Tag Archives: USA

Vermeer opens 28,986 sq.m Global Parts Distribution Center

Vermeer, a manufacturer or surface mining equipment, has announced the opening of a 312,000-sq.ft (28,986 sq.m) Global Parts Distribution Center to, it says, support the important work customers and dealers are performing around the world.

Vermeer team members will package and ship parts worldwide from the facility, located on the grounds of the corporate headquarters in Iowa, USA. The Global Parts Distribution Center builds on a legacy of customer support, located at the end of the old runway where company founder Gary Vermeer once delivered parts to Vermeer customers by plane, the company said.

Tony Briggs, VP of the Vermeer Lifecycle product group, said: “Vermeer is focused on optimising this facility so we can most efficiently deliver the right part at the right time to our customers. This facility allows customer support, engineering, procurement and logistics to be co-located. They work in conjunction with our operational team members to make sure we fulfill customer and dealer expectations daily.”

The location of the Global Parts Distribution Center leverages the manufacturing capabilities of the Vermeer mile, where most Vermeer products are assembled, it says.

Briggs said: “Almost a third of the warehouse is filled with parts made by different manufacturing plants on the Vermeer mile. It is very convenient for us to be located near the manufacturing facilities that supply those parts. Ultimately, we bundle the Vermeer-manufactured parts with other parts and ship the orders around the world to take care of our customers.”

Three times more space than the previous building, the new Global Parts Distribution Center includes 23 dock doors, a warehouse management system and improved warehouse technology. This investment will help drive efficiency by centralising parts storage, Vermeer says.

Jason Andringa, Vermeer President and CEO, said: “With people at the center of everything we do, this new facility helps our team members equip dealers and support customers and that ultimately makes a real impact on their ability to get important work done.”

The Global Parts Distribution Center is the second facility Vermeer has opened in 2023. Earlier this year, the company expanded its parts manufacturing footprint in Des Moines, Iowa. That facility manufactures horizontal directional drill tooling and utility tractor attachments.

ASTERRA’s Earth observation solution pinpoints new lithium exploration targets for ACME Lithium

ASTERRA has announced that its Earth observation solution was used in collaboration with ACME Lithium Inc to locate 14 new points of interest for lithium in Fish Lake Valley, Nevada, USA.

In past uses of ASTERRA’s solution to locate lithium, it was reported that locating of the mineral was confirmed upon sampling with up to 1,418 parts per million (ppm) lithium values. This was the highest found to date on the property, according to ASTERRA. The data was based on a recent geological field review and sampling program that also confirms historical and new lithium occurrences.

“Exploration for lithium at our Fish Lake Valley project shows great potential, and as a result of the use of ASTERRA’s leading technology solutions, we can confirm that ACME has confirmed drill targets at Fish Lake Valley,” Steve Hanson, President and CEO of ACME, said. “We are moving forward to advance this program this year to discover this critically needed resource in an efficient and cost effective way.”

Elly Perets, CEO of ASTERRA, said: “ASTERRA is pleased with the continued positive results in locating lithium using our technology. This method has the potential to save the industry millions of dollars per year in exploration costs, as well as reducing significantly the footprint of exploration and impact on the environment.”

Since January of 2023, ACME and ASTERRA have collaborated under a teaming agreement to use ASTERRA’s Synthetic Aperture Radar (SAR) solution to locate minerals beneath the surface of the Earth. By combining data analytics, patented algorithms, and AI, ASTERRA identifies lithium-specific targets without destruction of the environment, it says. The pilot project resulted in ACME’s highest lithium values to date and produced approximately double the likely locations of lithium above 100 ppm over traditional methods of geochemistry exploration, enabling ACME to find targeted locations of lithium while reducing exploration time and costs, it said.

Arizona Sonoran Copper hires Ausenco for Cactus and Parks/Salyer project PFS

Arizona Sonoran Copper Company says it has engaged Ausenco as lead engineer to deliver an integrated prefeasibility study (PFS) at the Cactus and Parks/Salyer project, in Arizona, USA, by early 2024.

