Tag Archives: Orica

Orica’s wireless blasting tech overcomes magnetite challenges at LKAB Kiruna

A four-year collaboration between Orica and LKAB has resulted in the first production blasts using wireless initiation technology at the Kiruna iron ore mine in northern Sweden.

These blasts – charged in the middle of May and blasted in early June – are going some way to support LKAB’s safety, productivity and long-term automation objectives, according to Abhisek Roy, EMEA Head of Marketing for Orica.

It has involved an extensive amount of work to get to this blasting milestone, according to Ingemar Haslinger, Technical Services Lead Europe at Orica.

He explained: “It all started in 2018 when LKAB showed interest in our new WebGen™ wireless technology. They could see the benefits in both safety and productivity with the new way of producing the ore.”

This saw Orica go to site at the Kiruna mine in March 2018 to begin with a signal survey, testing if the company could obtain a good signal between the antenna and the in-hole receivers.

WebGen provides for groups of in-hole primers to be wirelessly initiated by a firing command that communicates through rock, water and air. This removes constraints often imposed by the requirement of a physical connection to each primer in a blast. The wireless blasting system not only improves safety – by removing people from harm’s way – but improves productivity – by removing the constraints imposed by wired connections.

It is, therefore, considered, a critical pre-cursor to automating the charging process.

To this point, WebGen has fired over 100,000 units in over 3,000 blasts globally across customer sites, Orica says.

At Kiruna, however, the process from testing to technology on-boarding was less than straightforward.

“In the area of the mine where the signal survey was completed in 2018, it was discovered that the signal could not penetrate the magnetite ore at all,” Haslinger said. “This was the first time we had encountered this and was a setback for Orica and LKAB.”

At that time, Orica did not have the localised field equipment or advanced diagnostic tools to diagnose the antenna issue, making it difficult to ascertain the root cause.

“We had to go back to our global WebGen specialists and try to understand why this was happening, which we were successfully able to do,” Haslinger said.

After dedicated work from the global team, Orica went back to Kiruna in September 2020, looking to replicate the signal survey from 2018 and use its advanced diagnostic tools to measure the antenna performance and output.

“We also had the opportunity to test the signal behaviour in the holes, as well as measure the rock properties around the antenna and the in-hole receivers,” Haslinger added.

The survey proved successful, explaining why the signal could not go through the orebody. This allowed the global WebGen team to start developing solutions to overcome the signal problem, which it was able to do in short order.

In December 2020, the Orica team was back at the underground iron ore mine to test the new solution.

“The first trials with the new solution showed positive results and the global team continued to develop that further,” Haslinger said. “In May 2021, we tried the solution in many different conditions and applications to be sure that it would work in the mine. These trials gave us a lot more knowledge about the environment and how the new solution worked.

“In 2022, we were ready to test the system in active mine operations and it has been an extensive amount of work to get us to that point.”

Development of the WebGen wireless underground blasting technology is ongoing at the Kiruna mine

Michal Gryienko, Engineer at LKAB in Kiruna, said the first two production rings were charged using WebGen in the middle of May before blasting occurred in early June. This is one of the benefits of the system, with the wireless primers able to sit dormant in the blasting profile for around 30 days prior to blast initiation.

“The results look good so far,” Gryienko said. “In total, we will blast five production rings, and the final three are planned to be blasted in September.”

Among the benefits Gryienko highlighted were the reduction in risk associated with hole priming and the possibility of detonating more blast holes due to the ability overcome damaged or unstable blasting applications.

Orica’s Roy said the collaboration between the two companies has been “fantastic”.

“Despite the challenges around transmission of signal across the magnetite orebody that is a prerequisite for a successful wireless initiation, both companies have worked as partners for the last four years, finding practical and creative solutions,” he said.

“This hopefully is the start of a long-term sustainable wireless blasting solution that supports LKAB’s safety and productivity objectives and long-term automation goals.”

Orica fills gap in Orebody Intelligence portfolio with Axis Mining buy

Orica has entered into a binding agreement to acquire Axis Mining Technology, a leader in the design, development and manufacture of specialised geospatial tools and instruments for the mining industry, as it looks to create a full-service Orebody Intelligence business that positions the ASX-listed company to become what it says is the industry’s first integrated, end-to-end, mine to mill solutions provider.

