Tag Archives: Finland

Robit to supply drilling consumables to Agnico Eagle’s Kittilä gold mine

Robit and Agnico Eagle have signed a long-term cooperation agreement for drilling consumables supply to the Kittilä gold mine, in Finland, with the deliveries to start on May 1, 2021.

The company previously supplied diamond button bits to Kittilä mine for production drilling, thus, the mine and conditions are familiar to Robit, it said.

Tommi Lehtonen, CEO of Robit Group, said: ”We are happy to start this cooperation, which is a result of a long-time work and is an important reference to the company. It is also an investment in the domestic market. We are excited of this collaboration, which, in addition to product supply, offers an opportunity to develop our products together with one of the leading mining companies.”

Jari Kolehmainen, Production Manager at Kittilä mine, Agnico Eagle Finland Oy, added: “We are delighted with this agreement and expect a long-term and close collaboration. Together we have an opportunity to develop drilling consumables, eg diamond button bits and Sense Systems products, to serve customer needs even better.”

Kittilä mine is the largest gold mine in Europe. It extracts annually about 1.6 Mt of ore, yielding about 7,000 kg of gold. At current production volumes, the mine’s known ore reserves are expected to produce gold until 2034.

Nornickel backs responsible sourcing and production practices with blockchain agreement

Norilsk Nickel says it is joining the Responsible Sourcing Blockchain Network (RSBN), an industry collaboration among members across the minerals supply chain using blockchain technology to support responsible sourcing and production practices from mine to market.

The move to join RSBN comes after Nornickel announced a broad strategy to use sophisticated digital technologies to create a customer-centric supply chain, which would include metal-backed tokens on the global Atomyze platform, a tokenisation platform that represents physical assets in digital form. Both the Atomyze and RSBN platforms were developed by leveraging Hyperledger technology, with IBM’s participation, the PGM and base metal miner said.

With Nornickel joining the RSBN, a series of its supply chains will be audited annually against key responsible sourcing requirements by RCS Global. The audits cover each stage of the company’s vertically integrated operations from mines in Russia to refineries in Finland and Russia.

Once audited against responsible sourcing requirements, each supply chain will be brought on to the RSBN and an “immutable audit data” trail will be captured on the platform, proving responsible nickel and cobalt production, its maintenance and its ethical provenance.

“Integration with RSBN is yet another step for Nornickel towards achieving greater business sustainability by creating a permanent record of minerals on the blockchain,” the company said.

At a later development stage, data such as upstream carbon intensity and other ESG attributes will be tracked, it added.

Built on IBM Blockchain technology and powered by the Linux Foundation’s Hyperledger Fabric, the RSBN platform helps improve transparency in the mineral supply chain by providing a highly secure and immutable record that can be shared with specified members of the network, Nornickel says. Additionally, RCS Global Group assesses each participating entity both initially and annually against responsible sourcing requirements set by the Organization for Economic Cooperation and Development and those enshrined by key industry bodies, including the Responsible Minerals Initiative.

Anton Berlin, Nornickel’s Vice President, Sales and Distribution, said: “As one of the largest industry groups globally and the producer of the minerals essential for the transition to a carbon-free world, Nornickel is well aware of its responsibility to make the metals supply chains sustainable and highly transparent. We believe that the digital technologies of RSBN and Atomyze will create the path for Nornickel and its partners to participate in a circular value chain, tracing commodity flows in near real time as well as replacing cumbersome paperwork.”

RCS Global CEO, Dr Nicholas Garrett, added: “The RSBN has proven that responsible sourcing can be traced and documented using blockchain technology. Assuring Nornickel’s supply chains is another milestone engagement for RCS Global and Nornickel’s commitment to the RSBN and demonstrates momentum for blockchain backed responsible sourcing platform in the metals sector.”

