Tag Archives: circular economy

TOMRA XRT ore sorters providing Mt Carbine with tungsten upgrade, circular economy advantages

TOMRA X-Ray Transmission (XRT) sorters are providing a game-changing solution for the EQ Resources-owned Mt Carbine mine in Queensland, Australia, reducing costs and achieving high-purity tungsten ore for follow-on processing while contributing to a circular economy by producing green aggregates for sale, the ore sorting company says.

The Mt Carbine mine, northwest of Cairns, Queensland, was acquired by EQ Resources in 2019. The company entered a joint venture with Cronimet Group to set up tungsten extraction from the mine’s large waste dump and tailings. It is also planning to operate the open pit and underground mine, of which it has full ownership.

EQ Resources management has a long-standing relationship with TOMRA, having used its sorters with success on a variety of projects since 2011, TOMRA says. Based on this experience, the company turned to TOMRA once again for the Mt Carbine mine, with test work conducted at TOMRA’s Test Center in Wedel, Germany, confirming its XRT technology would provide the solution for the project.

“We were confident it would work, but we sent a small sample for testing to make sure,” Kevin MacNeill, CEO of Mt Carbine mine, EQ Resources, said. “The advantage of TOMRA’s sorters compared to others is in the image resolution: it is able to resolve the finer inclusions in the tungsten. This high resolution gives us better recovery and more control over the sorting process.”

Mt Carbine is currently mining the 12 Mt of low-grade historical stockpiles. The ore is crushed and screened at 6 mm and 40 mm. Two TOMRA XRT sorters are used to pre-concentrate the feed in the 6-40-mm-size range before processing in the wet plant. Approximately 10% of the sorters’ feed mass is ejected as product with a recovery of tungsten of well over 90%. This means only 10% of the mass is processed in the wet plant, dramatically cutting running costs, reducing the required size of the wet plant, as well as saving water and energy, TOMRA says.

“We let the technology do the work for us and take out all the rubbish and we’re left with just the pure tungsten to send to the processing plant – and we do that very cheaply using the sorters,” MacNeill says. “One of the best things about the TOMRA XRT is the cost savings to the operation. It costs approximately A$1.5/t ($1.02/t) to sort and then it costs A$14/t for wet processing: as we take out 90% of the sortable fraction mass, we only have to process 10% of the higher grade concentrate and natural -6 mm material while maintaining recovery, so our cost benefit is obvious.

“We couldn’t afford to run this waste dump if we had to crush everything to 6mm and process it through the wet plant, it would be too low grade and costly.”

EQ Resources is also taking advantage of the TOMRA XRT sorters to create an additional revenue stream from the waste material.

MacNeil explained: “Normally you would grind the waste down to 6 mm and put it through the jigs, but, by putting it through the TOMRA sorters, we are able to keep a whole range of aggregates on the coarser size fractions. The sorters remove any material containing acid-forming sulphides and the waste rock that comes out is incredibly clean. We are, therefore, able to use it in making all kinds of different quarry products – from road bases to concrete aggregates. It’s a perfect example of a circular economy.”

“Selling these green aggregates adds a significant portion to our business – about A$5 million a year – and that’s all because of the TOMRA sorters. In fact, we’ve probably paid for each machine from this revenue five times over.”

The TOMRA XRT sorters are delivering both environmental and business benefits to the Mt Carbine operation, to the satisfaction of MacNeill: “They’re dry, they create no water usage, they require very little power compared to what we use in the processing plant, so it’s a real advantage to us to have these, and we’re looking at purchasing a third one in the near future.

“From an environmental point of view, I think the TOMRA sorters will play a huge role in the future because of their capability of removing sulphides. If you remove sulphide before stockpiling waste rock, you will have the benefit of no acid creation and drainage – and it would reduce your footprint in your closure plans.”

Vale after ‘change agents’ to solve decarbonisation, circular economy, H&S challenges

Vale is teaming up with the MIT Professional Education, MIT Environmental Solutions Initiative, SENAI CIMATEC and start-up accelerator The Bakery to help solve challenges related to decarbonisation, the circular economy, and health and safety.

The MINE (Mining Innovation for a New Environment) program is offering 30 professionals the opportunity to help develop and build the future of mining – safer, more sustainable, and more efficient – through open innovation, Vale said.

Applications for the MINE Program 2.0 edition are being accepted from February 5.

