Tag Archives: The Electric Mine

Epiroc’s Erik Svedlund: ‘the answer…is always electrification’

Not a financial report goes by without Epiroc referencing its electrification offering. Whether it be new products, an uptick in customer demand or plans to roll out more battery-electric retrofit options for its customer base, ‘going electric’ has become a consistent quarterly theme for the Sweden-based OEM.

Epiroc’s development timeline for battery-electric machines started all the way back in 2012 – the first Scooptram ST7 Battery was produced in 2013 before a 2014 machine trial with Goldcorp’s Red Lake mines department (now owned by Evolution Mining). The Minetruck MT2010 battery-electric vehicle then came along in 2015.

Its electrification roots go back even further though thanks to Atlas Copco’s acquisition of GIA Industri AB in 2011; a transaction that brought the renowned Kiruna electric trucks into the portfolio.

Over this timeframe, Epiroc has also deployed cable-electric large blasthole rigs across the globe, removing diesel from the drilling process at surface mines.

A constant throughout this period has been Erik Svedlund, Senior Zero Emission Manager at Epiroc, who has helped steer the company’s electrification direction from its first generation battery-electric vehicles to the position it is in now: having integrated automation into the battery-electric mix with the Scooptram ST18 SG and, on the retrofit side, having the resources in place to offer mid-life rebuild options to convert its diesel-powered Scooptram ST7, Scooptram ST1030 and Scooptram ST14 loaders, plus its Minetruck MT436 and Minetruck MT42 trucks, to battery-electric vehicles.

Ahead of his keynote presentation at this month’s The Electric Mine 2023 conference in Tucson, Arizona (May 23-25), IM put some questions to Svedlund on the evolution of the market since he started ‘selling’ the electrification concept to stakeholders.

IM: You have been heading up Epiroc’s electrification efforts since 2010; how have you seen the reception to these solutions and developments change in that 13-year period? Has the speed of the transition surprised you?

ES: The speed is both fast and slow; I estimate that we are in the beginning of the steep part of the S-curve. Previously the drive was more on improved safety and health or a lower total cost of ownership. Now I notice a bigger drive towards low-carbon solutions. But the answer to all these focus areas is always ‘electrification’.

IM: Epiroc has some very ambitious targets when it comes to electrifying its fleet – both underground and on surface with drills. Given the various applications you are serving, how are you able to create a platform that can cater to all the specific parameters at mining operations?

ES: Indeed, Epiroc was quite early in developing battery-electric machines and has set very ambitious sustainability targets that go hand in hand with our customer’s targets. Making one or a few models is not too difficult but enabling everything to go electric required us to develop a new technology platform that would allow all models to become electric. This platform has allowed us to scale up to meet our targets.

IM: Is this why you are pursuing so many different development avenues with customers – diesel-electric trucks, battery-trolley, new battery solutions, BEV retrofits, etc?

ES: There is no one silver bullet to solve all models and applications. As a base there will be an energy-efficient electric driveline. However, how to get energy to that machine will vary depending on application. We will need many solutions in the future.

Erik Svedlund, Senior Zero Emission Manager at Epiroc

IM: How important do you see Batteries as a Service (BaaS) being as your BEV rollout accelerates? What level of interest or uptake have you had so far, and do you see the majority of BEV fleet users opting for this?

ES: The majority of our batteries go out with BaaS but not all; some customers like to own their assets. The setup of these agreements may be tailored to the customer’s needs.

IM: The combination of automation and electrification have been spoken about in the last few years as BEVs have started to be rolled out at a faster pace, with the development of your ST14 SG and ST18 SG representing key milestones in this area. Are mining companies continuing to push you to further automate your BEVs and remove all people from the process? What avenues are you pursuing for this in terms of automating the battery swapping process, recommending trolley charging, leveraging BluVein’s dynamic charging solution, etc?

ES: The trend for safer and more efficient operations will continue. Autonomous machines will have to be supported by autonomous chargers. Dynamic or stationary charging will be dependent on the type of machine and application. But we must not forget the solutions we as OEMs introduce must be able to work together with the grid. When it comes to surface mining, we have already seen that automation and electrification are a perfect match. We already have a complete range of cable-electric large blasthole rigs with a large number of drills in operation in all continents, some of which are automated.