The project, on private land, is a brownfields site with in-place infrastructure and is accessible via highway.

Additionally, the company is pleased to announce the appointment of Victor Moraila as Chief Engineer, joining as the company transitions into a US-based copper developer.

Ausenco will initially review the Cactus draft PFS and incorporate into the new re-scoped PFS, which includes Parks/Salyer. The study will explore a simple heap leach operation, targeting a potential of 50,000 tons (45,359 t) per annum of LME Grade A Copper Cathode from an on-site solvent extraction/electrowinning (SX/EW) plant.

Mineralised material will be sourced from four deposits initially, including Stockpile, Cactus East, Parks/Salyer and Cactus West.

Pending a successful metallurgical program with Rio Tinto’s Nuton Technologies, and a subsequent commercial agreement, the company and Ausenco will layer in the primary sulphides as a fifth source of mineralised material for the SX-EW plant.

Back in July, Arizona Sonoran announced it had entered into a one-year exclusivity period with Nuton™, a Rio Tinto Venture that, at its core, is a portfolio of proprietary copper leach related technologies and capability. The sulphide potential is not included in the 2021 Cactus preliminary economic assessment, which contemplated a simple heap leach and SX-EW operation over an 18-year mine life, producing an average of 28,000 t/y of LME Grade A copper cathode.

In addition to its own technical staff, Ausenco will lead a technical consultant team comprised of Samuel Engineering, AGP Mining Consultants, Stantec, MineFill Services, Clear Creek Associates and Call & Nicholas Inc.

As part of the PFS work for the project, the company and Ausenco have agreed to complete trade-off and optimisation studies and detailed mine production scenario analysis, in conjunction with AGP Mining, around the following areas:

  • Mineralised material sources from an open-pit expansion (Cactus West), underground development (Cactus East and Parks/Salyer), and the existing stockpile;
  • Ore handling, storage, and agglomeration;
  • Leach pad design and operation;
  • Acid storage, consumption and handling;
  • Solvent extraction and electro-winning;
  • Existing and new infrastructure (as required);
  • Preliminary design of access roads in coordination with mine access roads;
  • Preliminary design and location of mine support facilities; and
  • Mine and geotechnical design.

A PFS detailing the oxide and enriched mineralised material is projected to take approximately 10 months to complete, with results currently expected in the December quarter of 2023. Based on the results of current metallurgical testing with Nuton, layering in the primary sulphide material into the mine plan would extend delivery into early 2024.

George Ogilvie, ASCU President and CEO, said: “As Arizona Sonoran Copper Company emerges as a mid-tier copper developer, we are thrilled to welcome the depth of experiences of both Victor and Ausenco; each rooted in quality and value-driven projects. Looking forward, Arizona Sonoran Copper Company is bolstering the technical services team, necessary team to deliver domestically produced copper into the US copper supply chain, from the third largest independent copper deposit in the US.”

Bechtel wins EPCM contract for Lithium Americas’ Thacker Pass project

Lithium Americas says it has awarded the engineering, procurement and construction management (EPCM) contract for the construction of the Thacker Pass lithium project, in Nevada, USA, to Bechtel.

Lithium Americas has all federal and state permits needed to commence construction at Thacker Pass, a project with the potential to produce 40,000 t/y of battery-quality lithium carbonate in its first phase. The company says it anticipates a ruling on the Thacker Pass Record of Decision appeal in early 2023 and looks forward to working with Bechtel to begin construction activities shortly thereafter.

Jonathan Evans, President & CEO of Lithium Americas, said: “Awarding the EPCM contract is a significant milestone in advancing Thacker Pass towards production. Bechtel is a globally recognised and respected engineering firm with deep understanding of value-driven project delivery. This key partnership is a big step forward towards enabling North American production of battery-quality lithium carbonate to help secure our nation’s clean energy future.”

Bechtel’s Mining & Metals President, Ailie MacAdam, said: “By partnering with our customers and collaborating with contractors, suppliers and local communities, we’re able to solve some of the world’s biggest challenges and I’m excited to have this opportunity that will enable the project to responsibly unlock the resources needed for the energy transition.”