The acquisition represents a highly strategic acquisition and a valuable addition to Orica’s Digital Solutions platform, it added, saying Axis’ geospatial technology accelerates its capabilities to support new mineral discoveries required for decarbonisation. Axis’ gold and copper exposure also accelerates Orica’s broader commodity mix objectives.

At last week’s Investor Day presentation, Orica’s Chief Technology Officer, Angus Melbourne, highlighted the geospatial area as a “a gap” in the company’s Orebody Intelligence porfolio.

The binding agreement has seen Orica offer A$260 million ($180 million) in cash to acquire 100% of the share capital in the entities that own Axis, in addition to a deferred earn-out payment up to a maximum A$90 million. These amounts are to be funded through the proceeds of a fully underwritten A$650 million institutional share placement.

As part of the deal, Axis’ existing management team will enter into new employment agreements with Orica as part of the integration process.

Orica Managing Director and CEO, Sanjeev Gandhi, said: “Orica’s purpose is to sustainably mobilise the earth’s resources and achieving this starts with a better understanding of the orebody at the start of the mining value chain. I believe that Axis’ differentiated geospatial tools and instruments, combined with our existing suite of digital solutions, will provide compelling orebody intelligence to customers and support the delivery of the industry’s first end-to-end solutions platform, from mine to mill.

“The integration of Axis’ technology and expertise will accelerate our ability to support our customer’s digital transformation efforts around the world, helping them to operate more efficiently, sustainably and safely.”

Axis is a growing business that designs, manufactures and distributes specialised navigation instrumentation, data and drilling solutions for the mining industry. Axis has a differentiated market position, offering a comprehensive suite of tools and instruments to meet customers’ geospatial requirements, according to Orica. Its products are manufactured and assembled at Axis’ UK and Australian facilities, and distributed to over 30 countries.

Orica’s Chemicals business eyes new complementary opportunities

Orica’s Investor Day, taking place last week, highlighted potential growth areas in one of the company’s less-publicised ‘verticals’, its Chemicals business.

Mining, Quarry & Construction and Digital solutions often steal the headlines in quarterly updates, but Adam Hall, Group Executive & President of Asia & Chemicals, showed there is plenty going on within the company’s fourth vertical.

This business, which covers the fields of ore processing, chemical stabilisation and recovery & treatment, strengthens Orica’s presence across the mining value chain, having a strong alignment with its global footprint and understanding of customer needs, the company says. It also acts as a complementary component of Orica’s “new solutions offerings”.

Orica’s current exposure is to leaching agents and emulsifiers, with cyanide making up its biggest product today.

As one of the largest producers of sodium cyanide for mining, Orica delivers the leaching agent in briquette form in circa-1 tonne boxes that are easily containerised, or within an Orica-designed Sparge isotainer system, or in liquid form via purpose-built iso tanks suitable for safe road or rail transport around the world.

It relies on the Yarwun, Gladstone Cyanide Manufacturing Facility in Queensland for this supply, which has an annual capacity of 95,000 t/y and is compliant with ISO9002 and the International Cyanide Management Code. This facility is complemented by the company’s sodium cyanide transfer stations in Peru, Ghana and Malaysia.

Hall was positive about potential growth opportunities in the cyanide space, explaining demand for cyanide was expected to outpace the predicted growth in gold ore treated to 2026 as the complexities involved with treating orebodies continued to increase.

He said the Yarwun facility had great brownfield growth opportunities around the site, with the company evaluating potential expansions in the region of “high single digit” or “low double digit” percentages.

Hall was equally positive about cyanide retaining its presence in the gold leaching process, saying that, while substitution questions continued to come up, the realities associated with such a transition meant it was infrequently feasible.

“There is one major mine that has switched away from using cyanide into a different reagent,” he said. “That cost them north of $100 million, and our understanding is they would not necessarily do it again. Also, that specific mine has a certain lithography that lent itself to using that reagent.”