IM: Your keynote presentation is titled, ‘The green transition is a material transition.’ Could you explain what is meant by this, and how Epiroc is involved in this material transition as a mining OEM?

ES: Zero-emission vehicles and renewable energy require metals; we in the mining industry have a special responsibility to do our part. Adopting a ‘green mining’ concept will prepare and position our industry as adding value to our solutions.

Erik Svedlund, Senior Zero Emission Manager at Epiroc, will present: ‘Keynote: The green transition is a material transition’ at The Electric Mine 2023 conference in Tucson, Arizona, on May 24 at 9:00-9:30. For more information on this three-day event, head to www.theelectricmine.com

Nussir to present zero-emission mining plan at The Electric Mine

Nussir ASA and its ambition to develop the world’s first zero-emission copper mine in Kvalsund, Norway, will end up becoming a case study the whole mining sector learns from.

While some pioneering mining projects are aiming for all-electric operations through the use of battery-electric equipment, Nussir argues its copper project would be the first truly all-electric zero emissions mine in the world as all machines and processes will be powered by renewable energy.

With a brand new (as of January 31, 2022) all-electric feasibility study from SRK in hand, the company is able to outline a project that would involve the development of an underground mine extracting ore from the Nussir and Ulveryggen orebodies. These two have reserves of 162,000 t of contained copper, according to a recent report from the consultants. Total resources, including the inferred resource category, stand at about 80 Mt of ore, according to the company.

SRK is not the only company helping Nussir achieve its vision. It has signed up Leonard Nilsen og Sonner AS (LNS) to carry out potentially the largest mining contract in Norwegian history with 130 km of tunnelling over 10 years; as well as worked with leading OEMs on all-electric mobile equipment; Woodgrove on flotation, instrumentation, automation, flowsheet, PID and process design; Metso Outotec on milling; SGS on flotation, grinding and settling test work; Sintef on rock mechanics; and SRK on the mine plan itself, scheduling and capital and operating expenditure calculations.

Øystein Rushfeldt, CEO of Nussir

The company has also managed to obtain all necessary permits to start construction of the mine, which is located on the site of a former operating open-pit that ceased operations in 1979; and, importantly, signed a Cooperation Agreement with the Hammerfest Municipality as a way of indicating broad support from local political parties.

With the publication of feasibility study and news of further contracts and financing due in the first half of this year, the news flow and attention is due to ramp up in 2022.

Attendees of The Electric Mine 2022, in Stockholm, Sweden, on February 17-18, can hear all about this from Øystein Rushfeldt, CEO of Nussir, in his presentation ‘Nussir: The path to zero-emission mining’.

For more information about The Electric Mine 2022, please click here: www.theelectricmine.com

ABB launches eMine portfolio with FastCharge and Trolley System highlights

ABB’s efforts to accelerate the move towards a zero-carbon mine have been strengthened with the launch of its ABB Ability™ eMine portfolio of solutions and the unveiling of its eMine FastCharge solution, billed by the company as the world’s fastest and most powerful charging system that is designed to interface with all makes of electric mining haul trucks.

eMine comprises a portfolio of electrification technologies to make the all-electric mine possible from mine to port and is integrated with digital applications and services to monitor and optimise energy usage, ABB says. It can electrify any mining equipment across hoisting, grinding, hauling and material handling.

From 2022, it will include new ABB Ability eMine FastCharge, which provides high-power electric charging for haul trucks and is currently in pilot phase. It also incorporates the ABB Ability eMine Trolley System, which can reduce diesel consumption by up to 90%, significantly lowering energy costs and environmental impact.

“The global mining industry is undergoing one of the most significant and important transformations of our generation – and that is to become zero-carbon,” Max Luedtke, Global Head of Mining at ABB, says. “ABB Ability eMine is an exciting milestone to help convert existing mining operations from fossil fuel energy to all-electric. Mines can become even more energy efficient with vastly reduced levels of CO₂ emissions, while at the same time staying competitive and ensuring high productivity.”

eMine FastCharge can serve as a cornerstone of the transition to fully electrified mines across the industry, according to ABB.