Lithium Americas and Bechtel share a commitment towards a safer, cleaner, more equitable and prosperous future, by advancing towards increased energy security and advanced decarbonisation targets, the company says. By working closely together, Lithium Americas can leverage Bechtel’s world-class team, a suite of seamless execution systems, global logistics and innovative construction strategies, it says. Bechtel will be fully integrating into the owner’s team and will be responsible for engineering, procurement and execution planning services, along with overall project management.

Nevada Gold Mines kicks off construction of 200 MWAC TS Solar Facility

Nevada Gold Mines (NGM) says it is building a 200 MWAC (Megawatt, alternating current) photovoltaic solar facility to accelerate its decarbonisation program in line with Barrick’s Greenhouse Gas Reduction Roadmap.

NGM, majority owned and operated by Barrick Gold Corporation, hosted a celebratory groundbreaking ceremony this week, marking the commencement of construction of its TS Solar Facility. The facility is adjacent to NGM’s TS Power Plant near Dunphy, Nevada.

The solar array will be constructed in a single phase with commercial production expected in the June quarter of 2024.

NGM is partnering with three Nevada-based contractors to complete the civil, solar substation and mechanical construction. Domestically-sourced steel piles are arriving on site in preparation for module foundation construction and tracker installation. At peak, the project is expected to employ approximately 250 people.

NGM Executive Managing Director, Peter Richardson, said: “At NGM, we embed the principles of partnership and sustainability into every decision we make. We continually seek opportunities to source materials and labour as close to our projects as possible. The TS Solar Facility is a great example of how we can partner with local resources on a project that not only benefits the environment, but also provides sustainable long-term social and economic benefits.”

Upon completion, the project will supply renewable energy to NGM’s operations and realise 254,000 t of CO2-equivalent emissions reduction per year, according to NGM. This will result in an 8% emission reduction from the company’s 2018 baseline.

NGM has committed to a 20% carbon reduction by 2025, which will be achieved through the TS Solar facility and the modification of NGM’s TS Power Plant, providing the ability to use cleaner burning natural gas as a fuel source.

Barrick is targeting an overall 30% reduction in emissions by 2030 with the goal of achieving net-zero by 2050.

Taseko Mines using innovation to increase production and efficiencies

The Taseko Mines story is indicative of the current environment miners find themselves in – maximise productivity to grow margins at existing operations or invest in innovative new methods of extracting critical metals that come with a reduced footprint.

The Vancouver-based company is pursuing both options at the two main assets on its books – the Gibraltar copper mine in British Columbia, Canada, and its Florence Copper project in Arizona, USA.

Gibraltar, owned 75% by Taseko, initially started up in 1972 as a 36,000 t/d operation. It was shut down in 1998 due to low copper prices before Taseko restarted it in 2004. In the years since, the company has invested over $800 million in the mine, increasing the throughput rate to 85,000 tons per day (77,111 t/d), where it’s been operating at since 2014.

The asset now sits as the second largest open-pit copper mine in Canada – with life of mine average annual production of 130 MIb (59,000 t) of copper and 2.5 MIb of molybdenum.

Stuart McDonald, President and CEO of the company, says the company continues to work on the trade-off of upping throughput – potentially past the nameplate capacity – and improving metallurgical recoveries at the operation.

This became apparent in the latest quarterly results, when Taseko reported an average daily throughput of 89,400 tons/d over the three-month period alongside “higher than normal” mining dilution.

The company believes Gibraltar can improve on both counts – mill throughput and mining dilution.

“We were optimistic coming into the new pit (Gibraltar Pit) that, based on the historical data, we could go above 85,000 tons/d as we got settled in and mined the softer ore,” McDonald told IM. “We still believe there are opportunities to go beyond that level, but, at some point, it becomes an optimisation and trade-off between throughput and recoveries.

“In our business, we’re not interested in maximising mill throughput; we’re interested in maximising copper production.”

On the dilution front, McDonald believes the problem will lessen as the mining moves to deeper benches in the Gibraltar Pit.