Hall said Orica’s emulsifiers – which allow it to differentiate its explosives products through maintaining the stability of the mixture – represented “a small but mighty part” of the company’s product suite. He saw potential growth opportunities for emulsifiers, which he said contained the “secret sauce for emulsification”.

Outside of these two Orica mainstays, Hall highlighted the potential for Orica to play in both flotation and solvent extraction markets as part of growth opportunities that added up to A$23 billion ($16 billion).

In flotation, collectors, frothers and flocculants are integral to optimising the process. The same can be said for solvent extractants in the SX space.

“We see all of these as potentially interesting for Orica,” Hall said. “These are all big fields…but each of them has something we could potentially partner or bring to our clients, and something we will be looking to do over the next five years or so.”

Partnerships could potentially see Orica team up with big chemical players that have a by-product or comparatively small value stream coming out of an integrated facility where Orica could bring its “deep understanding of what the miners need and how we can deliver against that using the products that are produced”, he explained.

This could see Orica act as an agent, an offtaker, or purchaser of the by-product production unit.

As with all other Orica verticals, the Chemicals business will be looking at any potential bolt-on to the emulsifier and cyanide offering as a way to influence more of the value chain, ensuring changes made up- or down-stream provide value throughout the full flowsheet.

Orica’s WebGen wireless initiation system helps unlock reserves at BMTJV Renison tin mine

The Bluestone Mines Tasmania Joint venture (BMTJV) says it has become the first company in the Tasmania mining sector to demonstrate Orica’s fully wireless initiating system, WebGen™.

Since early 2021, BMTJV, the owner of the Renison tin mine, has been in consultation with Orica to implement the WebGen wireless blasting technology.

The first WebGen blast was successfully loaded in the Central Federal Basset (CFB_1458_5990_F4) section of the mine on June 13, 2022, with the first wireless blast in Tasmania successfully fired at BMTJV over the mine’s leaky feeder system on June 19.

Some 107 WebGen primers were loaded into BP4 (Block Panel 4) and “slept” for 14 days while BP3 was charged and fired, the company explained. Due to the geometry of the blast – and it being a high seismicity area – for B4 to be mined conventionally, a further 60 m of development would have been required to recover this ore.

The Orica WebGen system includes an i-kon™ plugin detonator, a Pentex™ W booster and a DRX™, which is a digital receiver comprising a multi-directional antenna and a battery that serves as the in-hole power source.

The Encoder Controller individually programs each wireless primer with its own unique encrypted codes. This encoder contributes to the inherent safety of the system, and programs each wireless primer with two codes, BMTJV explained. The first code is a unique group identity number for exclusive use at each mine and assigned to specified groups of primers which will sleep, wake and fire together. The second code is a ‘delay time’ specific to the wireless primer and blast design.

Mark Recklies, Chief Operating Officer – BMJTV, said: “WebGen has now been used to support continual safety improvements and deliver savings across the working mine.”

Orica’s hardware and software platforms converging for Mining 4.0

Orica’s corporate vision of “mobilising Earth’s resources in a sustainable way” is being further realised through a host of developments from its Digital Solutions and Blasting Technologies divisions, IM reports.

Those involved in charging operations could soon benefit from the launch of Orica and Epiroc’s Avatel™ solution, which, in combination with the WebGen™ wireless initiation platform, offers the ability to remotely blast a development face.

At the same time, the company is busy with the sustainable production of emulsion, the integration of geological orebody information to optimise energy use for blasting, and the expansion of downstream mineral processing tools.

Avatel

Avatel is a combination of state-of-the-art hardware and software solutions designed to mechanise the blasting process.

It includes Orica’s HandiLoader™ emulsion process body, Epiroc’s M2C carrier integrating an RCS 5 control system with Orica’s LOADPlus™ control system, a WebGen 200 wireless initiation system and an automated WebGen magazine. Epiroc has also incorporated onboard dewatering and lifter debris clearing capability, while Orica’s SHOTPlus™ intelligent blast design software is leveraged to deliver superior blasting outcomes, Orica says.

