Tag Archives: Mogalakwena

Anglo American to collaborate on ‘hydrogen valley’ study in South Africa

Anglo American has announced a collaboration agreement to complete a feasibility study to develop a “hydrogen valley” anchored in the platinum group metals-rich Bushveld geological area in South Africa.

Spearheaded by South Africa’s Department of Science and Innovation (DSI), the collaboration agreement also includes energy and services company ENGIE, the South African National Development Institute (SANEDI) and clean energy solutions provider Bambili Energy.

The proposed hydrogen valley will stretch approximately 835 km from Anglo American’s Mogalakwena platinum group metals (PGMs) mine (pictured) near Mokopane in Limpopo province in the north of South Africa, along the industrial and commercial corridor to Johannesburg and to the south coast at Durban.

This collaboration follows the launch in 2020 of the South African Hydrogen Society Roadmap, aimed at integrating hydrogen into the economy by capitalising on the country’s PGM resources and renewable energy potential to revitalise and decarbonise key industrial sectors. The study will be conducted by ENGIE Impact and will identify tangible opportunities to build hydrogen hubs and explore the potential for green hydrogen production and supply at scale.

Natascha Viljoen, CEO of Anglo American’s PGMs business, said: “The transition to a low carbon world is an opportunity to drive the development of cleaner technologies, create new industries and employment, and improve people’s lives. Anglo American was an early supporter of the global potential for a hydrogen economy, recognising its role in enabling the shift to greener energy and cleaner transport. Our integrated approach includes investing in new technologies, supporting entrepreneurial projects and advocating for policy frameworks that enable a supportive long-term investment environment for hydrogen to deliver that potential.”

The regional PGMs industry will be central to such a hydrogen valley, with PGMs playing an important role both in Polymer Electrolyte Membrane electrolysis used to produce hydrogen at scale and in fuel cells themselves, Anglo says.

Anglo American is already investing in renewable hydrogen production technology at its Mogalakwena PGMs mine and in the development of hydrogen-powered fuel cell mine haul trucks – the world’s largest to run on hydrogen.

Dr Phil Mjwara, DSI Director-General, said: “The Department’s hydrogen valley partnership with Anglo American, Bambili Energy and ENGIE is an example of leveraging investments made in the Hydrogen South Africa Programme to create mechanisms for the uptake of publicly financed intellectual property. The hydrogen valley is among the projects that will be implemented in partnership with the private sector to support the Platinum Valley Initiative, which is aimed at supporting small, medium and micro enterprises to take advantage of opportunities in the green economy in support of a just transition.”

The public-private partnership is aligned to the South Africa Government’s Economic Reconstruction and Recovery Plans, with science, technology and innovation playing a key role in supporting the country’s plans to revitalise its economy.

Sebastien Arbola, ENGIE Executive Vice President in charge of Thermal Generation and Energy Supply activities, said: “ENGIE is delighted to be part of the hydrogen valley study. We are keen to share our knowledge and expertise encompassing the entire hydrogen value chain to accelerate hydrogen solutions’ deployment in South Africa and beyond. We already have a demonstration project under way to supply the hydrogen for the world’s first hydrogen mining truck being developed by Anglo American at the Mogalakwena PGMs mine.”

Zanele Mavuso Mbatha, CEO Bambili Energy, said: “The initiative to develop the South African hydrogen valley and the collaboration between Bambili, Anglo American, ENGIE and the South African government is significant as it will build material public awareness, confidence and support for the hydrogen economy. This collaboration is illustrative of Bambili’s view that a public-private partnership is critical in the development of this industry in the South African economy.”

Anglo’s Quellaveco to receive the coarse particle recovery treatment

Anglo American has approved the construction of a coarse particle recovery (CPR) plant at its in-development Quellaveco copper project in Peru.

The announcement came within the company’s 2020 financial results, which showed Anglo generated underlying EBITDA of $9.8 billion and a profit attributable to equity shareholders of $2.1 billion for the year.

CPR, Anglo says, is one of many significant breakthrough technology initiatives that has the potential to increase throughput and productivity, while simultaneously reducing environmental footprint, through rejection of coarse gangue (near-worthless waste material), dry stacking of sand waste, minimising the production of traditional tailings and reducing overall water consumption.

