Tag Archives: Evolution Mining

Electric Mine Consortium partners with AWS on world-first mine decarbonisation platform

Australia’s Electric Mine Consortium (EMC), made up of some of the world’s leading mining and service companies, has announced it is working with Amazon Web Services (AWS), an Amazon.com company, to accelerate the electrification of mine sites globally.

Announced at AWS Summit 2022, EMC is using AWS’s depth and breadth of services, including machine learning, business intelligence and storage, to build the world’s first mining data platform, to capture real-time information on mine decarbonisation from sites globally.

To drive decarbonisation, mining companies can use the platform to measure energy storage levels and electrical infrastructure use from global mine sites to accelerate the creation of a cleaner, more electrified future in mining, EMC said.

Co-founder of the EMC, Graeme Stanway, says the platform can help enable EMC members to share sustainability insights and analyse the outcomes of adopting electrified mining infrastructure and sustainable operations.

“The way we generate, store and harness energy around the globe is changing drastically,” Stanway said. “EMC’s collaboration with AWS will help see us at the forefront of this change, driving the mining industry’s electrification at scale.”

Stanway said the industry is crying out for tools to decarbonise due to tightening government emission reduction targets, increasing environmental, social and governance pressure, and the industry being responsible for 7% of the greenhouse gas emissions globally.

“Like the electric vehicle industry, electric mines are the future” Stanway said. “Not only can they be safer through the eradication of diesel particulates, pollution, noise and vibrations, they can also be more targeted, precise and effective when it comes to mining, and yield stronger results than traditional mines with minimal ground disturbance.”

As part of the initiative, EMC created a “data lake” using Amazon Simple Storage Service (Amazon S3), a cloud object storage service, that can securely store thousands of datasets from the consortium’s mines, including data on energy consumption and renewable energy infrastructure output.

EMC can then clean the data and run data pipelines using AWS Step Functions, a low-code, visual workflow service; AWS Glue, a serverless data integration service; and AWS Lambda, a serverless, event-driven compute service. AWS Glue can provide EMC with data catalogue functionality, and AWS Lake Formation, a service that makes it easy to set up a secure data lake in days, can deliver security and access control.

Amazon QuickSight, a business intelligence service (screenshot pictured), can allow everyone in the consortium to explore and understand mining data through user-friendly interactive dashboards that identify efficiency practices that may reduce emissions, according to EMC.

Also, using Amazon SageMaker, a fully managed service to build, train, and deploy machine learning models, EMC can train machine-learning models to predict energy usage spikes at mines and track the carbon efficiency of deploying sustainable energy infrastructure.

Sarah Bassett, Head of Mining and Energy, Australia at AWS, said: “Data capture and analysis is essential to mining operations, and AWS is helping consortium members to share their critical datasets and collective insights to drive the digitisation and evolution of the industry. I am excited to be collaborating with the EMC and its consortium members to improve the design of mines globally and accelerate the industry’s journey to decarbonisation on the global scale.”

The EMC is a growing group of over 20 mining and service companies. These companies are driven by the imperative to produce zero-emission products for their customers and meet mounting investor expectations. Thus, the objective of the EMC is to accelerate progress toward the zero-carbon and zero-particulate mine through:

  • Resolving key technology choices;
  • Shaping the supplier ecosystem;
  • Influencing policy; and
  • Communicating the business case

The EMC is emerging as a key vehicle for the decarbonisation of the mining industry, particularly for underground operations, and will remain responsive to the rapidly changing external environment.

Members include OZ Minerals, Newcrest Mining, Gold Fields, IGO, South32, Blackstone Minerals, Evolution Mining, Barminco and Iluka Resources.

Polymathian, SimGenics, Simulation Engineering Technologies, MathWorks, First Mode to tackle electric mine simulation tasks

Five teams have been selected to join the Think & Act Differently (TAD) ideas incubator, powered by OZ Minerals and Unearthed, tasked with developing and testing an open architecture simulation platform to develop electric mine designs, with the goal to achieve zero scope one emissions.

Last September, the Electric Mine Consortium launched the Electric Mine Simulation crowd challenge in partnership with the (TAD) ideas incubator, noting that electrification of mine sites remained a critical step change needed for the mining industry to achieve a zero-carbon future.