This flexible and fully automated solution is being designed for the harshest environments, can be installed anywhere and can charge any electric truck without human intervention at up to 600 kW, ABB says.

Charging time will depend on the battery capacity on-board the haul truck and the operational profile, however, in many instances, a suitable state of charge could be reached within 15 minutes, the company claims.

“With eMine, ABB is extending its capabilities to the electrification of mining trucks and technologies for the full mining process,” the company said.

“eMine provides integral design planning and thinking to maximise the value of electrification, helping to design the hauling process in the most optimised way with electrical solutions that match mine constraints and help meet production targets.”

ABB says it helps mine operators map their journey towards an all-electric mine from phasing out diesel to embedding a new mindset and new team skills.

“By fully integrating electrification and digital systems from the mine to the port, eMine further reduces overall costs and improves mine performance while significantly lowering environmental impact.”

Antofagasta becomes latest Charge on Innovation Challenge patron

Antofagasta, as part of its sustainability efforts, has joined the Charge On Innovation Challenge as a patron.

The initiative, which counts BHP, Rio Tinto and Vale as founding patrons, seeks to develop solutions to charge the batteries of electric mining trucks safely, quickly and sustainably. This is essential in order to replace the use of diesel in these trucks and the emissions it produces, the challenge organisers say.

The goal is to enable trucks of 220 t or more to stop using diesel and run on electric batteries, just like other electric vehicles. In order to achieve this, it is essential to develop a battery charging system that does not use polluting fuels and, at the same time, allows the extraction trucks to operate as they usually do.

Today there are already efforts underway to develop and use electric trucks, but those are for trucks of a smaller tonnage (100 t) which can regenerate their own energy, Charge on Innovation says. The collaborative work with the Charge On Innovation Challenge seeks to develop solutions for larger trucks.

Iván Arriagada, CEO of Antofagasta, said: “As a mining group focused on innovation, we are interested in collaborating and contributing to the development of the industry for the future. That is why we decided to participate in this challenge, which is key to being able to use electric trucks and significantly reduce greenhouse gas emissions.”

As part of its Climate Change Strategy, from 2022, the electricity supplying Antofagasta companies will come from renewable sources. Antofagasta’s Zaldívar mine has been operating from clean energy sources since July 2020.

Thanks to these advances and other measures adopted by the company, Antofagasta was able to reduce its greenhouse gas emissions by more than 580,000 t since 2018. Its new goal is to decrease those emissions by an additional 30% between now and 2025.

The Charge On Innovation Challenge was launched by BHP, Vale and Rio Tinto in partnership with Austmine. It has since added Roy Hill, Teck, Boliden and Thiess as additional patrons.

Artisan battery-powered Z50 truck on its way to Kirkland Lake’s Macassa gold mine

Kirkland Lake Gold says it is expecting to receive a 50 t battery-powered Z50 underground haul truck at its Macassa gold mine, in Ontario, Canada, this quarter, following a purchase agreement signed last year.

The gold miner’s Macassa operation has been a leading adopter of new electric equipment and already has four 40 t battery-powered machines at the underground mine. These are matched by many battery-powered LHDs made by likes of Artisan Vehicle Systems and Epiroc.

The latest 50 t vehicle will come from Artisan, a Sandvik Mining and Rock Solutions business unit.

The Z50 haul truck is a ground-up design that seamlessly integrates the most capable and proven battery-electric powertrain available in the mining industry with the latest and most coveted features of any haul truck on the market today, according to Sandvik. The 50 t machine is based off the existing design for the Z40 truck, which Artisan released back in 2018, but features a stretched rear frame (close to 19 in).

It is equipped with AutoSwap, a patented self-swapping system for the Artisan battery pack. This makes battery swapping faster and easier with a minimum amount of manual handling: changing the battery only takes about six minutes, and it can be done in a passing bay or old re-muck bay with no overhead cranes or external infrastructure needed, Sandvik says.

The news of the pending arrival of this electric vehicle came at the same time as Kirkland Lake released its 2020 production results. The company produced 369,434 oz of gold in the December quarter to make a total of 1.37 Moz of gold in 2020, 41% higher than the total in 2019, which was in line with its full-year 2020 guidance of 1.35-1.4 Moz.