The CPR plant signoff at Quellaveco follows a full-scale demo plant installation at the company’s El Soldado mine in Chile – which is ramping up to full capacity by mid-2021 – and the decision to construct a full-scale system at the Mogalakwena North PGM concentrator in South Africa.

The El Soldado plant used the HydroFloat™ CPR technology from Eriez’s Flotation Division. Here, a single 5 m diameter HydroFloat cell, the largest in the world, treats 100% of mill throughput, with the objective of proving the waste rejection process at full scale.

Anglo said of the Quellaveco CPR plant: “This breakthrough technology will initially allow retreatment of coarse particles from flotation tailings to improve recoveries by circa-3% on average over the life of the mine. This investment will also enable future throughput expansion which will bring a reduction in energy and water consumption per unit of production.”

The capital expenditure of the CPR project is around $130 million, with commissioning of the new plant expected in 2022. DRA Global previously carried out a feasibility study for the CPR plant at Quellaveco.

In terms of Quellaveco project progress, Anglo said today that, despite the COVID-19-related slowdown, first production was still expected in 2022. This was, in part, due to the excellent progress achieved prior to the national lockdown, and based on optimised construction and commissioning plans, Anglo said.

Key activities in 2021 include the start of pre-stripping, which will see the first greenfield use of automated hauling technology in Peru; progressing construction of the primary crusher and ore transport conveyor tunnel to the plant; completion of the 95 km freshwater pipeline that will deliver water from the water source area to the Quellaveco site; completing installation of the shells and motors for both milling lines; and completion of the tailings starter dam.

The mine, owned 60% by Anglo and 40% by Mitsubishi Corp, comes with a production blueprint of 300,000 t/y over the first 10 years of the mine.

Anglo American Platinum’s modernisation drive to continue into 2021

Anglo American Platinum says it is looking to deliver the next phase of value to its stakeholders after reporting record EBITDA for 2020 in the face of COVID-19-related disruption.

The miner, majority-owned by Anglo American, saw production drop 14% year-on-year in 2020 to 3.8 Moz (on a 100% basis) due to COVID-related stoppages. Despite this, a higher basket price for its platinum group metals saw EBITDA jump 39% to R41.6 billion ($2.8 billion) for the year.

As all its mines are now back to their full operating rates, the company was confident enough to state PGM metal in concentrate production should rise to 4.2-4.6 Moz in 2021.

Part of its pledge to deliver more value to stakeholders was related to turning 100% of its operations into fully modernised and mechanised mines by 2030. At the end of 2020, the company said 88% of its mines could be classified as fully modernised and mechanised.

There were some operational bright spots during 2020 the company flagged.

At Mogalakwena – very much the company’s flagship operation – Anglo Platinum said the South Africa mine continued its journey to deliver best-in-class performance through its P101 program.

Rope-shovel performance improved to 26 Mt in 2020, from 15 Mt in 2019, while drill penetration rates for big rigs increased from 15 m/h, to 16.7 m/h. Alongside this, the company said its Komatsu 930E truck fleet performance improved to 298 t/load in 2020, from 292 t/load in 2019.

These were contributing factors to concentrator recoveries increasing by two percentage points in 2020 over 2019.

During the next few years, the company has big plans to further improve Mogalakwena’s performance.

In 2020, the mine invested R500 million in operating and capital expenditure, which included commissioning a full-scale bulk ore sorting plant, coarse particle rejection project and development of the hydrogen-powered fuel-cell mining haul-truck (otherwise referred to as the FCEV haul truck).

First motion of the 291 t FCEV haul truck is still on track for the second half of 2021, with the company planning to roll out circa-40 such trucks from 2024.

Anglo Platinum said the bulk sorting plant (which includes a Prompt Gamma Neutron Activation Analysis and XRF sensor-based setup, pictured) campaign at the Mogalakwena operation is due to end this quarter.

The company’s hydraulic dry stacking project is only just getting started.

This project, which involves coarse gangue rejection before primary flotation for safer tailings storage facilities, is expected to see a construction start in the June quarter, followed by a campaign commencement and conclusion in the September quarter and December quarters, respectively.