“Switching to electrified solutions and renewable energy represents a transformational shift that will change the way mines are designed,” OZ Minerals said. “This challenge is about using simulation to understand the impacts of electrification on mine design, infrastructure and energy management.”

The crowd challenge closed in November last year and attracted 179 participants from 36 countries, resulting in 23 submissions. Five teams have now been selected to join the TAD incubator where they will be supported to develop and test their simulations.

Finalist teams include:

  • Polymathian – Colin Eustace, Michael Dallimore, Steven Donaldson and Mitchel Grice are experts in solving complex planning and scheduling problems for the industry, OZ Minerals said. Their solution is to provide a widely used scalable simulation model platform to model large and complex operations, from mining and processing to full supply chain operations;
  • SimGenics – Abrie Venter and Kobus Viljoen are using a software platform that can integrate continuous and discrete-event simulation tools from multiple vendors into one solution;
  • Simulation Engineering Technologies – Jaco Botha, Henk Jenkinson, Fredrik Sundqvist and Marco Agas are the team behind a mine simulator (SimMine®) that allows for the construction of a complete mine simulation, including development, production and ore handling systems;
  • MathWorks – Wilco Volwerk, Peter Brady, Ruth-Anne Marchant and Sam Oliver are using a mathematical computing software that can be used to model dynamic, discrete and continuous processes with multiple time scales to create a mine simulation framework; and
  • First Mode – Aidan Morgan, Jan Haak and Clara Sekowski represent a creative engineering company, using modelling and simulation to inform design decisions and optimise the use of technology.

The teams will work together to explore and develop concepts for the development of an open architecture simulation platform to develop electric mine designs, with the goal to achieve zero scope one emissions. A use case for testing the value of simulation will be provided by OZ Minerals’ copper-gold mine, Prominent Hill, with further use cases developed in collaboration with the Electric Mine Consortium member companies.

The TAD Incubator program is a supportive environment that includes funding, technical mentoring, opportunities for collaboration, capability uplift and access to mining data and mining operations, OZ Minerals said. The teams will be supported by mining business improvement specialists from Imvelo, Sharna Glover and Alan Bye and Simulation SME Luigi Barone, an internationally recognised expert in artificial intelligence.

Brett Triffett, OZ Minerals’ Transformation Technologist, said: “This challenge will help us learn about the power of simulation together with some really talented and collaborative people, as we accelerate progress towards a fully electrified zero carbon zero particulate mine. The benefit of crowdsourcing, particularly in an area where ideas may come from outside our traditional mining networks, is that we can scour the globe to find start-ups, academics and individuals that we would not have otherwise had encountered.”

Multiple mining companies from the EMC will be able to collaborate on the outcomes of this experiment and we’re excited to see what we can learn about the process as well as the technology. The teams will work together over a three-month period to develop simulation concepts.

OZ Minerals, IGO South 32, Blackstone Minerals, Evolution Mining, Barminco and Gold Fields have committed to significantly reducing their carbon footprint. These seven mining companies, along with a number of partner companies, have come together to form the Electric Mine Consortium, a collaborative group seeking to accelerate progress towards a fully electrified zero carbon and zero particulate mine.

The TAD incubator is powered by OZ Minerals and is focused on themes that prioritise social and environmental responsibility for the future of mining.

Epiroc shows off sustainability credentials in another record quarter

In a quarter characterised by high customer activity and a strong demand for aftermarket services, Epiroc had another reason to be positive with the validation of its 2030 sustainability goals by the influential Science Based Targets initiative (SBTi).

Further records were broken in the December quarter – this time it was revenue (coming in at SEK11.1 billion (US$1.19 billion) and operating profit (coming in at SEK2.59 billion) – as the company continued to benefit from its in-house efficiency programs; value-added automated, electric and digitalised offering; and strong order pipeline.

At the same time, Epiroc’s sustainability credentials were shown off for the world to see between October 1 and December 31.