Tembo 4×4 e-LV expands battery-electric retrofit range

Tembo 4×4 e-LV has added a new option to its line-up of battery-powered equipment for the underground mining industry, with an extra-large 10 personnel carrier joining the portfolio, according to one of its distributors.

The new conversion kit is specifically targeted for applications where a maximum number of people are required to be transported at once.

The more spacious supervision vehicle option, which comprises forward-facing six personnel carrier, will also be available as a battery-electric conversion kit.

Last year, Tembo signed an agreement with the GHH Group to include the electric off-road light duty vehicles within its product offering and its worldwide sales and service program. As part of the agreement, GHH offers the vehicles in Germany, Turkey, Greece, Russia, India, the USA, Mexico, Chile, New Zealand, South Africa, Botswana, Mozambique, Namibia, Tanzania, Zambia, Zimbabwe, the CIS states and Latin America.

The conversion kits are for both mechanical and electrical service vehicles, which are based on the enhanced, flatbed platform designed to take any special equipment like a crane or workshop machinery or service equipment for servicing mining machinery, GHH says.

The first Tembo Electric Cruiser came on the market in 2016. The company’s approach to turning the Toyota Land Cruiser and Hilux series into fully-fledged electric multi-purpose vehicles, especially for construction and mining industries, has been well received, with Boliden’s Tara mine, in Ireland, the first to trial one of its ‘green’ machine.

The Tembos correspond largely to the series standard of Toyota, but are equipped with an electric motor with 65 kW of power and 250 Nm of torque, a special 1:3 transmission and a powerful battery designed for at least 10 years or 8,000 charging cycles. They can achieve 80 km run time with a 28 kWh battery pack and 200 km with a 72 kWh battery pack.
In two-and-a-half hours the vehicles are charged from 20% to 80% with the single-phase charger. Using a three-phase charger, this charge time decreases to only one hour.

No external infrastructure is required for operation as a 15 kW charger is also on board with the single phase and a 22 kW with the three phase. Battery recuperation is in place and a charging cable wallbox can also be supplied with the vehicle, if required.

The vehicles reach a top speed of 80 km/h and can climb gradients of up to 45°, GHH says.

Tackling the big mine electrification questions

“There is consensus in the industry that once we start doing electrification, we will innovate much more in other areas of the mining space.”

If anyone in the mining sector thought electrification was not in their wheelhouse, Theo Yameogo’s words might make them think again.

Yameogo, Partner and National Mining & Metals Co-Leader at EY Canada, made such a statement during The Electric Mine Virtual Conference earlier this week. The event, organised by International Mining Events, brought leaders in the electrification space together to discuss the latest developments in the industry, of which there were many.

The stage was set for mine electrification reveals, and Henrik Ager, President of Sandvik Mining and Rock Technology (soon to be Sandvik Mining and Rock Solutions), did not disappoint, acknowledging that the company is currently working on development of what would be its largest underground truck: a battery-powered 65 t vehicle.

This was all part of the company’s aim to have a “full range electrified offering by 2022”, he said.

Azizi Tucker, Co-Founder and CTO of XING Mobility, was next up, providing an overview of the Taiwan-based company’s offering in his presentation: ‘Electrification from prototype to mass production’.

With a remit to provide commercial, industrial and specialty vehicle makers with modular, high power and safe battery and powertrain technologies, XING is making an entrance into the mining space at just the right time.

Tucker talked attendees through the elements that make the company’s IMMERSIO™ battery solutions ideal for the mining sector: “With the modular size and shape of our batteries, we can really suit any vehicles. We find this very popular with the original equipment manufacturers (OEMs) as they can utilise their existing chassis.”

The elimination of corrosion, ability to operate consistently in high-temperature environments, a variety of sealing techniques and the use of nickel-manganese-cobalt lithium-ion chemistry has allowed the company to provide the safe and enclosed battery solution miners are looking for.

He concluded by saying XING was in conversation with a variety of mining companies, mining OEMs and mine site operators about deploying solutions in the space.