On another of Anglo Platinum’s big technology breakthrough projects – coarse particle rejection for post primary milling rejection of coarse gangue before primary flotation – the company plans to start a campaign in the December quarter of this year and conclude said campaign by the end of the March quarter of 2022.

The company also has eyes on making progress underground at Mogalakwena, with a hard-rock cutting project to “increase stoping productivity and safety” set for Phase A early access works this year. This project is set to involve swarm robotics for autonomous, 24/7 self-learning underground mining, the company said.

Lastly, the company’s said the digital operational planning part of its VOXEL digital platform had gone live at Mogalakwena. VOXEL is expected to eventually connect assets, processes, and people in a new digital thread across the value chain to create a family of digital twins of the entire mining environment, the company says. Development is currently ongoing.

Looking back to 2020 performance at the Unki mine, in Zimbabwe, Anglo reflected on some more technology initiatives related to R26 million of expenditure for a digitalisation program. This included installing underground Wi-Fi infrastructure, as well as a fleet data management system to track analytics on primary production equipment. The company says these digital developments will enhance real-time data analysis, improve short-interval control and overall equipment effectiveness.

To step up mechanisation of its PGM operations at Amandelbult, Anglo American Platinum is also investing in innovation.

This includes in-stope safety technologies such as split panel layouts to allow buffer times between cycles, creating safer continuous operation and reduced employee exposure; improved roof support technology and new drilling technologies; a shift to emulsion blasting from throw blasting; and safety enhancements through fall of ground indicators, 2 t safety nets, LED lights, and winch proximity detection.

Meanwhile, at the company’s Mototolo/Der Brochen operations, it is working on developing the first lined tailings storage facility at Mareesburg in South Africa to ensure zero contamination of ground water. The three-phase approach adopted for construction of this facility will be completed this year.

Komatsu to start hydrogen development program for mining haul trucks

Mining equipment major Komatsu has made plans to leverage hydrogen power across its fleet of haul trucks, according to a report from The Nikkei.

The financial newspaper reported that the company will start its hydrogen development program in 2021, with plans to have the trucks ready for practical use by 2030.

One of Komatsu’s 291-t payload 930E haul trucks is already being setup for hydrogen power use at Anglo American Platinum’s Mogalakwena PGM mine in South Africa.

This vehicle, which is a conversion to hydrogen fuel cell and lithium battery operation, is set for first motion in the second half of the year, the mining company reaffirmed in its 2020 financial results today.

Komatsu has set a target of halving CO2 emissions from its construction and mining equipment by its 2030 financial year, compared with its 2010 financial year levels.

Anglo American could use ‘green’ hydrogen power at Queensland open-pit coal mines

Anglo American has eyes on producing ‘green’ hydrogen to power the haul fleet at not only its Mogalakwena platinum group metals mine, in South Africa, but also at least one of its open-pit coal mines in Queensland, Australia, IM has learned.

The miner is part of the Macquarie Corporate Holdings Pty Limited shortlisted application for the next stage of the Australian Renewable Energy Agency’s (ARENA) A$70 million ($49 million) hydrogen funding round, a spokesperson confirmed.

BHP is also on this short list, all of which have been invited to submit a full application for ARENA’s funding for renewable hydrogen development projects in Australia.

While it is early days for the Anglo and Macquarie decarbonisation project, the spokesperson said the company’s approach in Queensland could be like the one the miner and ENGIE are developing at Mogalakwena.

The project in South Africa involves the delivery of a new Fuel Cell Electric Vehicle (FCEV), set to be the world’s largest hydrogen powered mine truck, and the ‘green’ hydrogen generation solutions to power it.

The 300 t payload FCEV haul truck will be powered by a hydrogen Fuel Cell Module paired with a Williams Advanced Engineering scalable high-power modular lithium-ion battery system. This arrangement, which replaces the existing vehicle’s diesel engine, is controlled by a high voltage power distribution unit delivering more than 1,000 kWh of energy storage.

Nel Hydrogen Electrolyser AS, a subsidiary of Nel ASA, is to deliver a 3.5 MW electrolyser to ENGIE as part of the project, while Plug Power Inc is to build a first-of-its-kind full compression, storage, and dispensing system to service the new hydrogen-powered vehicle.