In addition to the SBTi validation, over this period, the company laid out plans at its Capital Markets Day for its third battery-electric retrofit project, the Minetruck MT436B; secured its first order for Scooptram ST1030 battery conversion kits from Evolution Mining’s Red Lake gold operations in Canada (on top of the delivery of new ST14 Battery LHDs); extended its range of flexible charging products for battery-electric mining equipment; and announced a project with Boliden and ABB to develop a next-generation battery trolley setup for the Kristineberg mine in Sweden.

The only thing that was missing from this packed three-month period was the launch of a brand-new battery-electric machine, yet this will come. Epiroc has plans to electrify its full fleet of underground load and haul equipment by 2025 – including battery-electric retrofit solutions for its existing diesel fleet – alongside electrifying its surface fleet by 2030.

In line with SBTi requirements, Epiroc is committing to halve its absolute CO2 emissions in its own operations – so called Scope 1 and Scope 2 – by 2030, with 2019 as base year. However, more than 99% of Epiroc’s total CO2 emissions are other indirect emissions, with about 83% of the total coming from when customers use the products. It has, therefore, committed to halve the absolute CO2 emissions from use of sold products – so called Scope 3 – by 2030.

“This is industry leading and well above SBTi’s minimum requirements,” Epiroc said of the Scope 3 target. “The transition from diesel-powered to battery-electric machines will make a significant impact.”

Does this mean Epiroc will turn off the diesel-powered taps at a certain point, saying it will only supply electric equipment to customers?

Mattias Olsson, Senior VP of Corporate Communications, says no such action is planned, explaining that these Scope 3 targets align broadly with its mining customer base’s own CO2 emission cut goals. The majors all have plans to decarbonise their operations, with the most ambitious looking to hit net zero in 2030-2035. Codelco, for example, plans to electrify all its underground operations by 2030.

Demand for this equipment is bound to be high, which is where Epiroc’s retrofit program could become crucial.

Designed to allow miners an ‘entry point’ into cutting emissions underground through its in-demand midlife rebuild program, Olsson said supply of these machines could accelerate the industry’s electrification uptake and provide quicker access to zero emissions equipment compared with the long lead times that come with new battery-electric machines.

In a market that is becoming increasingly crowded, such an option may differentiate Epiroc from the rest of its peers, in the process, helping it achieve its ambitious goals to help keep global warming at a maximum 1.5° C.

Epiroc’s battery conversion offering comes to life with Evolution Mining Red Lake order

Epiroc is now offering customers conversion kits that, it says, “seamlessly transform” loaders from diesel-powered to battery-electric driven means, with the company having secured its first order for the solution from Evolution Mining’s Red Lake gold operations in Canada.

The new offering will speed up the mining industry’s shift to an emissions-free future, Epiroc said.

Battery conversions are already underway in Canada, with Epiroc’s Scooptram ST1030 loader being the first vehicle to undergo the transformation. Evolution Mining, earlier this year, ordered the conversion of two diesel-powered Scooptram ST1030 machines for use at Red Lake, in Ontario. In addition, it also ordered two new Scooptram ST14 Battery loaders and one Minetruck MT42 Battery to add to the fleet at Red Lake.

The company has been helped in this electrification pursuit by Ontario-based FVT Research, a Canada-based company with expertise in converting diesel-powered mining machines to battery-electric vehicles. Epiroc announced plans in September to acquire the company.

Kits to convert the Scooptram ST1030, one of Epiroc’s most popular loaders, are now available to order through most of Epiroc’s Customer Centers worldwide, the OEM said. Conversion kits for other machines will follow, including for the Scooptram ST14 loader, which is already being tested as a converted version.

Helena Hedblom, Epiroc’s President and CEO, said: “Converting existing diesel machines to battery electric will be a smart and cost-efficient alternative for mining companies that want to electrify their operations. It will be an important part as we together continue the drive toward emissions-free operations.”

The conversion involves removing the diesel engine, adding the battery and changing to an electric drive line. The end result is the same or higher performance level as diesel machines with all the added benefits of battery technology, which includes zero emissions and a healthier underground environment for operators, Epiroc said.

Epiroc’s service organisation will offer a quick turnaround time for the conversion, which is included in a midlife rebuild and puts machines back on site ready for heightened performance without unnecessary disruptions to production, it added.

