Tag Archives: OreSense

Plotlogic’s precision mining pursuit bolstered with new investor funds

Plotlogic’s mission to deliver precision mining across the world has been given a boost with A$7.5 million ($5.5 million) of funding from international investors.

Plotlogic’s primary focus is on providing accurate real-time orebody knowledge to enable greater operational efficiency and resource utilisation. Its OreSense® technology has demonstrated its ability to improve health and safety, enhance overall mining operations and deliver tangible productivity gains, according to the company.

Andrew Job, former mining manager and company Founder, recently completed his PhD in artificial intelligence-based sensing at University of Queensland, and has said “Plotlogic’s technology is an exciting development in resource knowledge and forms an important part of our growth as we digitally transform our mining businesses”.

Plotlogic’s most recent international deployment of its OreSense system was to an Anglo American project in South Africa. This comes on top of deployments at BHP and South32’s operations.

The company says it continues to increase its global footprint with imminent deployments to South America, North America, Asia and Russia.

Precision mining with the help of technologies like OreSense have the potential to increase worldwide industry value by $370 billion/y, according to Plotlogic, while reducing carbon emissions and improving the sustainability of mines over their life cycle.

To support commercial expansion, Plotlogic’s team has grown substantially, with the team currently sitting at 30 people, up from only six a year ago. It also has plans to double in size before the end of this year.

Hyperspectral imaging technology tested at Western Australia gold, iron ore mines

The University of Queensland and research partners Plotlogic Pty Ltd have developed new automated mining technology that, they say, will facilitate automation of the mining process while improving operating efficiency.

The research has shown how artificial intelligence can use scans of the mine face to almost instantly identify valuable minerals and waste rock, allowing each stage of the mining process to be planned more effectively in advance, UQ said.

Professor Ross McAree, Head of School of Mechanical and Mining Engineering from UQ, said the new technology used visible and infrared light to automatically classify materials.

“Each mineral has its own characteristic response to different wavelengths of light, so by scanning the mine face with our system we can map out the minerals present in the rock and their concentration (ore grade) almost instantaneously,” Professor McAree said.

This real-time mapping allows the mining process to be planned out before digging even starts, according to the researchers.

“Beyond this immediate efficiency gain, the enhanced ability to recognise ore grade could also underpin future autonomous mine systems,” Professor McAree said. “Machines equipped with this imaging system would be able to recognise ore grade as they were excavating it. Linked to artificial intelligence, this could allow automated machinery to operate in the mine environment, removing workers from hazardous parts of the mining process.”

Real-time ore grade classification at the mine face could also enhance mine scheduling and improve resource recovery and minimise processing waste, the researchers claim.

The project was supported by the Minerals Research Institute of Western Australia (MRIWA), with MRIWA CEO, Nicole Roocke, saying investment into research like this helped position Australia’s minerals industry at the leading edge of technology development.

“This imaging approach could prove particularly valuable where rapid extraction and consistency of ore grades could provide a competitive advantage to those leading the way,” Roocke said.

The project, which was conducted in 2018-2019, had a total grant value of A$850,850 ($653,322). In addition to MRIWA, UQ and Plotlogic, CITIC Pacific Mining and AngloGold Ashanti were also involved, hosting trials at the Sino iron ore and Tropicana gold mines, in Western Australia, respectively.

It was based off the OreSense® prototype system, developed to meet the needs of the research project, as well as offering a commercial pathway for early industry adoption of the technology.

“The prototype delivers a system capable of acquiring, processing and classifying hyperspectral data in the field and in real time, mapped to terrain and geo-referenced for integration with mine maps,” the project partners said. “In order to be the most general and applicable to all minerals, the hyperspectral imaging capabilities cover the visible to short wave infrared spectrum (400-2,500 nm).

“The surveying capabilities of the system rotate in more than one axis to perform face scans and build a 3D data-cube from two individual line-scanning hyperspectral sensors. The system spatially and spectrally fuses the data cubes from the two sensors to provide a single data-cube for an entire scene. The system also performs on-board corrections and post-processing of the hyperspectral data to support real-time ore grade classification.”

The prototype used on site during the trials consisted of a sensor head with LiDAR and hyperspectral cameras, a pan-tilt unit and a GNSS receiver among other elements (see photo above).

Plotlogic raises profile and funds with BHP Iron Ore contract

Australia-based Plotlogic and its artificial intelligence-based ore-characterisation technology has won admirers from both venture capital funds and the world’s biggest miner by market capitalisation.

The company announced this week that four of the world’s top artificial intelligence (AI) focused venture capital funds – Baidu Ventures, DCVC, 8VC, and Grids Capital – had invested in an over-subscribed angel round of funding for the company.

On top of this, Plotlogic confirmed it had signed its first contract to embed OreSense, its new AI ore characterisation technology, into an iron ore mine site of BHP’s in the Pilbara of Western Australia. This technology uses hyperspectral analysis and AI to optimise ore recovery on mine sites.

Plotlogic’s vision is to enable autonomous mining operations using precise grade control with its new AI ore-characterisation technology, bringing technology that can “see and grade ore” to optimise operations and maximise yield, it said.

“Plotlogic uses AI, computer vision and spectral analysis in real time to optimise the recovery of ore from mine sites,” the company said. “Accurate ore intelligence enables precision mining that lowers operating costs, minimises energy consumption and reduces operational uncertainty.”

Precision mining with the help of technologies like OreSense have the potential to increase worldwide industry value by $370 billion/y, according to Plotlogic, while reducing carbon emissions and improving the sustainability of mines over their life cycle.

Founder and CEO, Andrew Job, said: “The mining industry is years behind other industries in utilising big data and AI: as a result, there is a lack of fast and accurate orebody knowledge that ultimately restricts yield. With our technology we can grade every tonne of ore accurately, before it even leaves the ground – driving efficiency, sustainability, and profitability. Plotlogic can optimise the mining process from pit-to-port with pinpoint precision.”

The team behind the technology, in addition to mining engineer Job, include Dr Richard Murphy, one of the world’s leading experts in hyperspectral geology, and Dr Michael Edgar, an experienced physicist and expert in optical sensors with experience spanning NASA and CalTech. Plotlogic has more than doubled its workforce since the start of the year, plans to double again before the end of the year, and once again next year, the company said.

Plotlogic said research collaborations with the University of Queensland’s Smart Machines Group and the Mineral Research Institute of Western Australia aided its quick establishment as a leader in real time high precision ore mapping and modelling.

Job said successful field trials with BHP’s iron ore and coal divisions, AngloGold Ashanti and Citic Pacific Mining over the past three years had provided valuable learnings that improved the technology and value proposition of OreSense across the iron ore, gold and coal sectors.

“Our technology has been purpose designed and built from the ground to best meet industry requirements,” he said.

On the BHP Iron Ore contract, Job said: “The opportunity to partner with the world’s biggest mining company is instrumental to our collaborative approach in the development and implementation of new technology for the mining industry.”