Tag Archives: arsenic

Leveraging electric heat-trace cables to prevent freezing pipes and pipelines

Feeding water into a mine, the dewatering of groundwater out of it, and the recycling of used water all depend upon a network of reliable piping systems able to withstand mining’s extreme environments, whether the mine is underground or on the surface.

In remote areas such as Alaska or northwest Canada, pipes carrying water, slurry, tailings, chemicals or other liquids can be subjected to dangerously cold temperatures. Unprotected pipes can easily freeze in this cold, expand and then burst, no matter how strong the material they’re made of. A freeze can also result in ice blockages in pipes that cripple production, according to Matthew Gurreri and Kevin Green* write.

One burst or blocked pipe can bring an entire mining operation to a halt, resulting in punishing financial losses. In addition, lives can be put in jeopardy by the depressurising of fire suppression systems, for instance, or by the flooding of tunnels. Another issue is the environment. Leaks of contaminated water containing heavy metals like copper, lead and arsenic may spill into nearby waterways creating an ecological disaster. The high cost of downtime stemming from a frozen or blocked pipe can be exacerbated by a lack of on-site replacement parts. Icy roads are often impassable in winter, leaving delivery of replacement parts limited to cargo planes or sea lifts. Logistics can become extremely complicated, as well as expensive, in remote arctic locations.

Besides water, most air-filled lines operating inside or outside a mine can freeze, even at temperatures as warm as 40° F. As air pressure drops from 100 psi down to atmosphere, the compressed air, which is always at 100% humidity, super cools rapidly and can freeze up lines and seriously damage mining equipment.

The importance of preventing water pipes and air-filled lines from freezing cannot be overstated. Water is involved at every stage in production: mining, downstream processing and product conveyance. Large quantities of water are also used for cooling the cutting edges of machinery, heap leaching, dust suppression, general cleaning, fire sprinklers and fresh drinking water. Air-filled lines are needed to supply critical power to pneumatic tools and mining equipment.

Protecting pipes

Pipes installed in mining operations are made of materials appropriate to the duty required. Steel pipes are the industry standard. However, lightweight, corrosion-resistant and lower cost plastic pipes, such as HDPE and PE, are increasingly being deployed. Pipes are hung by chains from brackets typically attached to roof bolts.

Along with the threats posed by harsh weather conditions, pipes installed in mines must withstand high external loads and surges in pressure, exposure to corrosive chemicals and abrasive slurries, steam purging, caustic acids and accidental damage by moving equipment – all of which can weaken the pipe structure and make it more susceptible to bursting in a freeze. Hairline cracks could develop, causing leakage, and eventually break.

Explosion risks

Statistics from the Mine Safety and Health Administration (MSHA) indicate that mine explosions occur most often during colder months because of low barometric pressure and low humidity. In cold weather, coal dust can be dangerously suspended in dry cold atmospheres, increasing the hazard of explosion. Low barometric pressures help methane spread easily into active areas, further heightening the risk of explosion. All it takes is a spark from an electrical device, including the switching “on” and “off” of a non-rated heat-trace cable, to ignite a disaster in a classified area containing explosive dust or gases. A lower-quality, malfunctioning heat trace cable can also generate enough heat to set off an explosion in a hazardous location.

Heating cables must be certified for the hazardous location where they are installed. Period. It is extremely dangerous to trust the future of a mine and the lives of its employees to offshore heating cables that may or may not be engineered to the certifications they claim to carry.

Long-distance applications

Mining requires long pipelines and consequently, equally long heat-tracing applications both for freeze protection or for viscosity control and temperature maintenance. Measuring from a few hundred yards to several miles, long distance systems are typically custom engineered. Many variables must be taken into consideration to achieve the most reliable solution for the targeted distance, including factors like self-regulating or constant wattage, supply voltage, minimum temperature at start-up, circuit breaker amperage, pipe diameter, and wire gauge, among many others. In determining heating cable length, the pipe length must be added to the junction box entry and end seal, the number of flanges, and the size and number of valves.

Fire suppression in mines

Ice blockage hinders the suppression abilities of a fire sprinkler system and can break pipes altogether. Frozen sprinkler pipes are dangerous in a commercial building, of course, but can amount to even a greater risk in a mine. In the event of an underground mine fire, it is critical to extinguish the fire in its early stages. Any delay in initiating firefighting activities can result in an uncontrolled fire. Unfortunately, just as sprinkler pipes can freeze, so can the mine’s underground fire hydrants, fire water hoses and surface water storage tanks. All need freeze protection.

Often a sprinkler pipe doesn’t freeze completely. Instead, the water will freeze, thaw and freeze again when exposed to low temperatures. This phenomenon applies added stress to the pipe. Even if a pipe thaws out after a freezing event and appears stable, its integrity is compromised. Hairline cracks can be subtle and difficult to locate until too late.