Charge On Innovation Challenge sparks more miner interest

The organisers of the Charge On Innovation Challenge have reported an overwhelming response to the preliminary phase, which closed on July 31, with 21 mining companies joining as patrons, over 350 companies from across 19 industries registering their interest as vendors, and more than 80 organisations submitting expressions of interest (EOI).

The challenge, a global competition, is expected to drive technology innovators across all industries to develop new concepts and solutions for large-scale haul truck electrification systems aimed at significantly cutting emissions from surface mining. It also aims to demonstrate an emerging market for charging solutions in mining, accelerate commercialisation of solutions and integrate innovations from other industries into the mining sector.

BHP, Rio Tinto, and Vale, facilitated by Austmine, launched the Charge On Innovation Challenge in May of this year, initiating the EOI process on May 18. Since the initial launch, Roy Hill, Teck, Boliden, Thiess, Antofagasta Minerals, Codelco, Freeport McMoRan, Gold Fields and Yancoal came forward as patrons by early July.

The latest release has highlighted another nine miners to join as patrons. This includes Barrick Gold, CITIC Pacific Mining, Evolution Mining, Harmony Gold, Mineral Resources Ltd, Newcrest Mining, OZ Minerals, South32 and Syncrude.

The patrons, supported by Austmine, will assess the proposals over the next month and select a shortlist of vendors who will then formally pitch their challenge solutions.

At least one of these proposals has come from ABB, which confirmed earlier this month that it had submitted its ideas for the challenge using its mine electrification, traction and battery system eand charging infrastructure expertise.

At the end of the pitch phase, the challenge patrons will look to select the most desirable charging concepts identified as having broad industry appeal and application, as well as providing a standard geometry that enables chargers to service trucks from different manufacturers. The first concepts could be ready for site trials in the next few years, according to the organisers.

BHP’s Charge On Innovation Challenge Project Lead, Scott Davis, said: “The Charge On Innovation Challenge is a great example of the current collaborative work being done by the mining industry in seeking solutions to decarbonise mining fleets. The challenge received interest from companies based in over 20 countries, showing the truly global reach of the opportunity to help reduce haul truck emissions.”

John Mulcahy, Rio Tinto’s lead for the Charge On Innovation Challenge, said: “Twenty-one mining companies, all focused on lowering carbon emissions, have joined as patrons. Together we’re encouraging technology innovators to help us introduce large-scale haul truck electrification solutions. The sooner we bring these technologies to market, the sooner we can introduce them to our fleet, and reduce emissions.”

Vale’s Charge On Innovation Challenge Project lead, Mauricio Duarte, said: “We are very happy with the results of the first phase of the project. It´s still early to talk about the success of the challenge, but it is clear that the industry has reached a new level: we worked together on a common sustainability agenda and we will work collectively to reach our goals, gaining safety and speed on our way to low carbon mining.”

Evolution enlists RCT and its Guidance Automation tech to transform Red Lake gold mine

Evolution Mining has selected RCT and its ControlMaster® Guidance Automation technology to help “transform” its new Red Lake mine in Ontario, Canada.

Evolution has embarked on a three-year investment strategy to restore the newly acquired Red Lake mine to a safe, highly efficient, long life and low-cost operation providing strong value for shareholders. This followed its acquisition of the operation from Newmont in November 2019 in a deal that could eventually rise to $475 million.

RCT has previously worked with Evolution Mining on transitioning its Mungari operations in Western Australia’s Goldfields region to its fully-autonomous technology solution.

To assist in the Red Lake turnaround strategy, RCT will commission its interoperable and scalable ControlMaster Guidance Automation technology to the underground loader fleet.

RCT says it is working closely with Red Lake’s leadership team to seamlessly integrate the new technology to enable greater productivity efficiencies to support Evolution Mining’s transformation strategy.

“The technology will unlock significant value for Evolution Mining by ensuring optimal machine performance, higher speed autonomous tramming, and reduced machine damage,” RCT said. “The technology will deliver faster production cycle times and reduced unplanned downtime across the loader fleet.”