In Queensland, where there is no shortage of solar power to provide this ‘green’ hydrogen, Anglo has two open-pit coal mines – Dawson (pictured) and Capcoal – that could potentially benefit from this solution.

In response to the ARENA shortlisting announcement, Anglo American said: “Anglo American has pioneered the development of hydrogen power solutions for mining operations and we are working on a number of hydrogen projects around the world as part of our pathway to carbon-neutral operations by 2040.

“We welcome ARENA’s potential support and will continue to work on this particular project’s feasibility over the coming months.”

Applicants invited to the full application stage by ARENA will have until January 2021 to prepare their application, with the agency expecting to select the preferred projects by mid-2021. Successful projects are expected to reach financial close by late 2021 and commence construction in 2022.

All applicants may also be considered for financing from the Clean Energy Finance Corp (CEFC) under the CEFC’s A$300 million Advancing Hydrogen Fund.

Nel to provide electrolyser for Anglo American hydrogen-powered haul truck

Nel Hydrogen Electrolyser AS, a subsidiary of Nel ASA, is to deliver a 3.5 MW electrolyser to ENGIE as part of a project to deliver the world’s largest fuel cell haul truck for Anglo American.

The electrolyser, which splits water into hydrogen and oxygen using electrical energy, is scheduled to be installed during 2020, fitting in with Anglo American’s plan to complete “first motion” of the haul truck next year.

Earlier this month, Plug Power Inc confirmed it would provide a custom refuelling system for the hydrogen-powered mine haul truck, following a deal signed with ENGIE.

Henning Langås, Sales Director of Nel Hydrogen Electrolysers, said: “We are of course delighted that ENGIE has chosen our electrolyser to integrate the renewable hydrogen solution, which will fuel the truck. When scaled up, more than 100 MW of electrolyser capacity will be needed for this mine alone, representing an attractive new market opportunity.”

The ENGIE-Anglo American project involves retrofitting a mining haul truck operating at Anglo American’s Mogalakwena platinum group mine (pictured), in South Africa, to become a 100% zero-emission fuel cell electric truck, Nel said.

“Electricity for hydrogen production will partly come from local solar power and the grid, and the electrolyser capacity surpasses the daily demand of the truck, enabling storage for fuelling during night time or moments when solar radiation is poor, maximising the renewable share of the hydrogen,” it said.

“If successful, the long-term target is to convert the entire fleet of haul trucks at the mine to hydrogen, as well as at Anglo American’s other mining operations around the world.”

Plug Power on the charge for world’s largest hydrogen-powered mining truck

Plug Power Inc is to provide a custom refuelling system for the world’s largest hydrogen-powered mine haul truck, set to begin operating next year as part of a project between Anglo American and ENGIE.

Plug Power, a leading provider of hydrogen engines and fuelling solutions enabling e-mobility, was selected by ENGIE following the signing of a global partnership agreement between the two announced in September.

ENGIE is working with Anglo American to develop a renewable hydrogen production and refuelling solution to support a new hydrogen-powered haul truck that, according to Anglo, will have ‘first motion’ next year, followed by a testing and validation program at the Mogalakwena platinum group metals mine (pictured. Credit: Anglo American), in South Africa. After this point, the trucks are expected to be deployed at other Anglo American operations. All of this is part of the miner’s FutureSmart Mining program.

To support the refuelling project, Plug Power has been tasked with building a full compression, storage, and dispensing system to service the new hydrogen-powered vehicle. Plug Power’s system will be the first of its kind, and the largest refuelling system built by the company to-date, with an expected output of 1,000 kg/d, it said.

Andy Marsh, CEO of Plug Power, said: “The incredible scope of this project reaffirms not only Plug Power’s commitment to facilitating the global adoption of hydrogen as a clean energy source, but also our position as the world leader in hydrogen refuelling.

“Our partnership with ENGIE is opening the door to exciting new opportunities outside of both the US, and the material handling market, where we have continuously demonstrated our expertise.”

Concor Opencast Mining provides ‘seamless transition’ at Anglo’s Mogalakwena PGM mine

Contractor Concor Opencast Mining says it is helping Anglo American Platinum’s Mogalakwena open-pit platinum group metals (PGM) mine team, in South Africa, boost annual production.