A frozen pipe in a mine can be dangerous, even deadly.

For instance, in December 2004, a heavy equipment operator in a Kentucky mine was fatally injured while he was trying to dislodge frozen slurry from a slurry pipeline that had iced over.

In 2012 at an oil sands project, about 60 km south of Fort McMurray, Alberta, Canada, a worker was in the process of steaming a frozen pipe when a section of the pipe ruptured, striking the worker in the leg. The 62-year-old worker was transported to a hospital in nearby Lac La Biche where he passed away.

More commonthan these issues is frozen water in pipes that lead to crippling issues ranging from improper functioning of equipment and premature parts failure all the way to more costly damage caused by freeze-and-thaw issues or thermal shock.

Electric heat-trace cables will prevent water, compressed air, slurry and other liquids from freezing in pipes and lines, protecting your property, people and profits.

*Matthew Gurreri is Product Marketing Manager, Emerson Automation Systems, and Kevin Green is National Sales Manager, Emerson Automation Systems

EnviroGold Global boosts environmental remediation, recovery capabilities with IP expansion

EnviroGold Global says it has expanded its IP portfolio by acquiring 20 patents and designs that relate to iron ore beneficiation, electrochemical oxidation and the removal and destruction of contaminants including cyanide, arsenic, mercury and selenium.

The CleanTech IP, as it is referred to, is comprised of 13 patents and seven design patents with active registrations in the United States, Australia, Canada, United Kingdom, Germany and Chile.

EnviroGold Global’s proprietary technology is being applied to the company’s Hellyer Tailings Project (pictured), in Tasmania, Australia, where independent analysis from the company’s flowsheet development partner, Core Resources, has demonstrated gold recovery rates in excess of 80% and silver recovery rates in excess of 90% for total project after-tax free cash flows of $350 million, it says.

The application of the company’s proprietary technology to the Hellyer tailings is expected result in the production of around 965,000 oz of gold-equivalent over an a circa-8 year project life through the liberation of precious metals, including gold and silver, and critical metals, including copper, lead and zinc.

The CleanTech IP also includes patents related to the removal of Per- and Polyfluoroalkyl Substances (PFAS) from mining and industrial effluents. Commonly referred to as “Forever Chemicals”, PFAS are rapidly emerging as contaminants of significant concern for the global mining industry, according to EnviroGold Global, with the US Environmental Protection Agency proposing the designation of two of the most widely used PFAS as hazardous substances under CERCLA or Superfund.

The company expects the CleanTech IP will significantly enhance its metal recovery and environmental remediation capabilities while facilitating future growth into direct lithium extraction, where the technology has demonstrated significant potential.

EnviroGold Chief Technology Officer, Brock Hill, said: “EnviroGold Global’s core identity is as a clean tech innovator focused on developing and commercialising IP, which can generate substantial profits for shareholders while solving social and environmental challenges. This expansion of EnviroGold Global’s IP portfolio advances our strategy significantly, enhancing the company’s technical foundations and opening new avenues for the development of high-value solutions for industry and society.”

Rio Tinto’s Nuton ready to leverage its leaching R&D legacy

More than a few companies and technology providers claim to have solved the primary copper sulphide leaching conundrum, but only one has close to 30 years of R&D and the Rio Tinto name behind it.

Rio, through its Nuton venture, is the latest to table a solution to treat primary copper sulphides such as chalcopyrite, having introduced the company to the sector earlier this year in an attempt at growing the miner’s copper business.

At its centre is a portfolio of proprietary copper leach related technologies and capability that, Nuton says, offer the potential to economically unlock known low-grade copper sulphide resources, copper bearing waste and tailings, and achieve higher copper recoveries on oxide and transitional material. This allows for a significantly increased copper production outcome, according to the company.

One of the key differentiators of Nuton is the potential to deliver leading environmental performance, including more efficient water usage, lower carbon emissions and the ability to reclaim mine sites by reprocessing mine waste, it claims.

Column test work at Rio Tinto’s R&D centre in Bundoora, Melbourne

Adam Burley, Rio Tinto’s Nuton venture lead, said at the core of Nuton is an elevated temperature bioleaching process that can, in the right thermochemical conditions, deliver “peak” copper recovery from primary sulphides such as chalcopyrite.

“Taking advantage of naturally-occurring processes, we have nurtured a culture of microorganisms that establish and thrive in those optimised conditions,” he told IM. “The elevated temperatures are generated by the work of the bacteria; under the base case, we don’t need to heat the heap from external sources, which can often be financially and environmentally costly.”

This leaching core is enhanced by a range of “additives” and expertise that can, for example, deal with high precipitation and cold weather climates.