The loaders will be controlled from either the surface-based ControlMaster Automation Centre or the customised underground Automation Centres designed specifically for easier transfer via the mine shaft hoist system.

This solution safeguards machine operators by relocating them away from hazards commonly found at the mine face and significantly reduces shift handover times, lowering overhead costs and resulting in greater site efficiencies, RCT said.

Kirsty Liddicoat, Red Lake General Manager, said: “We are very pleased to be partnering with RCT to introduce modern technologies to Red Lake as part of our transformation process. RCT equipment will enable higher productivity and efficiencies from our underground scoop fleet, while improving safety for our people.”

RCT’s Mining Business Development Manager, Ryan Noden, said ControlMaster is an ideal solution to help deliver the operational transformation that is aligned to Evolution Mining’s Red Lake strategy.

“The advanced features of the ControlMaster Automation technology means Red Lake will be able to quickly achieve improved production efficiencies from its loader fleet, with a greater level of safety for its operators,” he said. “Red Lake will also benefit from selecting a truly interoperable technology provider that can collaborate closely with them to realise further mobile equipment automation opportunities as further optimisation of the asset is achieved.”

Noden added: “RCT has a proud history of delivering value to the Canadian mining sector and we look forward to continually delivering to them with our cutting-edge technology backed by our dedicated in-country support team based at the company’s facility in Sudbury, Ontario.”

Evolution’s vision is to restore Red Lake to be one of Canada’s premier gold mines sustainably producing 300,000-500,000 oz/y of low-cost gold, Jake Klein, Evolution’s Executive Chairman, has said.

Evolution Mining studying open-pit, underground expansion options at Cowal

Evolution Mining says it is embarking on a prefeasibility study to further expand its Cowal open-pit mine as part of a plan to build towards 350,000 oz/y of sustainable, reliable, low-cost gold production from the New South Wales operation.

Currently on the E42 stage H cutback, Evolution said during a recent site visit that there is potential to further the life of the open pit by accessing feed from the E41 and E46 satellite pits. The study looking into a possible expansion is due later this year, with the company saying it could provide long-term base load ore feed for the operation.

The mine produced 262,000 ounces in Evolution’s 2020 financial year.

The Stage H cutback the company is currently pursuing is expected to see increased ore volumes and grade mined in the first six months of this year, with the strip ratio to fall below 1:1 in its 2023 financial year, Evolution said. It also says an equipment strategy review is underway, with opportunities to “rationalise fleet” with reduced re-handling.

The haulage and loading fleet at Cowal currently consists of 20 Cat 789C dump trucks, three Cat 785C trucks, four excavators (one Liebherr 9400, one Liebherr 994B, one Liebherr 9200 and one Hitachi EX1200), plus three Cat 992G wheel loaders. It also has six hired Epiroc SmartROC surface drills at the operation, one Drill Rigs Australia GC600 drill rig, five Cat D10T tracked dozers and one Cat 834H wheel dozer.

The open-pit expansion is only part of the expansion story at Cowal, with a feasibility study underway on an underground operation. This is factoring in 3 Moz of resources and 1 Moz of reserves, with high-grade orebodies open at depth, the company says.

A second decline (Galway) is due to be developed at Cowal this year, with diamond drilling set to commence next month. The 14,300 m of planned drilling will, the company says, help confirm optimal grade control parameters and convert resources to reserves.

Evolution Mining also has a permit to increase processing capacity at Cowal to 9.8 Mt/y, with near-term incremental improvements targeting a circa-9 Mt/y rate.

The process flowsheet at Cowal includes primary crushing with a Metso Outotec 54-75 Superior MK-II gyratory, grinding with an FLSmidth 36 ft (11 m) x 20.5 ft (6.2 m) SAG mill and FLSmidth 22 ft x 36.5 ft ball mill, and screening with Schenck and Delkor screens. Sandvik H6800 hydroconecone crushers, Metso Outotec flotation cells, a Metso Outotec Vertimill, and Metso Outotec stirred media detritors also feature.

Evolution also said it is testing technology that uses glycine and cyanide during the cyanidation process of gold ore at Cowal for potential significant cost savings and environmental benefits.