“As we go deeper, the ore continuity improves, so we hope the dilution effect will continue to improve too,” he said.

“The dilution rate is still not quite where we want it to be, so it’s a matter of looking at our operating practices carefully and following through a grade reconciliation process from our geological model through to assays from our blast holes, assays into the shovel bucket and all the way through to the mill.”

‘Assays into the shovel bucket’?

McDonald explained: “We do use ShovelSense® technology on two of our shovels, so that helps us assess the grade of the material in the shovel bucket.”

To this point, the company has leveraged most value from this XRF-based technology, developed by MineSense, when deployed on shovels situated in the boundaries between ore and waste. This offers the potential to reclassify material deemed to be ‘waste’ in the block model as ‘ore’ and vice versa, improving the grade of the material going to the mill and reducing processing of waste.

ShovelSense has been successful in carrying out this process with accuracy at other copper mines in British Columbia, including Teck Resources’ Highland Valley Copper operations and Copper Mountain Mining’s namesake operation.

McDonald concluded on this grade reconciliation process: “We just have to make sure we are tracing the material through all of those steps and not losing anything along the way. Gibraltar is a big earthmoving operation, so we must continue to keep the material flowing as well as look at the head grade.”

A different type of recovery

In Arizona at Florence Copper, Taseko has a different proposition on its hands.

Florence is a project that, when fully ramped up, could produce 40,000 t of high-quality copper cathode annually for the US domestic market.

It will do this by using a metal extraction and recovery method rarely seen in the copper space – in-situ recovery (ISR).

The planned ISR facility consists of an array of injection and recovery wells that will be used to inject a weak acid solution (raffinate – 99.5% water, 0.5% acid) into copper oxide ore and recover the copper-laden solution (pregnant leach solution) for processing into pure copper cathode sheets. The mine design is based on the use of five spot well patterns, with each pattern consisting of four extraction wells in a 100 ft (30.5 m) grid plus a central injection well. This mine outline and associated infrastructure comes with a modest capital expenditure figure of $230 million.

The company has been testing the ISR technology at Florence to ensure the recovery process works and the integrity of the wells remains intact.

Since acquiring Florence Copper in November 2014, Taseko has advanced the project through the permitting, construction and operating phase of the Phase 1 Production Test Facility (PTF). The PTF, a $25 million test facility, consists of 24 wells and the SX/EW plant. It commenced operations in December 2018.

Over the course of 18 months, Taseko evaluated the operational data, confirmed project economics and demonstrated the ability to produce high-quality copper cathode with stringent environmental guidelines at the PTF, the company says.

McDonald reflected: “We produced over 1 MIb [of copper] over this timeframe and then switched over from a copper production cycle into testing our ability to rinse the orebody and restore the mining area back to the permitted conditions.

“We’re proving our ability to do the mining and the reclamation, which we think is a critical de-risking step for the project.”

Over an 18-month period, Taseko produced 1 MIb from the ISR test facility at Florence

Taseko says Florence Copper is expected to have the lowest energy and greenhouse gas-intensity (GHG) of any copper producer in North America, with McDonald saying the operation’s carbon footprint will mostly be tied to the electricity consumption required.

“Our base case is to use electricity from the Arizona grid, which has a combination of renewables, nuclear and gas-fired power plants,” he said. “In the longer-term, there are opportunities at Florence to switch to completely 100% renewable sources, with the most likely candidate being solar power.

“At that point, with renewable energy powering our plant, we could be producing a copper product with close to zero carbon associated with it.”

Gibraltar has also been labelled as a “low carbon intensity operation” by Skarn Associates who, in a 2020 report, said the operation ranked in the lowest quartile compared with other copper mines throughout the world when it comes to Scope 1 and 2 emissions.

When it comes to the question of when Florence could start producing, Taseko is able to reflect on recent successful permitting activities.

In December 2020, the company received the Aquifer Protection Permit from the Arizona Department of Environmental Quality, with the only other permit required prior to construction being the Underground Injection Control (UIC) permit from the US Environmental Protection Agency (EPA).