Having assembled and extensively tested this portfolio, Nuton and Burley are confident enough to state expectations of delivering greater than 80% copper recoveries from chalcopyrite ore with its process.

“This is, from our understanding, some way above the next best leaching technologies available,” Burley said.

The testing behind such numbers is extensive, dating back to 1994 when the company carried out its pilot heap leach operation and developed its initial predictive modelling capabilities at the Kennecott copper mine in Utah, USA.

“Since that time, we’ve conducted hundreds of column tests across tens of orebodies,” Burley said. “We have run columns at a range of scales – a metre high to 10 metres high – and a range of diameters – from tens of centimetres to 5-metre diameter cribs. Some of those range from tens of kilograms to 300 tonnes – large scale with a lot of instrumentation.”

Combining this body of work with a 70,000 t leaching trial the company carried out at Kennecott from 2012 to 2014, Nuton has been able to calibrate its computational fluid dynamic models to accurately predict a range of inputs and outputs for leaching suitability.

“We are left in a position today where we have a high degree of confidence in being able to evaluate the suitability of different ore types and Nuton’s leach response fairly quickly,” Burley said.

This has led to the company going out to market, partnering with companies that own deposits that pass the Nuton thresholds.

The company has signed deals with Lion Copper and Gold Corp, and Arizona Sonoran Copper Company to test out the technology on Lion’s copper assets in Mason Valley, Nevada, and Arizona Sonoran’s Cactus Mine and Parks/Salyer projects, in Arizona.

It has also more recently agreed a pact with McEwen Copper on the Los Azules project in Argentina.

These assets, agreements and potential leaching applications are all different – covering former operating mines and greenfield assets; earn-ins, exclusivity periods and equity stakes; and oxides and sulphides.

“We recognise that due to the high variability of copper deposits and mine waste that one size doesn’t fit all,” Burley said. “A single technology solution is unlikely to perform well at every site.

“Our approach is to work with our partners to understand site-specific characteristics, such as the mineralogy of the available ore and waste, designing a tailored approach by selecting the most applicable technology configuration from within the Nuton portfolio.”

And, according to Burley, these current and future agreements could see Nuton operate the equipment and plant associated with the Nuton process.

“In many cases, we envisage supporting our partners with an end-to-end process, including engineering, build out and operating the gear,” he said.

The test site at Kennecott being prepared and lined ready for the rock to be leached

While the sulphide copper recovery numbers are likely to take the headlines, Burley was able to point out several key differentiators from other leaching solutions targeting minerals such as chalcopyrite.

“Those recovery numbers are a step change, as opposed to an incremental improvement,” he said. “That gives us a lot more optionality in terms of the cutoff grade of the material we can process economically.”

And, with that higher resource utilisation, comes less waste and an overall higher process efficiency, meaning, under certain conditions, Nuton can compete with a pre-existing processing route such as a concentrator, Burley says.

“In some cases, in a greenfield setting, we could see a better economic and environmental outcome than a concentrator, particularly given no tailings or smelting is required, and you could have a finished product produced in country.”

He continued: “Our focus on ESG and our ability to process waste due to that low cutoff grade is one of the key differentiators that opens a whole set of use cases in the legacy mine domain too. Being able to restore and reclaim mine sites by reprocessing waste is very attractive.”

The eventual aim, according to Burley, is to deliver carbon-neutral copper from the Nuton process, yet Rio estimates it can already deliver 0.4 tonnes of CO2 equivalent for Scope 1 and 2 emissions per tonne of Nuton copper produced, compared with a global average of 5.2 tonnes of CO2 equivalent as per standard, conventional primary copper production.

Away from the technical elements, the “partnership” business model Nuton uses also stands out.

Nuton testing up and running at Kennecott (from previously mentioned trials)

“The approach is to work with our partners and assess the value case at specific sites, agreeing a commercial framework that works for everyone,” Burley said. “We are quite open minded as to what that might look like – it could be ownership and equity participation to royalty and licensing type arrangements.

“So, there is the financial strength Rio brings, as well as the deep technical expertise.”

These elements are clearly beneficial to any of Rio’s fellow mining companies that have projects with copper sulphides or those that will be transitioning to sulphide processing in the future, yet a lot of the progress made with these technologies was tied to the development of Rio’s own project, La Granja.

“In that case, part of the resource contains high arsenic and arsenic-related mineralogy,” Burley said of La Granja. “That was the trigger really for a concerted effort to look at an alternative to a concentrate and processing route. We made quite a number of Nuton breakthroughs in our study of that deposit.”

La Granja has been in Rio’s portfolio since winning the right to develop it in 2005, but is not currently in the development pipeline.