Manish Chawla, Global Managing Director, Chemicals, Petroleum & Industrial Products, IBM, said: “Norilsk Nickel is an important addition to the Responsible Sourcing Blockchain Network and we look forward to their contributions to help advance the assurance for responsible sourcing and the group’s sustainability goals that have a direct impact on successful and accountable development for entire industries.”

RSBN is designed to be adopted across industries by original equipment manufacturers in automotive, electronics, aerospace and defence as well as their supply chain partners such as mining companies and battery manufacturers.

Kittilä mine leverages SIMS electrification experience as Boltec E Battery units start-up

Having tested out Epiroc’s battery-electric vehicles over the past two years as part of the SIMS project, Agnico Eagle Finland’s Kittilä gold mine has now started up its own Boltec E Battery bolting units.

The European Union-funded SIMS project and the related field tests of Epiroc’s battery-powered mining machines turned the eyes of the mining world to Kittilä, in northern Finland.

As part of the project, which took place during 2017–2020, Epiroc’s ‘green machines’ – the Boomer E2 Battery, Scooptram ST14 Battery and Minetruck MT42 Battery – were put through their paces.

Andre Van Wageningen, Manager of Technology and Development at the Kittilä mine, said: “The collaboration with Epiroc has been great and Epiroc has taken away all the concerns we had regarding battery-electric equipment. I believe that we also have supplied a very good test site.”

Tommi Kankkunen, General Manager of the Kittilä mine, added that the benefits with battery-electric equipment are obviously the reduction of fossil fuels and the reduction of carbon footprint, but also major advancements made to health and safety for its employees.

After the tests, the mine purchased its first battery-powered rigs, Boltec E rock bolting rigs selected as the first battery-powered units in line with the mine’s investment plan. The important drivers behind the decision were sustainability of the rigs and the opportunity to create a better work environment, according to Epiroc.

The first bolting rig arrived at the Kittilä mine in early November, with another similar bolting unit joining the club a couple of weeks later.

According to Jari Kolehmainen, Production Manager at Kittilä, the first messages were very positive: “The performance of the machines is at least at the same level as that of diesel machines. Productivity has improved with the development of equipment.”

The arrival of this new equipment will also benefit operators’ wellbeing at work as exhaust fumes, heat, vibration and noise have decreased.

“For example, a rock bolting rig is moved several times during a shift, and, in the past, it has always meant starting diesel engines and blowing up an exhaust cloud,” Epiroc said.

Also, in terms of maintenance, the equipment lacks a large component (diesel engine), and, as a result, oil and filter changes are omitted. Also, for fire safety, the use battery-powered machines mark a step forward in the absence of hot surfaces of the diesel engine and moving oils.

Air quality improves piece by piece when diesel-powered equipment is replaced by battery-powered equipment, according to Epiroc.

Kolehmainen said: “Especially on the loading and haulage side, the change in air quality is clear. In the future, we want to reduce our carbon footprint and move towards zero-emission technology, as well as move forward in wellbeing at work.

“The SIMS project showed that battery technology has made great leaps forward.”

In terms of infrastructure requirements, the mine’s electricity network should accommodate the electrification of the equipment. Battery-powered machines also require a battery replacement location.

Epiroc added: “Agnico Eagle Finland’s Kittilä mine wants to profile itself also towards the introduction of other new technologies in addition to battery-powered equipment. A remote control room has been completed for the mining office, from which several machines are controlled simultaneously.

“Since the beginning of October, it has been a permanent turn for two people to operate mining machines remotely. The mine firmly believes that investing in new technologies will bring long-term benefits.”

First Ore Mining and Metso Outotec strike thickening plant deal for Pavlovskoye

The First Ore Mining Company (FOMC), part of ARMZ Uranium Holding Co, says it has signed a cooperation agreement with Metso Outotec “underlining the parties’ interest in continuing their strategic partnership in the design, supply, installation, control and commissioning of the thickening plant for the Pavlovskoye field”.