On September 29, the EPA concluded its public comment period on the draft UIC it issued following a virtual public hearing that, according to Taseko, demonstrated strong support for the Florence Copper project among local residents, business organisations, community leaders and state-wide organisations. Taseko says it has reviewed all the submitted comments and is confident they will be fully addressed by the EPA during its review, prior to issuing the final UIC permit.

Future improvements

In tandem with its focus on permitting and construction at Florence, and upping performance at Gibraltar, the company has longer-term aims for its operations.

For instance, the inclusion of more renewables to get Florence’s copper production to carbon-neutral status could allow the company to benefit from an expected uptick in demand for a product with such credentials. If the demand side requirements for copper continue to evolve in the expected manner, it is easy to see Taseko receiving a premium for its low- or no-carbon product over the 20-year mine life.

At Gibraltar, it is also pursuing a copper cathode strategy that could lead to the re-start of its SX-EW plant. In the past, this facility processed leachate from oxide waste dumps at the operation.

“As we get into 2024, we see some additional oxide ore coming out of the Connector Pit, which gives us the opportunity to restart that leach operation and have some additional pounds coming out of the mine,” McDonald said.

Alongside this, the company is thinking about leaching other ore types at Gibraltar.

“There are new technologies coming to the market in terms of providing mines with the opportunity to leach sulphides as well as oxides,” McDonald said. “We’re in the early stages of that work, but we have lots of waste rock at the property and, if there is a potential revenue stream for it, we will look at leveraging that.”

Chemours cuts ribbon on Trail Ridge South mineral sands mine

The Chemours Company has held a ribbon cutting event for key community stakeholders and legislators to officially recognise the startup of its newest mineral sand mine, Trail Ridge South, in Florida, USA.

The new mining operation, which kicked off commissioning in August, represents a $93 million investment that will create approximately 50 new jobs in the three-county area.

The project to expand its mining operations will allow Chemours – the only domestic producer of titanium and zirconium minerals and one of only two domestic producers of rare earth minerals – to have additional access to these high-quality concentrated deposits used to produce Chemours’ Ti-Pure™ brand of titanium dioxide (TiO₂).

“A reliable supply of quality ilmenite and other minerals is critical to our ability to serve customers,” Mark Smith, Vice President of Operations for Chemours Titanium Technologies, said. “Sourcing those resources from a community we’re already so deeply connected to makes it even better – it’s a win-win. We’re incredibly proud to call Clay County home and look forward to many years of safe operations and partnership.”

Chemours’ sand mining approach uses environmentally responsible processes that have minimal impact on the environment and provides for full land reclamation when mining is complete, the company says. Constructed in approximately 13 months, the Trail Ridge South facility was designed using a modularisation concept, where modules were built off-site and then shipped to the site for assembly. Modularisation allows the facility to be more easily moved in a shorter timeframe at the end of the mining life of the site, which is anticipated to be approximately eight years.

The new mining facility took 150,000 man-hours to construct with zero recordable injuries. In addition, the site’s leaders worked closely with regulatory agencies to obtain required permits and ensure there was no adverse impact to the environment.

In addition, Trail Ridge South will incorporate Mobile Mining Units (MMUs) designed by Carrara, Queensland, Australia-headquartered Downer company Mineral Technologies that address environmental concerns with traditional dredge mining. The MMUs allow the site to have much lower emissions, reduced dust levels, and improved safety by removing conventional hauling trucks. In addition, the facility will recycle 98% of the water used in the manufacturing process – providing sustainable solutions while still meeting the Chemours’ commitment to process minerals. Trail Ridge South process water and water treatment ponds are all constructed above ground, with approximately 39 million gallons (177.3 million litres) of storage capacity.

Schlumberger’s NeoLith Energy taps Gradiant water solutions for direct lithium extraction work

Schlumberger has entered into a partnership with Gradiant to introduce a key sustainable technology into the production process for battery-grade lithium compounds, the global water solutions provider says.