Asked if other assets within the company’s portfolio are potential Nuton candidates, Burley answered: “The potential exists to deploy Nuton within the Rio Tinto copper portfolio. We are currently evaluating a number of internal deployment options across our assets and joint ventures, but we also recognise the full value potential of Nuton – environmental and social, as well as financial – lies outside of the Rio Tinto portfolio.

“To capture the full size of prize that Nuton offers, we need to go out to market, which is what we have been doing pretty aggressively throughout the year and will continue to do going forward.”

WEC Projects, Multotec combine for Mali gold mine modular wastewater treatment plant

WEC Projects, in conjunction with its partner, Multotec, has designed and custom engineered a wastewater treatment plant for a gold mine in Mali, West Africa.

The plant, used to remove arsenic from the mine’s wastewater stream, incorporates a modular design which simplifies the logistics and reduces the costs of transport and installation, according to WEC Projects.

The international mine operator is a client of Multotec, an engineering company specialising in mineral processing plant design and installation. The company approached WEC Projects, a local EPC contractor in the water and wastewater treatment industry, to jointly develop a customised solution to remove toxic arsenic from the mine’s wastewater. A multi-stage removal system was required to meet the strict standards for the mine’s discharge. However, the system also required a modular design which would facilitate the transportation, installation and commissioning of the plant.

Wayne Taljaard, Managing Director of WEC Projects, said: “The mining industry in Africa presents some very unique challenges, not the least of which are the remote locations of many of the mines and the difficulties experienced in getting staff and equipment to sites where road, power and water infrastructure is often lacking, hence the requirement by Multotec for a modular solution that would allow for rapid transport to site and to simplify its installation and commissioning.

“The COVID-19 pandemic added to the difficulties for us and the client, causing delays that reduced the time frame for delivery.”

In the treatment process, the mine’s wastewater undergoes primary solid/water separation using coagulation and flocculation and the primary clarifier. From there it enters a two-stage chemical precipitation and secondary clarification process to reduce the arsenic levels. The final stage sees the sludge undergo dewatering before disposal. The treated water, although not potable, is then reused by the mine for process applications.

The plant has a processing capacity of 150 cu.m/h and is capable of reducing the arsenic levels from around 13 mg per litre to less than 0.1 mg per litre.

Taljaard added: “The project, incorporates a number of unique features in addition to its modular design, including nine custom-designed, proprietary lamella clarifiers and a multi-stage arsenic removal process capable of treating the wastewater to the mine’s discharge standards. WEC Projects has completed a number of water and wastewater treatment projects throughout Africa. Our ability to provide a customised and modular solution for Multotec underscores our ability as a major player in the industry both in South Africa as well as across the continent.”

Gold industry ready to take action on cyanide use, DST’s Lemieux says

The move away from cyanide in gold processing has been talked of for many years, with words often not followed by actions, yet David Lemieux, President and CEO of Dundee Sustainable Technologies (DST), believes the industry is now starting to get serious about assessing alternative lixiviants.

His assertion comes on the back of one of the biggest gold miners in the world recently making such a move with the help of DST.

Back in December, Newmont signed a Technology Transfer Licensing Agreement with DST to use its cyanide-free gold extraction technology, known as the CLEVR Process™.

The CLEVR Process uses no cyanide, produces no toxic liquid or gaseous effluent and the solid residues are inert, stable and non-acid generating, according to the company. With fast leach kinetics of 1-2 hours, the ability to treat refractory ores and handle base metals, plus a competitive capital/operating expense, the solution has been gaining prominence in the gold market.

Having tested the process out on a variety of ores from various sources, DST is now in the commercialisation phase with CLEVR.

The pact with Newmont follows a successful test work program in the March quarter of this year, after which the gold miner expressed its interest in the execution of such an agreement. This led to Newmont conducting laboratory CLEVR leaching tests in its technical facilities in Englewood, Colorado.

As part of the agreement, DST and Newmont, agreed to:

  • A two-year, non-exclusive licence for the use of CLEVR at the laboratory scale in its Colorado technical facilities, with an option to renew for an additional two-year period under the same terms;
  • Technology implementation support by DST, including all technology laboratory protocols in addition to technical training sessions to initiate and support the technology transfer and practical operations;
  • Ongoing technology support, and for DST to review the laboratory test plans, execution and results conducted by Newmont; and
  • Any process scaling-up requirements resulting from positive applications of CLEVR will be conducted jointly with Newmont at DST’s technical facilities in Canada and/or on-site using DST’s technology and engineering group expertise.

Lemieux said the agreement should be viewed as an indication the gold industry is serious about assessing alternative processing approaches.