This growth can be attributed to various optimisation efforts on site at the largest open-pit PGM mine in the world, as well as the steady performance of its Zwartfontein pit, which Concor Opencast Mining is in charge of, the contractor said.

The majority of Mogalakwena’s production originates from the Central, North and South pits, supplemented further by the nearby Zwartfontein pit. Together these deposits should deliver on Anglo American Platinum’s record-breaking production target of 1.22 Moz of PGMs for 2019, Concor said.

While the three main production pits are operated by the mine’s personnel, it relies on a contractor for the smaller Zwartfontein pit, which requires an earthmoving fleet suited to its smaller size and production targets. Despite its size, it is an important contributor to Mogalakwena’s annual performance, Concor said.

A year and nine months ago, the pit underwent a significant transition that saw Concor secure the load and haul contract from Anglo’s previous operator.

“Because the mine required a smooth changeover with minimal disruption to production, we took over most of the previous contractor’s fleet, as well as its entire workforce,” Concor Opencast Mining’s Zwartfontein contracts manager, Donald Sisiya, said.

Having completed work at Mogalakwena’s tailings storage facility in the past, Concor Opencast Mining brought to the project not only an existing relationship with the mine but its solid reputation for mining open-pit, hard-rock PGM operations in South Africa, the company said.

Sisaya continued: “Combined with our cost competitive offer, the mine placed its faith in our ability to deliver a seamless transition and then to further optimise production without disrupting day-to-day running during the changeover period.”

Concor Opencast Mining’s agreement at Zwartfontein comprises a three-year load and haul contract, as of December 1, 2017. Over this period, it must move 32.4 Mt of material and, more specifically, 12 Mt of ore and 20 Mt of waste material.

With an effective change management structure in place, Concor Opencast Mining has improved the pit’s production performance, having revised the shift structure for all plus-100 of its employees, the company said.

It has also invested significant capital into upgrading most of the old earthmoving equipment on site which had not been properly maintained, according to Concor.

“We have over recent months added three 130 ton (118 t) excavators to the pit, over and above introducing 10 new 100 t (91 t) trucks as well,” Sisiya states.

Moving forward, Concor Opencast Mining has production targets to meet by the end of the year and Sisiya is confident of achieving these: “Taking over an existing contract while ensuring minimal impact to the employees and the production targets is a success story for the company which highlights our strong capabilities in the open-cast mining space.”

Amplats set for shock-break and coarse particle recovery technology trials

Anglo American Platinum, in its June quarter results presentation, has provided further detail on a range of initiatives it is working on as part of its “P101” and FutureSmart™ initiatives.

The company has been pursuing these developments to “drive improvement in operational performance from current levels”. The P100 benchmark represents “best in class in the industry”, while P101 represents operating assets and equipment at levels beyond what is currently thought to be possible in the industry.

Amplats has previously mentioned several technologies it is working on as part of its FutureSmart development, including “coarse particle flotation, which can reduce energy intensity by over 30%; advanced fragmentation and shock-break technology at concentrators, which has the potential to also reduce energy intensity by 30%; and fine recovery of chrome and PGMs, in conjunction with bulk sorting, which can lead to a 10% increase in feed grade and recoveries”.

In the June quarter results presentation, the company said it had made some headway on many of these.

In terms of bulk sorting technologies, which majority-owner Anglo American has been using in trials at the El Soldado copper mine, in Chile, Amplats said technology evaluation was progressing at its Mogalakwena PGM mine, in South Africa.

With the shock-break technology, Amplats said it had an “evaluation unit” installed at its Baobab concentrator, also in South Africa. Amplats has access to this concentrator through an agreement it signed with Lonmin (now part of Sibanye-Stillwater) a few years ago, with the company, previously saying use of the concentrator would allow it to process excess ore and unlock value at Mogalakwena (dispatch control room pictured).

The shock-break technology Amplats refers to uses VeRo Liberator® technology from PMS GmbH. Gregor Borg from PMS told attendees at MEI’s Physical Separation conference in Falmouth, UK, in June, that on an industrial scale, Amplats had already applied two customised VeRo Liberators at its South Africa platinum operations and had ordered a third which is due to be shipped. All three were specially designed to be used in industrial‐scale pilot tests at the miners’ operations, he said.