As part of Schlumberger’s NeoLith Energy direct lithium extraction (DLE) and production flowsheet, Gradiant technology is being used to concentrate the lithium solution and generate fresh water – a critical element in sustainable lithium production from brine.

“Proper natural resource management is essential in mineral production, and nowhere more so than in lithium,” Gavin Rennick, President of Schlumberger’s New Energy business, said. “The unprecedented growth in demand for this critical mineral requires high-quality production without compromising sustainability. The integration of Gradiant technology into our DLE flowsheet has been key in our strategy to improve sustainability in the global lithium production industry.”

NeoLith Energy’s DLE process is in sharp contrast to conventional evaporative methods of extracting lithium, with a significantly reduced groundwater and physical footprint, according to the company. It currently has a pilot plant in Clayton Valley, Nevada, where it is putting this to the test.

Gradiant’s new solution enhances the impact of the sustainable lithium extraction process, reducing time to-market and the environmental footprint of the product, the company says. The technology enables high levels of lithium concentration in a fraction of the time required by conventional methods, while also reducing carbon emissions, energy consumption, and capital costs when compared with thermal-based technologies. This technology integration can be applied into new lithium mineral extraction and production sites, opening opportunities to untapped lithium production regions, as well as existing lithium production operations.

The collaboration will enable the lithium industry to meet surging mineral demand with a previously unattainable level of water utilisation, by simultaneously lowering the consumption of fresh water and reducing wastewater, according to Gradiant.

“We are excited to be working with Schlumberger, with whom we are pioneering a new era of sustainable mineral resource recovery,” Prakash Govindan, COO of Gradiant, said. “This is made possible by Gradiant’s deep understanding of the complex chemistry that underlies the production processes, which is then operationalised by machine learning and digital technology.

“The sustainability impact of the integrated Schlumberger process, combined with Gradiant solutions, is a game changer for the lithium production market. This strategic partnership will enable the global expansion of Gradiant’s technology in this important industry.”

SLR validates International Battery Metals’ modular, mobile lithium extraction tech

International Battery Metals Ltd says SLR International Corporation (SLR), a leader in environmental and engineering services, has completed its independent review of IBAT’s first-of-its-kind modular, mobile lithium extraction plant and verified the patented technology extracts more than 65% of available lithium from brine, effectively strips out impurities and recycles and reuses more than 94% of water.

The third-party independent review also confirmed the robust modular design of the plant and ease of transportation and relocation, which could allow access and a means to capitalise on a more diverse range of lithium-bearing brine resources globally, including smaller sites in varied terrain – such as those in the US – that are currently considered uneconomical due to the current, dominant extraction technologies, according to the company.

“The results of this independent review are a strong validation of our ground-breaking technology,” Dr John Burba, IBAT CEO, said. “IBAT’s technology is faster and more economical because it can be built, deployed and brought online in a fraction of the time, and at a fraction of the cost of traditional lithium mining models and, further, we can extract more lithium from a given resource with less environmental impact than any other available technology.”

The modular direct lithium extraction (MDLE) plant located in Lake Charles, Louisiana, has been flow testing lithium-bearing brine since early May 2022, and extracting lithium chloride (LiCl) since mid-May, making IBAT the first company globally to successfully operate a commercial-scale mobile lithium extraction plant, it says.

“From the beginning, our goal has been to create a technology that is environmentally friendlier than any technology currently in operation, while demonstrating consistently superior lithium recovery, scalability and mobility, and we believed we could do it all at a lower cost,” Dr Burba said. “We are thrilled that a team as experienced, technically skilled and globally-renowned as SLR were able to validate the technology on our first operational and commercially available plant.”

The SLR review, International Battery Metals says, assessed and confirmed:

  • The modularity and mobility of the plant design;
  • The ability to extract lithium, including:
    • Lithium extraction from the source lithium-bearing brine; and
    • Recovery of quality lithium chloride (LiCl) from the absorbent
  • Efficiency of impurity rejection;
  • Performance consistency through multiple cycles; and
  • Water recovery determined from water balance calculation.