Lab trials with the GlyCat™ technology from Australia-based Mining and Process Solutions have been completed successfully, it said, with the next phase being pilot plant trials to assess variability tests and long-term environmental impacts.

DDH1 drilling contractor debuts on ASX after stellar IPO

DDH1 Ltd has officially commenced trading on the Australian Securities Exchange following an initial public offering last week that saw the drilling contractor secure gross proceeds of A$150 million ($115 million) through the issue of around 40% of its shares.

The IPO proceeds were used to allow existing shareholders to realise part of their investment in the company and to repay company borrowings, the company said. The IPO was one of the largest by a Western Australia-based business in the past decade, according to DDH1.

“The ASX listing marks a significant milestone in the evolution of DDH1, which was established in Perth in 2006 with the vision to create Australia’s premier mineral drilling contractor,” the company said. “Over time, DDH1 has earned the custom of Australia’s premier mining companies through its repeated and meticulous service offering of gathering the critical geological data that supports the decision making in respect of all mining activity through the complete cycle of a mine’s life.”

DDH1 has a portfolio of approximately 102 clients, with a financial year 2020 pro-forma revenue of A$249.8 million. Its earnings are diversified across multiple commodities and geographies, with a client base that includes Newcrest Mining, BHP, Evolution Mining, Gold Fields, Independence Group, Kalgoorlie Consolidated Gold Mines, Newmont Corp, Ramelius Resources, Rio Tinto, Roy Hill Iron Ore and St Barbara.

It offers both surface and underground drilling services, with diamond coring and reverse circulation rigs on offer.

Sy Van Dyk, DDH1’s Managing Director and CEO, said: “The growth and success of DDH1 to date is testament to the commitment of the whole team, which strives to ensure the safety of all stakeholders while delivering exceptional service to our clients.

“Our long-term client relationships are built on the provision of quality drilling services and a deep understanding of our client’s business needs. The company’s significant market position reinforces the strong levels of industry recognition.”

He concluded: “There is growing demand in the Australian mineral drilling sector for DDH1’s services because of increased exploration, development and production spending by minerals exploration and mining companies. As an ASX-listed company with a strong balance sheet, a committed shareholder base, a disciplined approach to growth and access to capital markets, DDH1 is well positioned to pursue its growth strategy.”

Evolution Mining’s Red Lake transformation taking shape with CYD decline

Evolution Mining’s transformation plans at the Red Lake gold mine in Ontario, Canada, are tracking ahead of schedule with the Australia-based company’s board signing off the development of a surface decline at the operation.

The company acquired the Red Lake Complex from Newmont in November 2019 in a deal that could eventually rise to $475 million. When the deal was completed, it committed to invest $100 million on existing operations and an additional $50 million in exploration at Red Lake over the first three-year period following completion of the transaction.

The company says the surface decline, which is expected to cost A$60-A$70 million ($47-55 million), will provide a near-term opportunity to access additional low-cost ounces in the Upper Campbell mine at Red Lake with two additional mining fronts independent of the current shaft-constrained infrastructure.

The decline has been named the Campbell Young Dickenson (CYD) in recognition of three early developers of the Red Lake deposit, Evolution said.

Red Lake currently hosts a total reserve of 2.93 Moz at an average grade of 6.9 g/t gold. The decline will enable access to the Upper Campbell area of the mine, which hosts reserves of 1.85 Moz at an average grade of 7.4 g/t Au. Access to the HG Young orebody will also be established, which hosts a resource of 427,000 oz at 5.5 g/t Au and has the potential to be converted to reserves with additional drilling, Evolution said.

 

Annual gold production rates from these additional mining fronts are expected to be in excess of 1 Mt, according to the company.

With regulatory approval for this decline already in place, the box cut is expected to be completed in the March 2021 quarter. It will be located proximal to the Campbell mill.

Following this, development activities are scheduled to commence in the June 2021 quarter and first ore is currently expected in the June 2022 quarter. Studies are ongoing to assess opportunities to accelerate development and ultimate access to first ore, the company said.

Evolution’s stage 1 transformation plan at Red Lake is to cement production of plus-200,000 oz/y at an all-in sustaining cost of less than $1,000/oz by 2023. As part of this program, it has already decommissioned around 70 pieces of underground equipment and completed the phase 1 “hoist automation project” among other things.