“DST’s CLEVR Process is a mature and developed novel gold processing technology that allows majors to properly assess how it can be implemented within a given project in terms of environmental benefits, operational efficiency, and operating and capital costs,” he told IM. “Such a level of detail then allows for properly integrated decision making.”

He said there had been increased interest over the years from the industry with regards to alternative processing approaches, which is likely to continue as more jurisdictions target cyanide operations and pressure operators to reduce their dependency on the lixiviant as the main and sole gold recovery mean.

CLEVR is one of two “novel metallurgical processes” DST has in its portfolio, the other being its GlassLock Process™.

GlassLock is a patented process for the sequestration and stabilisation of the arsenic often associated with copper, gold, silver or polymetallic deposits.

Dundee Sustainable Technologies GlassLock industrial demonstration plant on site at an operating copper smelter

In DST’s approach, the arsenic is incorporated into a highly stable and insoluble glass form that can contain up to 20% arsenic, while meeting or exceeding the requirements of the USA EPA’s toxicity characterisation leaching procedure and the Synthetic Precipitation Leaching Procedure, the company said.

Also in the commercialisation phase, GlassLock has been operating at an industrial scale thanks to a demonstration facility built and operated by DST.

According to Lemieux, the increased number of complex orebodies currently being developed means there is likely to be more interest in both CLEVR and GlassLock.

“The chemistry and conditions of the CLEVR process can allow for improved gold recoveries,” he said. “This, combined with DST’s ability to efficiently and permanently stabilise arsenic using GlassLock, is providing good opportunities for DST.”

The Glasslock process, he said, is equally targeting existing operations that have immediate arsenic production and stabilisation needs as well as operations/miners required to address and stabilise legacy arsenical material as part of their permitting requirements.

These abilities were recently recognised by engineering firm Hatch, which entered into a Technology Framework Agreement with DST that could see GlassLock used in combination with Hatch’s fluid bed reactor and arsenic dry scrubbing technologies on gold and arsenopyrite projects.

The objective of the agreement was to “synergise” Hatch’s extensive client base, commercialisation and marketing expertise, fluid bed reactor and arsenic dry scrubbing technologies, and large-scale equipment engineering, supply, procurement, and life cycle services capabilities with DST’s innovative technology to identify and develop potential gold and arsenopyrite projects using GlassLock, the companies said.

While they cannot point to specific results of these two technologies complementing each other, Lemieux said DST has continued and is currently working on testing programs where the roasting and vitrification approach is applied on complex gold concentrates.

“These programs were generated and originate from DST’s own development efforts, but we hope to see more similar opportunities coming from Hatch in the future,” he said.

Lemieux concluded: “Implementing novel metallurgical processes within the industry takes time and DST has progressed greatly, and continues to do so, on the design and operating parameters of specific on-site implementations of GlassLock and/or CLEVR facilities.”

Latest Kamoa-Kakula copper studies reaffirm project’s world-class status

The latest economic studies on Ivanhoe Mines and Zijin Mining Group’s majority-owned Kamoa-Kakula project in the Democratic Republic of Congo have indicated the asset could become the world’s second largest copper mining complex.

First production at Kamoa-Kakula is less than a year away, but the project partners have continued with a series of economic studies that emphasise the world-class nature of the orebodies within their control.

The headline maker is the results of a preliminary economic assessment that has evaluated an integrated, multi-staged development to achieve a 19 Mt/y production rate at the mine, with peak annual copper production of more than 800,000 t.

At the same time, a prefeasibility study (PFS) has been carried out to look at mining 1.6 Mt/y from the Kansoko mine, in addition to 6 Mt/y already planned to be mined from Kakula, to fill a 7.6 Mt/y processing plant at Kakula.

A definitive feasibility study (DFS) has also evaluated the stage-one, 6 Mt/y plan at Kakula, which is currently being constructed and is less than a year away from producing first copper, according to Ivanhoe Co-Chair, Robert Friedland.

While the operation looks to have the scale of a world-class asset, it will also have top ranking ‘green’ credentials, according to Friedland.

“The Kakula mine has been designed to produce the world’s most environmentally-responsible copper, which is crucial for today’s new generation of environmentally- and socially-focused investors,” he said.

“Zijin shares our commitment to build the new mines at Kamoa-Kakula to industry-leading standards in terms of resource efficiency, water and energy usage, and minimising emissions. We are blessed with ultra-high copper grades in thick, shallow and flat-lying orebodies – allowing for large-scale, highly-productive, mechanised underground mining operations; and access to abundant clean, sustainable hydro electricity to power our mines – providing us with a distinct advantage in our goal to become the world’s ‘greenest’ copper miner and be among the world’s lowest greenhouse gas emitters per unit of copper produced.”

The project recently retained Hatch of Mississauga, Canada, to independently audit the greenhouse gas intensity metrics for the copper that will be produced at Kamoa-Kakula.