As configured, the plant is designed to produce 5,738 t/y of LiCl, or 5,000 t/y of lithium carbonate equivalent from a brine with a lithium concentration of 1,800 parts per million (ppm) of lithium.

SLR’s operational review consisted of observation of continuous processing of a brine, containing 300 ppm of lithium, through the plant and monitoring the solution chemistry by sampling at regular intervals to determine the performance of the process equipment and the absorption media through three loading and elution (extraction with a solvent) cycles.

The brine was sourced in the US and delivered in significant volume to the plant via tanker truck. In the first phase of extraction from the raw brine, SLR found that “lithium extraction for the three cycles ranged from 72.6% Li to 87.5% Li with an average extraction of 81% Li”. In the second phase, which recovers the lithium from the absorbent material to develop commercial-grade lithium chloride and lithium carbonate, recovery “ranged from 58.3% Li to 89.0% Li with an average of 68.8% Li”.

This is significantly higher than the industry-wide average of 50% for evaporative lithium processing, based on data from the National Renewable Energy Agency (NREL), a laboratory of the US Department of Energy, the company said.

An important part of IBAT’s MDLE process is the selectivity of the absorbent, which strips out the lithium but leaves other naturally occurring elements in the brine, which allows the brine to be reintroduced into the environment, vastly reducing the overall environmental impact.

Specifically, the SLR report states that the tests: “indicate the clear selectivity of the absorption media in favour of lithium over calcium, magnesium, sodium and potassium. During the absorption cycle, the lithium concentration of the spent brine decreases from a fresh feed concentration of approximately 300 ppm Li to approximately 10 ppm Li while the concentrations of the impurity metals remain essentially unchanged.”

Thanks to its modular design, the Lake Charles plant has the potential to be expanded to produce up to 20,000 t/y of LiCl, based on the capacity and composition of the brine resource.

Rio Tinto funds initial underground development at Kennecott copper ops

Rio Tinto has approved a $55 million investment in development capital to start underground mining and expand production at its Kennecott copper operations in Utah, USA.

Underground mining will initially focus on an area known as the Lower Commercial Skarn (LCS), which will deliver a total of around 30,000 t of additional high-quality mined copper through the period to 2027 alongside open-pit operations, Rio says. The first ore is expected to be produced in early 2023, with full production in the second half of the year. It will be processed through the existing facilities at Kennecott, one of only two operating copper smelters in the US.

Kennecott holds the potential for significant and attractive underground development. The LCS is the first step towards this, with a mineral resource of 7.5 Mt at 1.9% Cu, 0.84 g/t Au, 11.26 g/t Ag and 0.015% Mo identified based on drilling and a probable reserve of 1.7 Mt at 1.9% Cu, 0.71 g/t Au, 10.07 g/t Ag and 0.044% Mo.

Underground battery-electric vehicles are currently being trialled at Kennecott to improve employee health and safety, increase productivity and reduce carbon emissions from future underground mining fleets. A battery-electric haul truck and loader supplied by Sandvik Mining and Rock Solutions – a Sandvik LH518B 18 t battery-electric LHD and a Sandvik Z50 50 t battery-electric haul truck – are being used to evaluate performance and suitability as part of underground development work.

Rio Tinto Copper Chief Executive, Bold Baatar, said: “This investment will allow us to quickly bring additional volumes of high-quality copper to the market and build our knowledge and capabilities as we evaluate larger scale underground mining at Kennecott. We are progressing a range of options for a significant resource that is yet to be developed at Kennecott, which could extend our supply of copper and other critical materials needed for electric vehicles and renewable power technologies.

“Trialling underground battery-electric vehicles is an exciting step in our work to create a safer workplace for our employees, increase the productivity of the mine and reduce emissions from our operations. We look forward to seeing their potential for deployment.”

Existing undergound infrastructure is currently being extended to enable early access to the next underground resource and undertake characterisation studies. A feasibility study to inform decisions on the next phase of underground production is expected to be completed in 2023. This will be one of several potential stages currently being investigated.

Feasibility studies are also being progressed to extend open-pit mining at Kennecott beyond 2032.