Attendees were then treated to a demonstration of Tembo 4×4 e-LV’s Electric Cruiser via video during the session: ‘Green conversions: the Tembo 4×4 e-LV electric light utility vehicle platform’ (pictured below). They got up close and personal with the battery-electric utility vehicle as it travelled on- and off-road close to the company’s Netherlands HQ.

After a 15-minute demo showing off the Electric Cruiser’s attributes, Paul Smeters, Tembo 4×4 e-LV’s Marketing Manager, and Alexander Haccou, Tembo 4×4 e-LV’s Technical Director, joined the event to answer audience questions.

The inevitable query came up early during the live Q&A: have you tested this vehicle in an underground mine?

Haccou was prepared for this, explaining that Boliden’s Tara underground zinc-lead mine in Ireland was the first recipient of the company’s Electric Cruiser, and a unit had been operating there for a few years now observing many of the maintenance benefits battery-electric machines are becoming renowned for.

The Electric Cruiser has also been tested in Australia and Canada with the help of Tembo 4×4 e-LV partners in those regions, he added.

“We don’t use fast charging or battery swapping,” Haccou said in response to another question. “What we have seen in several mines is the daily amount of usage is less than the battery’s full capacity.”

After several questions related to an active thermal management system for batteries had come up in previous sessions, Nicolas Champagne’s entrance to the virtual event proved timely.

His presentation, ‘Battery thermal management system using a highly advanced dielectric fluid’, homed in on the use of a dielectric fluid with specific features to allow direct cooling of the battery electrochemical cells.

Champagne, Formulation Team Manager of the R&D department for TOTAL Lubricants, revealed results from use of the fluid in bench tests and simulations at the battery pack level, extrapolating what these results could mean for battery-powered vehicles in the mining sector.

He said the company is in discussions with at least one mining customer about deploying its fluid on a battery-powered vehicle.

After previous sessions had discussed the potential for fast charging and battery swapping, Champagne made clear that TOTAL Lubricants’ solution would prove beneficial in all battery-powered applications throughout the mining sector.

 

Following a lunch break, it was the turn of Epiroc’s Anders Hedqvist (Vice President of R&D, underground) and Franck Boudreault (Electrification Transformation Lead, underground) to deliver a scoop (pun intended).

The pair, during their presentation, ‘From one generation to the next – learnings from zero emission mining’, took it in turns to provide updates.

Boudreault revealed the company’s plan to create battery-electric conversion kits for not only Epiroc diesel-powered equipment out in the field but other OEMs’ machines, before Hedqvist disclosed the company’s in-development battery-electric 18 t LHD would be trialled at LKAB’s Sustainable Underground Mining (SUM) project in Sweden. Epiroc has already delivered a diesel-powered Scooptram ST18 to be trialled in autonomous mode at the SUM project.

It was Yameogo, a mining engineer with much experience operating in underground mines in Canada, that provided the event’s big picture talk in his presentation, ‘Will electrification spark the next wave of mining innovation?’

He talked up the need for industry collaboration between miners, OEMs and service providers in not only electrifying equipment and operations, but also other types of technology.

“That type of collaboration and co-creation framework will actually help mining companies also think about innovation and other items part of electrification and equipment, in general,” he said.

The focus narrowed slightly to open-pit electrification during Dr Bappa Banerjee’s talk, ‘An electric future for mine haulage’. Dr Banerjee, General Manager of Mining Equipment for Wabtec, emphasised from the off that there was no one-size fits all solution to going electric in this sector.

“It’s becoming clear to us…that perhaps it will be a combination of technologies that really help us get to a solution that is feasible,” he said.

This solution, he said, depended on the mine application and haulage scenario, underlining the need for technology flexibility.

In his presentation, Dr Banerjee pitted a diesel-powered haul truck with 2,500 horsepower (1,864 kW) as his baseline solution against a hybrid solution with a 2,500 hp diesel engine and 200 kWh battery as one alternative, and all-electric truck platforms equipped with trolley assist (with 800 kWh battery) and stationary charging (1,200 kWh battery).

The energy cost versus productivity outcome he showed proved his earlier point about different applications suiting different solutions, with varied results depending on if these trucks were deployed on downhill, uphill or flat hauls.