Orica and Epiroc’s advanced technologies integrated into the Avatel system

These components help eliminate the need for personnel exposure at the development face throughout the charging stage of the mining cycle, keeping personnel out of the line of fire, by substituting inherently high hazard manual tasks with a mechanised development charging solution.

A prototype Avatel unit is set to commence operations at Agnico Eagle Mining’s Kittilä gold mine in Finland in the next few months. This follows “alpha trialling” of the complete prototype unit at Epiroc’s Nacka test mine in Stockholm, Sweden.

Adam Mooney, Vice President of Blasting Technology for Orica, said: “Our goal for Kittilä is to expose Avatel to a real mining environment, putting the unit through its paces in an active mine where safety, productivity and reliability are core requirements for success.

“We will gain a practical understanding of how Avatel will fit in with and benefit the entire mining cycle, while also taking the opportunity to measure the blasting improvements possible through the combined use of electronic initiation timing and the precise blast energy control available with Avatel.”

A separate unit, meanwhile, will head to Newcrest Mining’s Cadia copper-gold mine in New South Wales, Australia, later this year, for the first commercial deployment. This is currently undergoing pre-delivery commissioning at Epiroc’s customer centre in Burnie, Tasmania.

Cyclo

Not too far away in Papua New Guinea, Orica has successfully commissioned a Cyclo™ emulsion technology unit, which has been running at a customer site for around two months, according to Mooney. The unit in question has treated in excess of 100,000 litres of used oil, he said.

Cyclo combines the company’s emulsion technology with used oil processing technology to transform mine-site used oil for application in explosives. To provide the tight quality control and regular testing required to manufacture emulsions with such inputs, Orica has partnered with CreatEnergy to develop a standalone, on-site solution to treat used oil.

Orica initially scheduled Cyclo for market introduction in late 2022, but it scaled and sped up development and production plans to support customers’ operations and curtail material disruptions brought about by COVID-19.

The first automated containerised used oil recycling system was commissioned in Ghana late in 2021, with the Papua New Guinea unit being the latest deployment.

Cyclo – containerised, automated used oil recycling service at a customer site in Ghana, Africa

A Senegal Cyclo debut is on track for July given the unit is already in country and connected into the emulsion plant on site, Mooney explained.

The company also plans to bring to market a Cyclo unit suitable for Arctic conditions by the end of this year, with the solution already under construction.

Data to insights to intelligence

Aside from hardware and sustainable emulsion solutions, Orica has recently signed an agreement with Microsoft Azure predicated on creating data-rich and artificial intelligence-infused tools that enable productivity, safety and sustainability benefits on site, with Raj Mathiravedu, Vice President of Digital Solutions, saying such a tie-up enables the company to think of the blasting value chain in a much more holistic manner.

“Orica Digital Solutions’ purpose is to develop and deliver a suite of integrated workflow tools to enable the corporate vision of mobilising Earth’s resources in a sustainable way,” he said. “A key attribute to delivering this workflow is the journey that we need to incorporate from data to insights to intelligence.”

Mathiravedu says the company is looking to go beyond the traditional solutions pairing software and IoT devices for a discrete product to – with the help of Microsoft Azure capabilities – building “answer products” focused on improving workflows.

“These workflows can benefit from understanding how geology within the orebody intelligence space can help us determine the optimised energy required for blasting in a real-time production workflow,” he said. “We have started this journey and are already delivering value to our customers by integrating workflows from orebody to processing.”

One example of this is the company’s FRAGTrack™ suite of solutions, devised to provide blast fragmentation data with auto-analysis capability.

Delivered as part of the company’s BlastIQ Digital Optimisation Platform, FRAGTrack is able to capture real-time fragmentation measurement data for optimising drill and blast operations, improving downstream productivity and tracking of operational performance.

Originally developed for measurements on both face shovels and conveyors, the solution was expanded earlier this year with the launch of FRAGTrack Crusher for automated pre-crusher fragmentation measurements.

FRAGTrack Crusher installation at Stevenson Aggregates

There are several vendors offering fragmentation measurement tools throughout the industry, but Mathiravedu says Orica’s solution can carry out such analysis consistently and accurately – day or night – in extremely dusty and dynamic environments like mining.