Jake Klein, Evolution’s Executive Chairman, said on February 17: “Red Lake has consistently exceeded our expectations in almost every respect. With today’s announcement of the 2.93 Moz gold JORC Code ore reserve and board approval for the decline development, we are excited about the continued momentum we are building at this operation.

“This commitment is a significant step towards achieving Evolution’s vision of restoring Red Lake to be one of Canada’s premier gold mines sustainably producing 300,000-500,000 oz per annum of low-cost gold.”

Emesent builds mining connections as Hovermap autonomy takes off

Having recently helped DJI’s M300 drone fly autonomously underground (through its Hovermap Autonomy Level 2 (AL2) solution) and signed an agreement with Deswik to provide surveyors and planners with more accurate data from inaccessible areas, Emesent has been on a roll of late. IM put some questions to CEO, Dr Stefan Hrabar, to find out more.

IM: First off, if no communications infrastructure is in place at an underground mine, how do Emesent’s drones stream a 3D map of the environment back to the operator’s tablet?

SH: Hovermap is smartly designed to operate beyond the communication range of the operator. The operator does not always need to see a live map since Hovermap is navigating by itself. The user can place a waypoint beyond the current limits of the map, and beyond line of sight and communication range. Hovermap self-navigates towards the waypoint, avoiding obstacles and building the map as it goes. Once it reaches the waypoint (or if the waypoint is impossible to reach), it automatically returns back to the operator. The map data is stored onboard Hovermap and when it returns back to within Wi-Fi range the new map data is uploaded to the tablet. The operator can then see the new areas that were mapped and place a new waypoint in or beyond that map, sending the drone back out again to explore further.

IM: What results have you so far received from using AL2 for Hovermap at mine sites? Were the results PYBAR got from trials at Dargues and Woodlawn in line with your expectations?

SH: Last year’s trials at Dargues and Woodlawn showcased some great outcomes for the PYBAR team, including the ability for Hovermap to capture valuable data using Autonomy Level 1 (AL1). The team saw great potential in the technology, leading to the purchase of two systems for their use. Earlier this year, AL2 flights were conducted at Dargues during the final pre-release testing phase. Even the first stope at Dargues that was mapped using AL2 highlighted the benefit of the system over traditional CMS (cavity monitoring systems). A large area of overbreak was identified in the Hovermap scan. The same stope had been mapped with a CMS, but this area was not visible from the CMS scan location so the overbreak was not identified.

A number of mines have been using AL2 to map their stopes and other areas beyond line-of-sight. With AL2, they can send Hovermap into places that previously would have been inaccessible, enabling them to obtain critical data in real time without risking the machine or personnel.

The AL2-based stope scans have been more detailed and complete (lack of shadowing) than ever before. A beyond line-of-sight flight down an ore pass was also conducted recently, with Hovermap guiding the drone down 120 m and returning safely to produce a very detailed scan.

The high level of autonomy provided by AL2 also allows remote operation of the drone. We recently completed a trans-continental demo, with a customer in South Africa operating a drone in Australia using our AL2 technology and standard remote collaboration tools. The remote operator in South Africa was able to use their laptop to experiment with the technology from the other side of the world, sending Hovermap exploring down a tunnel.

This is a taste of what’s to come, with drones underground being operated from the surface or from remote operation centres thousands of kilometers away. This will remove the need for skilled personnel on site, and reduce the time spent underground.

IM: What had been holding you back from achieving AL2 with drones/payloads? Is it the on-board computing power needed to that has been the issue?

SH: Flying underground where there is no GPS, the space is tight and there are hazards such as mesh, wires, dripping water and dust is very challenging. We overcame many of these with AL1, which makes it safe and easy for a pilot to operate the drone within line-of-sight (Hovermap provides collision avoidance, position hold and velocity control). AL1 has been deployed for 18 months with many customers around the world, clocking up thousands of hours of use. This helped to improve the robustness and reliability of the core flight capabilities.