The Kamoa-Kakula Integrated Development Plan (IDP) 2020, as the companies refer to it, builds on the results of the previous studies announced in February 2019.

DFS to 6 Mt/y

The new DFS incorporates the advancement of development and construction activities to date, and has once again confirmed the outstanding economics of the first phase Kakula Mine, Ivanhoe said.

It evaluates the development of a stage one, 6 Mtpa underground mine and surface processing complex at the Kakula deposit with a capacity of 7.6 Mt/y, built in two modules of 3.8 Mt/y, with the first already under advanced construction (see photo). It comes with an internal rate of return of 77% and project payback period of 2.3 years.

The first module of 3.8 Mt/y commences production in the September quarter of 2021, and the second in the March quarter of 2023. The life-of-mine production scenario provides for 110 Mt to be mined at an average grade of 5.22% Cu, producing 8.5 Mt of high-grade copper concentrate.

The Kakula 2020 DFS mine access is via twin declines on the north side and a single decline on the south side of the deposit. One of the north declines will serve as the primary mine access, while the other decline is for the conveyor haulage system, which was recently commissioned.

The primary ore handling system will include a perimeter conveyor system connected to truck load-out points along the north side of the deposit. The perimeter conveyor system will terminate at the main conveyor decline.

The mining method for the Kakula deposit is primarily drift-and-fill using paste backfill (around 99%); with the exception of a room-and-pillar area close to the north declines, which will be mined in the early years of production. The paste backfill system will use a paste plant located on surface connected to a distribution system that includes a surface pipe network connected to bore holes located at each connection drive on the north side of the orebody, the company says.

The Kakula concentrator design incorporates a run-of-mine stockpile, followed by primary cone crushers operating in closed circuit with vibrating screens to produce 100% passing 50 mm material that is stockpiled.

At the end of August, the project’s pre-production surface ore stockpiles totalled an estimated 671,000 t grading 3.36% Cu, including 116,000 t of high-grade ore grading 6.08% Cu.

The crushed ore is fed to the high pressure grinding rolls operating in closed circuit with wet screening, at a product size of 80% (P80) passing 4.5 mm, which is gravity fed to the milling circuit.

The milling circuit incorporates two stages of ball milling in series in closed circuit with cyclone clusters for further size reduction and classification to a target grind size of 80% passing 53 micrometres (µm).

The milled slurry is pumped to the rougher and scavenger flotation circuit where the high-grade, or fast-floating rougher concentrate, and medium-grade, or slow-floating scavenger concentrate, are separated for further upgrading. The rougher concentrate is upgraded in the low entrainment high-grade cleaner stage to produce a high-grade concentrate.

The medium-grade or scavenger concentrate together with the tailings from the high-grade cleaner stage and the recycled scavenger recleaner tailings are combined and further upgraded in the scavenger cleaner circuit. The concentrate produced from the scavenger cleaner circuit, representing roughly 12% of the mill feed, is re-ground to a P80 of 10 µm prior to final cleaning in the low entrainment scavenger recleaner stage.

The scavenger recleaner concentrate is then combined with the high-grade cleaner concentrate to form final concentrate. The final concentrate is then thickened and pumped to the concentrate filter. Final filtered concentrate is then bagged for shipment to market.

The scavenger tailings and scavenger cleaner tailings are combined and thickened prior to being pumped to the backfill plant and/or to the tailings storage facility. Backfill will use approximately half of the tailings, with the remaining amount pumped to the tailings storage facility.

Based on extensive test work, the concentrator is expected to achieve an overall recovery of 85%, producing a very high-grade concentrate grading 57% copper. Kakula also benefits from having very low deleterious elements, including arsenic levels of 0.02%.

7.6 Mt/y PFS

The PFS evaluating mining 1.6 Mt/y from the Kansoko mine envisages an average annual production rate of 331,000 t of copper at a total cash cost of $1.23/lb copper for the first 10 years of operations, and annual copper production of up to 427,000 t by year four. This comes with an internal rate of return of 69% and project payback period of 2.5 years, according to Ivanhoe.

Development would see Kakula-Kansoko benefit from an ultra-high, average feed grade of 6.2% Cu over the first five years of operations, and 4.5% Cu on average over a 37-year mine life.

There are currently two mining crews at Kansoko, in addition to the 10 mining crews (three owner crews and seven contractor crews) currently at Kakula, with the ability to increase this number to fast-track the development of Kansoko, Ivanhoe said.