“The FRAGTrack image processing technology can handle extremely dusty and lighting-affected conditions beyond any solutions in the industry,” Mathiravedu said. “It is also able to learn and adapt to specific operational environments like the dumping habits of different truck operators using artificial intelligence technology. Together with the integration with fleet management systems, it can provide a fully autonomous and integrated measurement solution.”

On conveyors, the FRAGTrack solution can reliably measure fines with increased accuracy compared with conventional systems that leverage curve-fit algorithms, according to Mathiravedu, with the advanced image and 3D processing techniques providing the ability to measure fragments down to 5 mm in size.

The combination of FRAGTrack Conveyor and Orica’s ORETrack™ solution can provide not only particle size distribution information, but also critical information on ore grade and hardness for the milling operations in real time.

“The FRAGTrack platform architecture has been designed to be scalable to incorporate different sensor inputs along with its high-performance GPU compute capabilities,” Mathiravedu said, explaining that there could be further analysis solutions down the line.

Orica’s 4D bulk explosives tech gains traction in Australia

Having launched its 4D™ bulk explosives technology at MINExpo 2021 in Las Vegas, in September, Orica is now demonstrating the innovation to coal customers on Australia’s East Coast.

The 4D bulk system enables the real-time tailoring of explosives energy to geology across a blast, delivering improvements in fragmentation, on-bench productivity and an overall reduction in drill and blast costs, according to Orica. It is designed to enable customers to, the company says, seamlessly match a greater range of explosives energy across a mine’s geology and target specific blast outcomes in real time.

Back in September, the company said the first release of 4D would begin with Australia from the end of 2021, and it appears Orica has stuck with that schedule.

“We are happy to share that, in Australia, we are currently demonstrating 4D to customers in the East Coast’s coal mines, each with a unique focus to their needs,” the company told IM. “For example, with one customer, we are demonstrating how 4D technology can reduce their overall drill and blast cost through lower explosives consumption, as well as better manage vibration in specific areas of their operation.”

With another customer, Orica is applying the 4D technology to its Fortis™ Clear range of bulk explosive products – formulated for use in applications where the generation of post-blast fume could be experienced – to demonstrate the reduction of fume risk in soft and wet ground, it added.

The technology is also being developed across Orica’s Fortan™ and Aquacharge™ bulk systems but will eventually be applied across Orica’s full suite of bulk systems.

4D is being delivered to these customers through Mobile Manufacturing Units (MMU™) equipped with LOADPlus™, Orica’s proprietary in-cab smart explosives delivery control system that, it says, enables accurate and efficient delivery of formulated explosives products to plan.

By combining emulsion blended with ammonium nitrate porous prills, 4D supports both pumped and augered loading methods across dry, wet and dewatered hole conditions. An outcome of this capability is greater on-bench productivity by Orica’s fleet of 4D-enabled, without the need to change raw materials in the MMU, Orica says.

Delivering up to 23% more relative bulk strength for hard-rock applications and up to 43% reduction in soft-rock applications, 4D will enable a broader range of applications, according to Orica.

Orica said in its half-year results to the end of March 31, 2022 that it was expecting to roll out the 4D technology to more sites in the second half of its financial year.

Orica to further optimise blasting and mine-to-mill initiatives with FRAGTrack Crusher

Orica has announced the release of its latest fragmentation monitoring solution, FRAGTrack™ Crusher, an automated pre-crusher fragmentation measurement tool delivering, it says, operational continuity in a safe and reliable way.

Based on the success of the existing suite of automated post-blast fragmentation monitoring solutions, Orica has developed FRAGTrack Crusher to meet growing demand from customers for downstream monitoring and optimisation solutions at every stage of the mining value chain, the company said. The technology leverages the latest deep neural network artificial intelligence (AI) framework along with “industry-proven” hybrid 2D and 3D particle size distribution (PSD) processing methods to deliver a fully autonomous adaptive fragmentation monitoring solution at the crusher dump pocket, enabling customers to measure material on the truck during the tipping operations, according to the company.