The agreement waas signed by Igor Semenov (right), Executive Director, FOMC JSC, and Markku Teräsvasara (left), Vice President, Metso Outotec.

The Pavlovskoye polymetallic deposit on the Novaya Zemlya archipelago is the largest such deposit in Russia with 47.7 Mt of ore reserves (2.49 Mt f zinc, 549,000 t of lead and 1,194 t of silver), according to First Ore Mining.

The cooperation with Finland’s Outotec (since merged with Metso to make Metso Outotec) emerged more than a year ago on the sidelines of the St. Petersburg International Economic Forum, which gave rise to an initial pact. Since that time, the company’s experts, together with Aker Arctic Technology, have elaborated a detailed draft design for the floating concentrator and set out a preliminary thickening flow chart and main equipment layout, First Ore Mining said.

In September, representatives from Metso Outotec visited the Pavlovskoye field. In the course of the field activities, the company examined the site for the planned thickening plant, tailings pond and infrastructure facilities, First Ore Mining said. It also acknowledged the ore samples were representative and could be used in testing.

The next stage within the partnership will include tests to be carried out at Metso Outotec Research Center in Pori, Finland. Once the work is completed and the final thickening flow chart is developed, Metso Outotec will present the guaranteed performance indicators and design values to ensure the plant’s productivity and the high quality of the concentrates and metal extraction for the ore types studied, FOMC said.

Semenov said: “I am confident that working together with Metso Outotec will significantly improve the thickening indicators for Pavlovskoye ores, which were obtained during the studies in the previous years. As a result, we will produce premium concentrates that are in demand in the global lead and zinc markets.”

Teräsvasara added: “Indeed, it is quite interesting to participate in the development of this unique project for processing minerals in the Russian Arctic. In addition to standard technological and economic matters, harsh weather conditions, lack of infrastructure, and high requirements to environmental safety in the vulnerable Arctic wildlife have made us search for the best available technologies to cover all these points.”

The Pavlovskoye project includes plans to build the northern-most mining and processing plant to produce lead and zinc concentrates, with First Ore Mining as the project operator.

JordProxa crystallises battery chemical market potential with Albermarle, Terrafame orders

Australia-based JordProxa Pty Ltd has recently delivered crystallisation plants for two major battery metal producers, solidifying, it says, its position in the growing new energy market.

JordProxa designed, fabricated and dispatched several large-scale orders to site, including an evaporator and two crystallisation plants to lithium producer Albemarle, in Western Australia, and nickel sulphate, cobalt sulphate and ammonium sulphate crystallisation plants to Terrafame, in Finland. The modular plants are now being installed in Western Australia and installation is underway on site in Finland with the last modules in transit (pictured above), JordProxa said.

The most recent crystallisation plant deliveries follow, in 2019, the arrival of a JordProxa nickel sulphate crystallisation plant at BHP’s Nickel West operations in Western Australia.

JordProxa Managing Director, John Warner, says the rapid uptake of battery-electric vehicles has led to a surge in demand for battery chemicals and associated technologies.

“Battery chemical producers need a technology provider that can meet and exceed the demands of product purity, with a focus on continued process improvement, to keep up with changing product specifications,” Warner said.

“JordProxa understands the process fundamentals that influence product quality through evaporation and crystallisation. We combine the project delivery skills and global footprint of Jord and Proxa and are perfectly positioned to deliver state of the art plant solutions for ultra-pure battery chemicals at large tonnage scales.”

He added: “We leverage an established network of fabrication alliances and modular design capabilities. This allows us to deliver key assemblies that are tested in the workshop before they are dispatched and installed on site. Our aim is to optimise project delivery time while minimising project risk.”

Jord International CEO, Angus Holden, said he was pleased the group is demonstrating its technical and operational expertise in the new energy market.

“Our track record over 50 years of business demonstrates that we can successfully design and build reliable plants with tangible process benefits,” he said.