Coming back to P101, Amplats said its Shovel Performance project was in progress at Mogalakwena. This is seeking to increase the rope shovel performance at the mine from 26 Mt/y to over 45 Mt/y.

The coarse particle recovery technology – a core part of the company’s plan to ultimately eliminate tailings dams, according to Anglo American Technical Director, Tony O’Neill – is set for trials at Amplats’ operations in 2020, the company said.

At the same time as this, there was a fine particle recovery concept study in progress, as well as a prefeasibility study on fine chrome recovery, Amplats said.

Anglo American’s FutureSmart Mining on its way to tangible technology results

“It’s clear that the pressures on us are unsustainable, whether it is around our carbon footprint, water footprint, or physical footprint, and we are always looking for different ways to push us in this future direction where our footprint will be very different.”

Tony O’Neill, Anglo American Technical Director, knows the company he works for is up against it when it comes to retaining its reputation as one of the world’s leading sustainable mining companies.

It’s clear from the company’s 2018 sustainability report – which saw it achieve a best-ever performance in terms of injuries, a cut in energy use and an increase in greenhouse gas emission savings – that Anglo is going down multiple paths to reach its goals. O’Neill, who joined the company almost six years ago, believes Anglo’s FutureSmart Mining™ programme will play a major role in confronting and overcoming many of the issues it (and the industry) is facing.

“If you look at FutureSmart Mining, at its absolute essence, it is about footprint; how do you change the footprint of mining? How do you have a mine that draws no fresh water? Mines without tailings dams? Mines that look very different?” he told IM.

“It’s getting people to believe there is a different way for mining in an industry that has, to this point, been quite traditional. It is not going to happen overnight, but I think we have a genuine vision that is, in my view, quite feasible.”

IM spoke with O’Neill and Donovan Waller, Group Head of Technology Development, this week to get to the bottom of how technology is making Anglo ever more sustainable.

IM: Could you explain how the Anglo operating model facilitates and fosters innovation within the context of FutureSmart Mining?

TO: The Anglo American operating model is the chassis that underpins everything, giving us certainty in the delivery of our work. When you have got that stability – and the lack of variability – in your business outputs, it is much easier to overlay new technologies and processes. When you then see a difference in operating or financial results, you can confirm it is down to what you have implemented, rather than the underlying processes.

I look at it a little bit like a three-legged stool: you have the operating model on one leg, the P101 benchmark-setting on another, and technology and data analytics on the third leg. They all co-exist in this system and work off each other. Without one, the stool falls over.

The operating model has given us a drumbeat of delivery, and we get the licence to innovate because of this drumbeat.

IM: Do you think FutureSmart Mining is starting to be understood and valued by investors?

TO: They’re awake to it now. I think it is still in the early stages of the story, but they can see what we are doing and the ambition behind it. Ultimately, it will result in a different investment profile, or more investors because of it, but I am not sure that it’s translated in full up to now. The recognition has been more around the general results of the company.

With all these technologies coming through – much of them driven by higher levels of data and the ability to interrogate that data – the vision we imagined way out into the future, I think, is a lot more tangible than when we started out four years ago.

IM: Out of all the tailings dam elimination work you are carrying out (around passive resistivity, fibre-optics, micro-seismic monitoring, coarse particle recovery, polymers, and dry stacking), which innovation will have an impact on Anglo’s operations in the next three-to-five years?

TO: All of them. We started out with our tailings programme in 2013; in fact, our group technical standards were re-issued at the beginning of 2014 and they are now one of the main guidelines the ICMM (International Council on Mining and Metals) uses.

Tailings dams have always been at the back end of the mining process and, in a way, the science behind them has never been part of the mainstream operation. Our view, internally for many years, is tailings dams are one of the industry’s greatest risks.

“Our view, internally for many years, is tailings dams are one of the industry’s greatest risks,” Tony O’Neill says

Ultimately our aim is to eliminate tailings dams. Period. Coarse particle flotation – getting that coarser particle size that drains much more freely – is core to that and you can see a development pathway there. For example, with some of these new flotation techniques, we now only need 1% exposure of the mineral for it to be effective. In the past, it was much higher.