GE Transportation, since merged with Wabtec, has previously demonstrated a battery-diesel hybrid solution on a Komatsu 830E-1AC and Wabtec has plans to release trolley solutions for Komatsu 830E-5 and 930E-5 haul trucks in 2021, so this analysis includes hard industry data.

Dr Banerjee concluded on the decision-making aspect of going electric: “These are not just point in time decisions we have to make regarding the CAPEX and where we are in the lifecycle of the mine, but decisions across decades sometimes.

“Perhaps the best way to approach this would be to start with a technology that is more flexible up front or has more options.”

Brian Huff, Vice President of Technology for Artisan Vehicle Systems, a Sandvik Mining and Rock Technology business unit, used his presentation to reinforce that battery-powered solutions were the way forward in the underground environment.

‘Rethink the machine, not the mine’ was the title of his presentation and Huff stayed true to it from the off: “The basic message is that this is not as hard as you think it is. There is a real big change coming to the mining industry, but it may not be as difficult as you think to accomplish a conversion to battery-electric equipment.”

Similar to Hedqvist’s mention of the newfound freedom available to engineers when designing these next generation battery-electric machines, Huff explained that Artisan’s generation three BEV blueprint started with a battery-electric driveline and built from there.

“Major parts of the frame can be removed to facilitate swapping…[and you can have] double to triple the power density of the machine (compared with the diesel-powered equivalent) to improve performance,” he said.

He moved on to tackle the usual range anxiety question head on, displaying a video of a 13 km haul on a one-in-seven grade. Within this, he showed that the ability to swap batteries during the uphill haul meant there was no loss in haulage productivity when compared with the a similar payload diesel-powered machine.

The time losses related to battery swapping – around six minutes per swap with the Z50 – were more than offset by the increased haulage speed, according to Huff. “It is about 10% faster on the climb,” he said when comparing the BEV unit with a conventional diesel truck.

Productivity could be further boosted with the introduction of Artisan’s patented AutoConnect system. Fitted on the company and Sandvik’s newest 18 t payload LH518B LHD, this system allows the battery swap to be completed in well under five minutes, according to Huff. IM understands an AutoConnect retrofit option could allow the Z50 haul truck to match that swap time.

Add to this productivity benefit, decreases in operating cost and total cost of ownership, and it is hardly surprising Barrick recently signed off on a trial of four of these Z50s at its Turquoise Ridge joint venture gold mine in Nevada.

Safety, cost, maintenance, productivity and even battery life; you name it, The Electric Mine Virtual Conference discussed it.

The good news is a second dose of electrification talk is only four months away, with The Electric Mine 2021 conference taking place on March 15-16, 2021, in Stockholm, Sweden.

Sandvik and Barrick confirm Artisan Z50 trials at Turquoise Ridge gold mine

Sandvik and Barrick have confirmed the signing of a partnership agreement for trialing and enhancing battery-electric vehicles (BEVs) for underground hard-rock mining.

During a three-year production trial, Sandvik will deploy four Artisan Z50 BEV trucks at the Turquoise Ridge gold mine, part of the Nevada Gold Mines joint venture (JV), Sandvik said. Barrick is the operator of the JV, which is the single-largest gold-producing complex in the world, forecast to produce a total of 3.4-3.65 Moz of gold during 2020.

The announcement follows an acknowledgement of such a deal by President of Sandvik Mining and Rock Technology, Henrik Ager, earlier this month.

The Z50 haul truck, with a 50 t payload capacity, is a ground-up design that seamlessly integrates the most capable and proven battery electric powertrain available in the mining industry with the latest and most coveted features of any haul truck on the market today, according to Sandvik.

It is equipped with AutoSwap, a patented self-swapping system for the Artisan battery pack. This makes battery swapping faster and easier with a minimum amount of manual handling: changing the battery only takes about six minutes, and it can be done in a passing bay or old re-muck bay with no overhead cranes or external infrastructure needed.

In phase 1 trials, the Z50 truck already achieved more than 1,400 hours of production with over 1,400 loads, according to Sandvik. It reached production operation of up to 18 hours per day, with speeds of over 10 km/h observed on the ramp to the tip.