19 Mt/y option

The Kamoa-Kakula 2020 PEA presents initial production from Kakula at a rate of 6 Mt/y, followed by subsequent, separate underground mining operations at the nearby Kansoko, Kakula West and Kamoa North mines, along with the construction of a 1 Mt/y of concentrate direct-to-blister smelter. The smelter section of the study saw China Nerin Engineering act as the main engineering consultant with Outotec providing design and costing for propriety equipment.

The Kamoa North Area comprises five separate mines that will be developed as resources are mined out elsewhere to maintain the production rate at up to 19 Mt/y, with an overall life in excess of 40 years, Ivanhoe says.

For this integrated 19 Mt/y option, the PEA envisages $700 million in remaining initial capital costs, with future expansion at Kansoko, Kakula West and Kamoa North funded by cash flows from the Kakula mine, resulting in an internal rate of return of 56.2% and a payback period of 3.6 years.

This shows the potential for average annual production of 501,000 t of copper at a total cash cost of $1.07/lb copper during the first 10 years of operations and production of 805,000 t/y of copper by year eight, Ivanhoe said.

“At this future production rate, Kamoa-Kakula would rank as the world’s second largest copper mine,” the company said.

Clean TeQ DESALX plant up and running at Kirkland Lake’s Fosterville gold mine

Clean TeQ Holdings Limited has formally handed over a Continuous Ion Exchange Desalination (DESALX®) plant to Kirkland Lake Gold’s Fosterville gold mine in Victoria, Australia.

Clean TeQ says it was engaged to design, supply and commission a two million litre-per-day Clean TeQ DESALX mine water treatment plant, with the plant designed to deliver a sustainable water management solution by treating mine process water.

The plant construction was completed in late 2019, with commissioning and operations commencing in early 2020. Now, Clean TeQ has confirmed the plant has passed the performance tests specified in the engineering, procurement and construction contract and the customer has issued a formal notice of acceptance and completion, it said.

Sam Riggall, Clean TeQ CEO, said: “After successfully demonstrating the world’s first ever commercial scale CIF plant in Oman late last year, this is yet another moment of great significance for Clean TeQ.

“Confirmation of the successful deployment of our innovative DESALX solution for this application, designed and delivered by Clean TeQ, is strong validation of our proprietary continuous ion exchange technology, and provides us with a firm foothold in the mining waste water treatment market from which we can continue to grow the business.”

The DESALX technology consists of two continuous ionic filtration (CIF®) modules in series removing divalent cations and anions present in the water through complementary processes. The modules contain ion exchange resins that are cycled between columns using air lifts, allowing for continuous operation and regeneration of the system. This system increases impurity removal efficiency, reduces chemical use, and provides protection against fouling, according to Clean TeQ.

The DESALX solution is well suited to purification of difficult to treat waste waters with high hardness, sulphate, and heavy metals as well as suspended solids which can foul reverse osmosis membranes. These types of waste waters are common in the mining industry, including acid mine drainage water, the company explained.

At Fosterville, the equipment provided by Clean TeQ includes a precipitation package to remove antimony and arsenic. The effluent from the clarifiers is treated by the DESALX plant to remove sulphate, calcium and magnesium with gypsum as the only by-product. The DESALX effluent is then further treated by reverse osmosis to produce water for re-use.

“The Clean TeQ system is a key enabling component of the customer’s overall water management strategy which includes a medium-term target of creating a true ‘zero liquid discharge’ solution that does not produce any saline brine and includes aquifer reinjection,” Clean TeQ said.

Clean TeQ Water is now focused on completing one additional key project at a copper-cobalt mine in the Democratic Republic of the Congo, and a number of pilot programs in China.

“This Clean TeQ system, as well as the plants recently completed in Oman and Australia, are the first of their type anywhere in the world and have been deployed as part of three different technical solutions,” the company said. “The successful delivery and commissioning of these plants provides strong demonstration of the efficacy of Clean TeQ’s suite of proprietary ion exchange technologies and their versatility for metal extraction and wastewater treatment. As commercial scale plants, the facilities provide a valuable platform from which to now rapidly grow Clean TeQ Water.”

Dundee’s GlassLock Process engineers an opening at West Africa gold mine

Dundee Sustainable Technologies (DST) and its proprietary GlassLock Process™ is to help a West Africa mine stabilise legacy arsenic-bearing material at its gold operation following a new mandate agreement.

The mandate agreement, entered on June 8, consists of delivering an engineering package for a plant using DST’s GlassLock Process. It follows a preliminary metallurgical test program with the same customer from back in the March quarter.

This program saw over 40 kg of arsenic- and gold-bearing material received at DST’s technical facilities in Canada, whereby DST successfully combined gold recovery with the stabilisation of arsenic using GlassLock, it said.

A glass product containing over 15% arsenic was generated and successfully met the requirements of the United States Environmental Protection Agency’s toxicity characterisation leaching procedure (TCLP, Method 1311), DST said.