“The MINE Program seeks to solve Vale’s strategic problems, develop people and generate a positive impact on society,” it said. “For nine months, between April and December, participants will develop solutions to solve 10 current challenges of the company in the areas of decarbonisation, circular economy, and health and safety.”

These topics were chosen due to their importance to Vale’s strategy of being recognised as a reference in safety, a leader in low-carbon mining and a company that creates and shares value. Fostering development in these fields has the potential to generate a positive impact for society, as they are relevant for everyone and not just for the company, Vale said.

Alexandre Salomão, Manager of PowerShift, a decarbonisation program at Vale, said: “MINE Program was designed to make us rethink the way we work, combining talent, technology and knowledge to solve the biggest mining challenges.”

Marcos Calderon, from Vale’s Open Innovation team, added: “Our goal is to invite the external public to contribute to overcoming global obstacles, forming agents of change capable of helping us to build the mining of the future.”

Vale is responsible for selecting the challenges, mentoring and technical monitoring of the proposed solutions, opening its operations to collaboration from external participants and financing scholarships. Faculty and researchers from the Massachusetts Institute of Technology have designed and developed the program content; SENAI CIMATEC will support and tutor the participants, while the Bakery will be responsible for accelerating the challenges.

To apply for the program it is necessary to have an agile and entrepreneurial mindset, technical knowledge in the area of the challenge, be fluent in English and have a college degree in any subject, Vale said.

“The program is looking for innovative people who know how to work collaboratively to solve problems based on new ideas and approaches,” it added. “The participants must not have any employment commitments, since they will be receiving scholarships in order to be dedicated exclusively to the program.”

The first edition of the MINE Program (pictured before the COVID-19 pandemic) was held between November 2019 and June 2020. Ten challenges were solved in the areas of digital transformation and decarbonisation. Solutions that prove to be viable in the 2.0 edition may be implemented in Vale’s operation.

TOMRA sensor-based ore sorting tech to help miners achieve circular economy

TOMRA Sorting Mining believes its sensor-based ore sorting solutions have a role to play in the new circular economy, helping miners reduce their impact on the environment while remaining profitable.

Last March, the European Commission announced its Circular Economy Action Plan as one of the main blocks of the European Green Deal. This new EU action plan promotes the idea of a circular economy and fosters sustainable processes along the entire lifecycle of products, aiming to ensure the resources used remain in use for as long as possible.

The plan focuses on the sectors that use most resources and where the potential for circularity is high, many of which rely on the mining industry for their raw materials, TOMRA says.

“Mining will play a vital role, as primary resources will continue to be needed due to the growing population and rising per capita consumption, and because it is impossible to close the loop,” the company explained. “They are also used for modern applications in energy production and high-tech products.

“In addition, the sustainable development goals that the United Nations have set up for 2030 are driving the development of green technologies that use a variety of minerals. Mining companies will have to adapt as their customers shift to a circular economy approach, and they will have a key role to play in this transition.”

The development of a circular economy in mining presents both challenges and opportunities for mining companies. It has the potential to address the shortage of mineral resources, waste of resources and environmental pollution while generating economic benefits, according to TOMRA.

“The circular-economy approach prioritises reusing materials over extracting new raw materials,” it said. “However, the need for virgin materials remains, and wherever they are used, their footprint should be as small as possible.”

In order to reduce the footprint of the products they offer, mining companies will need to find ways to maximise the efficiency of their operations and to minimise the use of energy and other inputs, while reducing waste as much as possible.

Dr Mathilde Robben, Key Account Manager at TOMRA Sorting Mining, said: “Climate change and the pursuit of sustainable energy are shaping the global economy of the future, driving the transition from a linear to a circular economy model. The mining industry is already adapting and shifting towards a Green Mining approach.

“As a large consumer of energy, water and chemicals, it is a prime example of a sector where much can be done to reduce the impact on the environment. However, it is vital that it achieves this move towards sustainable practices without losing sight of profitability.”

This is where TOMRA’s advanced sensor-based sorting technologies, using sensors such as X-ray Transmission (XRT), come into play.

Dr Robben continued: “TOMRA’s advanced sensor-based sorting technologies address the main challenges the mining industry faces today, such as declining head grades and increasingly difficult to access orebodies, rising energy and labour costs, and increased environmental liability, while providing a highly cost-effective solution for mining operations to participate in the circular economy and make the most of the new opportunities it brings.”