When we upgraded the capability of our tailings organisation, it became clear we needed to get a lot more data off these tailings dams. About three years ago, we started putting fibre-optic sensors into the dams. We have since developed, through our exploration arm, passive resistivity seismic monitoring, which basically tells you where your water sits in the dams. And, we’re putting into Quellaveco micro-seismic measuring techniques, which will be more granular again. You can see the day coming really quickly where tailings dams are a real-time data source for mining companies.

We’re also, with our joint venture partner Debswana, building the first polymer plant in Botswana, which could have an impact on dry tailing disposal.

The thing we need to crack – both ourselves and the industry – is how to dry stack at scale. At the moment, that is still a work-in-progress, but it is doable in the long term.

IM: How is the bulk sorter you have operating at El Soldado, which is equipped with a neutron sensor, working? How has it made a difference to recoveries and grades at the operation?

TO: With the bulk sorter, we’re taking packages of tonnes rather than individual rocks to enable us to get both speed and volume. At El Soldado, we are sorting in four tonne packages. You can adapt the sorting profile by the characteristics of the orebody. We’re generally looking to sort tonnages that are less than you would put in a haul truck body or bucket.

If you step right back, in the past, most processing plants wanted to blend to get an average feed. We are going the other way. We want to use the heterogeneity of the orebody to its advantage; the less mixing we can get ahead of these sorting processes, the better it is for recoveries.

Being able to remove an orebody above the cut-off grade alongside waste tonnages and upgrade the latter has led to an effective lift in head grade. It has been enabled by new sensing technology with a particular type of neutron sensor.

What we have seen in early results has surprised us on the upside. We thought we would see a 5% uplift in head grade, but in fact we have seen about 20% – to qualify that, it’s in its early stages.

O’Neill says the bulk sorting trial at El Soldado has seen about a 20% uplift in head grade in its early stages

If you take this to its logical conclusion, you can see the day coming where you would cut the rock – no drilling and blasting – immediately sort the rock behind the machine cutting it and distribute said rock efficiently into its value in use; you don’t have stockpiles, you have plants sensing the material right through and adapting in real time to the change in mineralogy. I think there is another 3-4% increase in recovery in that whole process when we get it right.

Our sweet spot when we created FutureSmart Mining was always the orebody and processing plants, more so than automation (although that is part of the potential mix). That was different to a lot of the other players in the industry. This focus could lead to the development of different types of plants; ones that are flexible, more modular and you can plug and play.

IM: Do you see these type of neutron sensors being applied elsewhere across a mine site?

TO: Yes, through processing plants and conveyors. In fact, we’re preparing for this on conveyors right now.

What we have found with all this new technology is that, when we implement it, quite often another opportunity arrives. They end up playing off each other, and that is the context for the bulk sorting and coarse particle flotation.

IM: How have Anglo’s Open Forums played into these developments?

TO: We have held eight Open Forums on sustainability, processing, mining, exploration (two), future of work, energy and maintenance.

Out of those eight, I think we have got around 10,000 ideas from them. These forums have been specifically designed where only about a third of participants are from the mining industry, with the other two thirds coming from the best and brightest analogous industries we can tap into – automobile, oil & gas, food, construction, even Formula 1 racing and NASA.

The reality is that out of those 10,000 ideas, the success rate is about 1:1,000, but the one that makes it is quite often a game changer.

IM: Going back to the bulk sorters, am I right in thinking you plan to put these into Mogalakwena and Barro Alto too?

TO: The aim is to have them across our business. At El Soldado, the copper angle is very important. The technology – the sensing and using the data – is probably a touch more advanced in copper, but we are building one currently in our PGMs business at Mogalakwena and a bit behind that, but ready to be built, is one in nickel, yes.

In terms of our programme, you will see them spread across our business in the next, hopefully, 18 months.

IM: Where does your approach to advanced process control (APC) fit into the FutureSmart Mining platform?

TO: We want to have APC in some form across all our business by the end of this year. We have probably come from a little behind some of the other players in the industry, but we’re pushing it quite aggressively to give us the platform for data analytics. The upside we have seen just by putting the process control in so far has surprised me a bit – in a good way; power reductions, throughput, having this different level of control. All of it has been pleasing.