“As a result, the customer awarded the engineering mandate to DST to perform process optimisation and an engineering study at the prefeasibility (+/-25%) level,” it said. “The agreement includes engineering fees in the amount of C$101,000 ($74,436) to be paid to DST for this work as per its business plan to generate revenues for the corporation while the technology is progressing toward implementation.”

The final report is due at the beginning of September 2020, DST said.

Back in May, DST announced it had entered into a commercial agreement to provide engineering services to a gold and copper producer for a full-scale plant of its GlassLock Process as part of a C$600,000 Class 4 engineering package.

Since the construction of its pilot plant in 2016, DST has continued to demonstrate the validity of its technology, moving from pilot level to the industrial demonstration scale, where arsenical material was processed to generate vitrified arsenical glass, containing up to 20% arsenic while meeting the TCLP Method 1311.

“GlassLock is becoming an effective and cost attractive technique to segregate arsenic and is therefore opening new opportunities for arsenic-bearing precious metals deposits, concentrates or contaminated sites considered to contain too much arsenic to be exploited,” the company said.

This agreement is another major achievement in DST’s commercialisation efforts, it added.

Dundee Sustainable Technologies makes CLEVR, GlassLock process progress with China

Dundee Sustainable Technologies says it has received a mandate from a Chinese customer to continue testing of the cyanide alternative CLEVR Process™.

The company has received a 30-kg sample of mineralised material from the customer and a payment for this work, DST said, explaining that the goal of the work is to demonstrate its proprietary CLEVR Process can extract gold at a rate of 95% or better.

Brian Howlett, President and CEO, said: “Management of DST is very excited to be developing our CLEVR Process technology into China at this time. China controls a key portion of the gold and base metals processing capacity in the world and will be a key market going forward for our technologies.”

DST, back in December, said it had completed analysis of the samples from this customer and had been able to increase recovery of the gold from the customer’s concentrate from 71% using cyanide to over 90% at a lab scale using its technology.

CLEVR uses no cyanide, produces no toxic liquid or gaseous effluent, and the solid residues are inert, stable and non-acid generating, according to DST.

DST Management has also submitted a 5-kg sample of glass from its GlassLock Process™ to Chinese authorities for regulatory testing with the goal of classifying the glass as non-hazardous waste product suitable for disposal in the Chinese market.

GlassLock is a patented process for the sequestration and stabilisation of the arsenic often associated with copper, gold, silver or polymetallic deposits.

Canada Cobalt Works moves to protect Re-2OX process following SGS testing

Canada Cobalt Works says it has made important breakthroughs in its proprietary and environmentally green Re-2OX process for the recovery of cobalt, precious metals and base metals, and will look to submit a patent application to protect the technology.

New testing using SGS Lakefield in Peterborough, Ontario, Canada, has highlighted further optimisation of Re-2OX can allow the recovery of silver and copper for the first time, while also increasing the recovery rates for cobalt and nickel.

“In refining the Re-2OX process through a one-step leach extraction, overseen by Canada Cobalt adviser Dr Ron Molnar, SGS has recovered >99% cobalt, >99% silver, 99% nickel and 99% copper while removing 99% of arsenic from a composite of gravity concentrates,” the company said.

The gravity concentrates tested at SGS were from the historic Castle mine, in Ontario, classified as waste material and grading 10.2% Co, 11,000 g/t Ag, 0.26% Cu, 1.49% Ni and 45.1% arsenic.

Re-2OX skips the normal smelting process to create battery-grade cobalt sulphate, according to Canada Cobalt Works. The company said nickel-manganese-cobalt (NMC) battery-grade formulations are also in the pipeline.

“In addition, the ability of Re-2OX to achieve exceptionally high recovery rates for both cobalt and silver, plus nickel and copper, while also removing 99% of arsenic, expands the potential of the Castle mine given Phase 1 underground results released February 19, 2019, and a second phase starting soon,” the company said. “Furthermore, Re-2OX is a value-driver for the company’s planned tailings programs at Castle and elsewhere in the district, and will also be used by Canada Cobalt to immediately build a new model of ‘streaming’ opportunities for the company with respect to other battery metal projects while protecting the process.”

Given the current optimisation level of Re-2OX, and the growing importance of this hydrometallurgical process to Canada Cobalt and its shareholders, the company has now initiated the process of submitting a patent application for this proprietary metal extraction method.

Frank J Basa, Canada Cobalt President and CEO, said: “The fact that SGS has demonstrated that Re-2OX can very efficiently recover a broad set of metals from arsenic-rich material, ranging from low grade to high grade, further de-risks the Castle mine project and expands opportunities to build shareholder value. Further Re-2OX optimisation will target the recovery of gold.”