The company said: “FRAGTrack Crusher provides truck-by-truck PSD analysis of rock fragments during the dumping operation with unmatched accuracy and without impacting operations or productivity.”

The technology delivers constant performance tracking for both the drill and blast operations and the downstream processing functions, driving continuous improvements end-to-end in the mining value chain. When bundled with Orica’s FRAGTrack Conveyor technology in a fragmentation monitoring solution, it enables further analysis of the crusher’s performance and the impact of blasting parameters in a production workflow in real time, according to Orica.

Orica Vice President – Digital Solutions, Raj Mathiravedu, said: “The full adoption of AI technology into our architecture, coupled with our strategic partnership with Microsoft, allows us to expedite the delivery of capabilities that were not previously possible, and FRAGTrack Crusher is an example of how we leverage AI to help deliver intelligence and value to our customers.”

PSD data is provided via a real-time application programming interface and industrial open platform communication unified architecture protocol to drill and blast software and crusher distributed control systems, allowing seamless integration into the existing site operation workflows, Orica says.

FRAGTrack Crusher has already been gaining traction globally in the mining and quarry markets, where it is being used as a critical enabler of blasting optimisation and mine-to-mill initiatives, according to the company. “This signals a significant transformation from the subjective nature of existing manual PSD analysis methods while eliminating the safety concerns of on-bench photography and the extensive time required to manually process and correlate to relevant data sets, including fleet management data to determine the material’s blast of origin.”

In the most recent application of FRAGTrack Crusher in a Tier One low-cost gold operation in Western Australia, it successfully delivered an automated blasting optimisation workflow on site leveraging PSD as a primary key performance indicator to throughput and overall mill performance. The project included installation of a FRAGTrack Conveyor system, post crusher, allowing pre- and post-crusher PSD to be monitored. When combined with a fragmentation improvement process, the FRAGTrack solution enabled a continuous feedback loop that enabled the operation to rapidly optimise blast designs that drive overall project profitability, according to Orica.

Orica sticks with growth predictions as it completes Minova sale

Orica has completed the sale of its Minova business to the Aurelius Group for A$180 million ($131 million), with A$149 million of cash received at completion factoring in debt and “debt-like items”, as well as confirmed expectations that its first half performance is likely to representing year-on-year growth.

The company announced the planned sale of its rock reinforcement business back in December 2021, with the deal completed on February 28.

Orica additionally said that its first-half 2022 financial year performance, as previously announced at the 2021 full year results in November 2021, was expected to be stronger than the prior corresponding period (pcp). This, it said, reflects the positive momentum leading into the year associated with improved global commodity markets, which will result in volume growth in line with global GDP growth.

“Pricing discipline in contract negotiations is expected to broadly mitigate rising input costs and pass-through lags,” it explained. “Security of supply for Orica’s customers remains a priority in a tightening global ammonium nitrate market due to geopolitical issues and supply chain disruptions, which will result in increased trade working capital.”

All continuous manufacturing plants have been operating to required available capacity as determined by market demand, Orica said, and two planned turnarounds had been completed in the half year to date, namely the Carseland site-wide turnaround, which commenced in September 2021, was completed in October 2021; and the Yarwun turnarounds for two nitric acid plants, one ammonium nitrate plant and the emulsion manufacturing plant were all successfully completed in November 2021.

Orica Managing Director and CEO, Sanjeev Gandhi, said: “We’ve been able to maintain the positive momentum from the second half last year and remain on track to deliver a stronger first half than the prior corresponding period.

“With our refreshed strategy firmly in place, we are focussed on progressing on our four key business verticals and are well placed to leverage our strengths and seize opportunities in a tightening global market, while continuing to streamline the business.”

Orica, Origin partner on ‘Hunter Valley Hydrogen Hub’ feasibility study for Kooragang Island

Orica and Origin have announced a partnership to assess opportunities to collaborate on the development of a green hydrogen production facility, and associated value chain, in the Hunter Valley of New South Wales, Australia.

Signing a Memorandum of Understanding (MoU), Orica and Origin will conduct a feasibility study into the viability of a green hydrogen production facility, or ‘Hunter Valley Hydrogen Hub’, and downstream value chain opportunities.