We spent about 12 months looking at the whole data analytics space to see how we were going to implement our solution. If you look around at the sector, everyone wants to be involved and profit share. If you add it all up, you could end up with not a lot of profitable pieces at the end. We have strategically chosen the pieces we think are important to us and our profit pool and have been happy to be a little looser on some of the non-core areas.

The other key plank to the APC is that we own the data. The reality is, in the new world, data is like a new orebody and we’re not willing to let go of that.

IM: Your Smart Energy project involving a haul truck powered on hydrogen has certainly caught the attention of the market: how did you come up with this innovation?

TO: Initially, we couldn’t make renewables work from an investment criteria perspective – it was always close, but never quite there. Donovan’s team then took an approach where they said, ‘forget the normal investment criteria. All we want to do is, make the business case wash its face.’ In doing so, it enabled them to oversize a renewable or photovoltaic energy source – the power plant – using that extra power to produce hydrogen and putting that hydrogen to use in the haulage fleet. Re-engineering the haulage fleet gave us the business outcomes we were looking for.

DW: These business cases bring you to temporary barriers. When you hit that temporary barrier, people normally stop, but what we said was, ‘OK, just assume it is not there and go forward.’ That brought the whole business case back again by looking at it differently again.

Anglo’s Smart Energy project is aiming to power a 300-t class truck with hydrogen fuel

IM: Where is this project likely to be situated within the group?

TO: We’re still not 100% fixed as the initial work will be done here (the UK). You are talking about quite specialist skills working with hydrogen.

When the system has gone past its initial testing, it will go to a site, probably in South Africa, but we are not 100% locked into that at this point.

IM: On the 12-month timeline you have given, when would you have to be on site?

TO: The infrastructure will be pre-built here in the UK. We’re effectively testing it here. In a way, the physical truck is the easy bit.

It’s going to be using a 300-t class truck. The guys have already done quite a bit of the detailed measuring and the design elements are well under way.

We’ve also taken the approach to use pre-approved technology, which Donovan can talk about.

DW: This minimises the risk on the first go and allows us to, later, tailor it. For example, if you don’t have a right sized fuel cell currently available off-the-shelf, you just use multiple standard-size fuel cells for now. Then, when you get into the final version you could tailor them into something more specific.

IM: On mechanised cutting, you recently mentioned the building of a “production-sized machine” for at least one of your mines in South Africa. Is this a variant of the Epiroc machine – the Rapid Mine Development System – you have been using at Twickenham?

TO: It’s the next generation of machines. It’s fair to say that, in the last 12 months, the technology has come to the point where we are confident it is viable.

What we’re looking for is a fundamental breakthrough where, for example, we can take the development rates up three or four times from what you would usually expect. That is what we’re chasing. It would involve some sort of pre-conditioning of the rock ahead of the cutting, but the cutting, itself, works.

For us, mechanised cutting is a real solution to some of the safety issues we have had on our plate. Regardless of whether it goes into South Africa or another underground mine, we see it as a key part of our future underground design and operation.

IM: What type of rock pre-conditioning is this likely to be?

TO: I think around the world, people are looking at electricity, microwave, laser, a whole suite of things. None of them have yet quite landed, but they all have potential.

IM: Where does haul truck automation fit into the pipeline for Anglo American?

TO: All the equipment we buy, going forward, will be autonomous-capable, which means we can run it in either format (manned or unmanned). You are then left with a number of decisions – have you got the design to retrofit automation? Is there a safety issue to be considered? Is there a weather issue to contend with? There are a whole series of gates that we’ll take it (automation projects) through.

It’s good to go back to P101 here. Where P100 is getting all of our key processes to world-class benchmarks, P101 is about establishing a new benchmark. By definition, if you get your operations to that point, the gap between that manned performance and autonomous performance is not that great.

Autonomy is part of our future armoury, but when and where and how, we’ll have to wait and see. For example, we are currently looking at the option of autonomous haulage trucks at one of our open-cut mines in Queensland.

When you look at our portfolio of operations, it’s often a more complex environment than when you are just working in the wide open Pilbara.