Some of the key performance indicators in the new partnership will include the performance of the BEV technology in a production environment, mechanical availability, average lifecycle cost and overall production cost, Sandvik said.

“We are always looking at ways to improve our performance, both in terms of sustainability and operational efficiency,”  Mark Bristow, Barrick’s President and CEO, said. “This partnership with Sandvik is exciting and will give us first-hand experience in BEV technology in our own production environment. It is a significant step to furthering our BEV strategy across the group.”

Ager added: “I am very pleased that Barrick and Sandvik have teamed up to perform these extensive trials in a daily production environment. It gives us the possibility to prove the performance of our BEV technology.

“The purely battery-powered truck helps to reduce heat and emissions underground, helping mines reach their sustainability targets and reduce ventilation costs. This raises the bar for what is possible and enables an all-new level of production and cost reduction for underground hard rock mines.”

A dedicated site project team will be jointly working with the Barrick operations team during the trial period to ensure that all data is captured and the experience from both Sandvik and Barrick is used to ensure the uptime and productivity targets are met, Sandvik said.

Bis looking at hybrid, electric and automated Rexx haul truck variants, Peate says

Bis is already offering clients a “step change in flexibility and efficiency” with its Rexx haul truck, but Chief Development Officer, Todd Peate, says the company has plans to offer hybrid, electric and automated versions of the 160 t payload vehicle as it looks to offer customers a further boost in productivity and their environmental footprint.

Speaking in a blog post on Bis’ website, Peate said the launch of Rexx, a solution that can come out of pit and travel up to 30 km while reducing fuel consumption up to 40%, is a fantastic example of a lower cost approach to running mining fleets.

Rexx was launched in 2018, with Peate saying six customers have been running detailed trials of this solution during 2019 and 2020 as part of fleet replenishment and cost optimisation project assessments.

Among these are trials at Gold Fields’ Granny Smith mine and Glencore’s Murrin Murrin operation, both in Western Australia.

“Rexx speaks directly to improvements in environmental footprint and productivity for our customers,” he said, adding that, in Bis’ short- to medium-term roadmap, variants will be available in both hybrid and electric forms, with the existing solution capable to be retrofitted with automation capability.

“With the success of Rexx and feedback from the market, we have a roadmap for a product family that will see Rexx continue to grow well into the back end of this decade and beyond,” he said.

Meanwhile, in other areas, Bis is developing a “category disruptor” in the underground market in the early part of 2021, Peate said.

He concluded with the news: “From an automation point of view, we’ll be bringing something to the market very soon in the form of an offering that has potential application for not only our equipment, but for all equipment in the industry.

“Stay tuned!”

Polymetal and SMT Scharf sign underground electric vehicle MoU

Polymetal and SMT Scharf have signed a Memorandum of Understanding (MoU) for a potential strategic cooperation in underground electric vehicles (EV) development in line with the miner’s climate strategy.

The MoU outlines that Polymetal and SMT will cooperate in the development, implementation and testing of zero-emission battery EVs. Initially, the collaboration is to be focused on mid-ranged LHDs and trucks, with potential involvement of drill rigs and utility vehicles in the future, Polymetal said.

IM understands Polymetal has previously tested RDH (now owned by Scharf under RDH-Scharf) battery-electric machines at some of its underground mines.

Two pairs of units (an LHD and truck) are going to be tested at Polymetal’s operations during the one-year trial with further collaborative re-design, signing of a distribution agreement and establishment of an after-sales support centre, Polymetal said, adding that the strategic cooperation is set to last for 10 years with an opportunity for further extension.

“The partnership with SMT grants us an easy access to customisable battery-electric vehicles which could positively contribute to our operating costs dynamics, greenhouse gas (GHG) emissions and personnel safety at underground mines,” Vitaly Savchenko, COO of Polymetal, said. “It fits well into our strategy to gradually involve EVs across the group’s operations and marks another step towards cutting carbon emissions by 5% in 2023.”

Polymetal’s GHG emissions from mining fleet and mobile machinery at the hubs with underground mines for 2019 were 334 Kt of CO2 equivalent, which is 12% of the group’s total emissions (Scope 1+ 2).