.”

Alerts are also provided automatically when a blade change is required; re-tensioning is needed; a cleaner has been backed off the belt; there is an abnormal condition; a substantial change in temperature occurs; and batteries need replacement.

The PI is just one component of the company’s push to develop new and evolving technologies to improve bulk material handling and reduce the associated hazards, Martin Engineering said. It is within the same product family as Martin’s automatic tensioning system to continuously maintain optimum blade pressure without any operator intervention.

“This capability is a true enabler, bringing a number of benefits,” Pronschinske said. “Belt cleaner inspection time is basically eliminated as maintenance personnel no longer need to physically view the cleaner to determine the tension or wear status. It also reduces the time workers need to spend near the moving conveyor, helping to minimise the potential for accidents.”

Pronschinske described the innovation as a game-changer in the industry, with a positive impact on productivity, operating costs and safety. “Relying on actual operating conditions instead of human judgement to monitor blade wear and tension for optimal cleaning performance, the indicator maximises the blade’s usable surface area and reports with certainty when a blade is nearing the end of its useful life,” the company said. “Delivering instant, continuous feedback while eliminating guesswork – tracking the individual performance and status of each cleaner – the detailed history also provides a maintenance log with service dates and work performed.”

The result is an improved return on belt cleaner investments, according to Martin Engineering.

Replacement parts can be scheduled for just-in-time delivery, and installation can occur during planned downtime instead of emergency stoppages.

Pronschinske said: “By monitoring the rotation of the belt cleaner mainframe, the N2 PI helps managers plan tensioner adjustments and blade replacements during scheduled outages.”

Manufactured from a proprietary grade of polyurethane resistant to bumps, shocks and knocks, the PI device is extremely robust, according to Martin Engineering. It can handle a typical mining environment, the company says, and the device can be installed inside or outside the transfer chute. It has also been designed to operate in challenging ambient environments found at operator sites, such as handling wet and sticky materials.

“The system recognises how much rotation is acceptable before tensioner adjustment is required,” Pronschinske explained. “It allows our service technicians to know exactly when a belt cleaner needs replacement, even before the customer does. And, if excessive movement is detected on any cleaner, an alarm notice will automatically be sent to alert operators to check it immediately.”

The software tracks and displays blade status, remaining life, next scheduled tensioning, run time, wear rate, cleaner model, blade type and several other details, the company says.