The feasibility study will assess ways an industrial hydrogen hub could enable use cases that support a meaningful green hydrogen industry in the Hunter Valley and beyond, Orica said. This includes the supply of hydrogen for heavy industry and transport, conversion into green ammonia at Orica’s existing Kooragang Island ammonium nitrate manufacturing facility, blending hydrogen into natural gas pipelines and the potential to stimulate Australia’s hydrogen export industry.

Green hydrogen, produced via electrolysis using renewable electricity sources, has emerged as a potentially significant enabler of Australia’s transition to a lower carbon economy. The proposed hub would produce green hydrogen from recycled water sources and renewable electricity, using a grid connected 55 MW electrolyser.

Orica Chief Executive Officer, Sanjeev Gandhi, said: “We’ve been operating our Kooragang Island site for over 50 years, and are committed to ensuring both our manufacturing facility and the Newcastle region remain competitive in a low carbon economy, while also strengthening Australia’s domestic manufacturing capability.

“We support both the Federal and New South Wales Hydrogen Strategies, and this partnership will allow us to define opportunities and ways we can contribute to a more sustainable future for the region.

“This partnership aligns with our corporate strategy and our ambition to achieve net zero emissions by 2050, and our target to reduce our scope 1 and 2 operational emissions by at least 40% by 2030. By partnering for progress, we can drive sustainable change and achieve our decarbonisation ambitions, together.”

The project marks an important step in transitioning Orica’s business model towards a lower carbon economy, it said. Exploring opportunities to diversify, Orica is committed to ensuring its Kooragang Island facility remains competitive in a lower carbon economy, while creating more sustainable products for customers and broader applications for industry.

The project builds on several initiatives to enhance the long-term sustainability of the site, including the recently announced Kooragang Island Decarbonisation Project and planned installation of an Australia-first tertiary catalyst abatement technology for decarbonisation of nitric acid production. The A$37 million ($27 million) project is designed to deliver up to 95% abatement efficiency from unabated levels, reducing the site’s total greenhouse gas emissions by almost 50%.

Epiroc, Orica secure Newcrest Cadia trial for commercial Avatel charging system

Newcrest Mining is set to trial Avatel, a fully mechanised development charging system developed by Epiroc and Orica, at the Cadia operation in New South Wales, Australia, later this year, according to Tony Sprague.

Sprague, Group Manager, Directional Studies and Innovation at Newcrest, said this will be the first commercial trial of the Orica and Epiroc co-developed system anywhere in the world.

Orica and Epiroc, back in 2019, announced joint work on a semi-automated explosives delivery system, enabling safer and more productive blasting operations in underground mines. The companies said the partnership would “bring together the deep expertise and experience of two global industry leaders” to address the growing demand from customers mining in increasingly more hazardous and challenging underground operations.

Avatel includes Orica’s HandiLoader™ emulsion process body, Epiroc’s M2C carrier and RCS 5 control system, working with Orica’s LOADPlus™ control system and WebGen™ 200 wireless initiation system and automated WebGen magazine. Epiroc has also incorporated an onboard dewatering and lifter debris clearing system, while Orica’s ShotPlus™ intelligent blast design software is also being leveraged. These components help eliminate the need for traditional tie-ins and other physical wired connections from the charging cycle.

Orica has stated previously: “This first-of-its-kind innovation enables a single operator to prepare and charge explosives from the safety of an enclosed cabin, several metres from the face and out of harm’s way. Combined with Orica’s LOADPlus smart control system and Subtek Control bulk emulsion, customers can enjoy complete and repeatable control over blast energy from design through to execution.”

Trials with a prototype machine have been taking place at Epiroc’s Kvantorp Underground Test Mine in Sweden under controlled underground conditions. IM understands there are also plans for a machine to head to Agnico Eagle’s Kittilä Mine in Finland to complete extended underground trials in the production environment.

Newcrest’s Cadia operation is set to be the first site to trial the complete commercial offering at Cadia, commencing in the second half of 2022, according to Sprague.