Emesent CEO, Dr Stefan Hrabar

AL2 builds on this mission-proved base capability to provide additional features. AL2 allows the system to fly beyond line-of-sight and beyond commination range. This means it’s on its own with no help from the operator and needs to deal with any situation it comes across. There are many edge cases that need to be considered, addressed and thoroughly tested. A significant amount of effort was put into these areas to ensure Hovermap with AL2 is extremely robust in these challenging environments. For example, the drone downwash can kick up dust, blinding the LiDAR sensor. We’ve implemented a way to deal with this, to bring the drone home safely. Other considerations are returning in a safe and efficient way when the battery is running low, or what to do if waypoints cannot be reached.

IM: How do you anticipate your partnership with Deswik impacting the mine planning and survey process? Do you see this reducing the amount of time needed to carry out this work, as well as potentially cutting the costs associated with it? Have you already carried out work at mine sites that has proven these benefits?

SH: Our commitment is to help mining companies increase safety and production while reducing costs and downtime. We do this by providing surveyors and planners with more accurate data from inaccessible areas, allowing them to derive new insights. Our partnership with Deswik means we’re able to provide a more comprehensive end-to-end solution to the industry.

We see this as a very natural partnership that will improve the overall customer experience. Hovermap excels at capturing rich 3D data in all parts of the mine (whether drone based, hand-held, lowered down a shaft on a cable or vehicle mounted). Once the data is captured and converted to 3D, customers need to visualise and interrogate the data to derive insights. This is where Deswik and other mining software vendors come into play. They have powerful software tools for planning, survey, drill and blast, geotechnical mapping and a host of other applications. We’re partnering with these vendors to ensure seamless integration between Hovermap data and their tools. We’re working with them to build automated workflows to import, geo-reference, clean and trim the data, and convert it into formats that are suitable for various tasks.

Surveyors at Evolution Mining’s Mungari operation have been using this new process in Deswik. Previously they needed a third software tool to perform part of the workflow manually before importing to Dewik.CAD. The intermediate steps have been eliminated and others have been automated, reducing the time from more than 30 minutes per scan to five minutes per scan.

IM: Since really starting to catch on in the mining sector in the last five years, drones have gone from carrying out simple open-pit surveys and surveillance to drill and blasting reconciliation platforms to reconnaissance solutions carrying out some of the riskiest tasks in underground mining. In the next decade, how do you see them further evolving? What new tasks could drones carry out to improve safety, cut costs or increase productivity?

SH: Emesent’s vision is to drive forward the development of ‘Sentient Digital Twins’ of industrial sites to future-proof the world’s major industries, from mining to energy and construction. These industries will be able to move to more automated decision-making using high-quality, autonomously collected data across their sites and tapping into thousands of data points to make split-second decisions about potential dangers, opportunities and efficiencies using a centralised decision-making platform.

We see our Hovermap technology being a key enabler for this future. Drones and other autonomous systems will become an integral part of the mine of the future. Drones will be permanently stationed underground and operated remotely, ready for routine data collection flights or to be deployed as needed after an incident.

Hovermap is already addressing some of the biggest challenges in mining — including safety and operational downtime. It improves critical safety to mines, keeping workers away from hazardous environments while providing better data to inform safety related decisions such as the level of ground support needed. This then feeds into better efficiency by helping mines to more accurately calculate risks and opportunities, aid decision making and predict situations.

Hovermap can significantly reduce downtime after an incident. For example, it was used to assess the level of damage in LKAB’s Kiruna mine after a seismic event. More than 30 scans were captured covering 1.2 km of underground drives that were not safe to access due to fall of ground. In another case, one of our customers saved around A$20 million ($14.6 million) after an incident, as they could use Hovermap to quickly capture the data necessary to make a critical decision.

IM: In terms of R&D, what future payload developments are you investing in currently that may have applications in mining?

SH: We’ll keep adapting our Hovermap design to suit new LiDAR improvements as they are released. More importantly, we’ll improve the autonomy capabilities so that even more challenging areas can be mapped with ease. We’re also adding additional sensors such as cameras, as these provide additional insights not visible in the LiDAR data. Our colourisation solution is an add-on module for Hovermap, which uses GoPro video to add colour to the LiDAR scans. This allows the identification of geological and other features.