“This important crystalliser work from JordProxa delivers on our goal of supporting clean energy technologies and is generating a new long-term, sustainable revenue stream. It has helped our group achieve a record revenue for the 2020 financial year, aided by other new areas of business, including enhanced minerals beneficiation and topside modules for offshore gas fields.”

Sandvik to accelerate rock drill developments with new innovation centre

Sandvik Mining and Rock Technology, in an effort to speed up rock drill innovations, has opened a new Rock Drills Innovation Center in Tampere, Finland.

Announced during day one of its Innovation in Mining event this week, the centre will introduce state-of-the-art production and testing facilities for this core Sandvik technology. It will be home to extensive rock knowledge and drilling technology expertise, creating a hub for innovation, the company says. The centre will also complement Sandvik’s existing leading drilling technology competence centre, consisting of an R&D centre, an underground test mine with laboratories, a modern factory environment and university cooperation.

IM put some questions to Timo Laitinen, Vice President of the Rock Drills business unit, to find out more about the €18 million ($21 million) investment.

IM: How will the new innovation centre help the Rock Drills business unit more rapidly develop new products?

TL: We wanted to bring all key functions needed in the development and production of rock drills under one roof. This makes communication between different functions more effective and enhances cross-functional work when developing new products.

Also, as reliability is the most important characteristic in rock drills – and the key feature of Sandvik rock drills – based on our recent customer survey, we increased our durability testing capacity. Now we can do even more endurance testing in a shorter calendar time.

Thirdly, our factory investments speed up prototype production, minimising waiting times between the iteration rounds. All these speed up time to market.

IM: What new technology, expertise, innovation, etc will you be leveraging to speed up the R&D and product development pipeline?

TL: In addition to what I mentioned above, we utilise a Lean & Agile methodology in our R&D with increased customer involvement, transparency and cross-functional cooperation. As Sandvik’s drilling equipment development, as well as digital technology development, happens for the most part here in Tampere at the same site, we can leverage that work for rock drill development too. Digital technology helps read data from Sandvik drilling equipment and service operations around the world, which we utilise to create even better rock drills. Sandvik’s expertise in machining solutions has helped us to integrate advanced quality assurance solutions in our production system. This generates valuable information for rock drill research and development.

IM: Will the Rock Drills business unit have a designated area of the Tampere Test Mine to test prototypes? Was the division previously using the existing test mine facilities?

TL: We have always had a certain designated area in our test mine for rock drill testing. With this investment program for the Rock Drills Innovation Center, we did build a new area in the test mine for this purpose with increased safety and functionality, more capacity and more space.

IM: In terms of R&D, what areas will the innovation centre focus on? What problems/challenges are your customers continuously talking about that you hope to address with this new facility?

TL: Drilling the holes for explosives comes first in the drill & blast production cycle, followed by the other phases of the cycle. Therefore, it was not a surprise to us when the customer survey result was that ‘reliability’ was the most important feature of a rock drill; followed by productivity and operating cost per metre. In addition to further developing these features in Sandvik rock drills, digital technology is sneaking into our rock drills. Our Rock Pulse technology is a prime example of new technology, which helps our customers drill more, better and at lower cost.

Bunting ups the Electro Overband Magnet stakes for Agnico’s Kittilä gold mine

The largest Electro Overband Magnet ever built at the Bunting manufacturing plant in Redditch, England, is destined for installation at the Agnico Eagle-owned Kittilä gold mine, in northern Finland.

Over a 12-month operating period, the Overband Magnet will lift and separate damaging tramp metal from around 2.7 Mt of conveyed ore, protecting crushers, screens and other up-stream process plant, according to Bunting.

One of the world’s leading designers and manufacturers of magnetic separators for the recycling and waste industries, Bunting has European manufacturing facilities in Redditch, just outside Birmingham, and Berkhamsted, both in the UK.

The Electro Overband Magnet uses high-strength magnetic forces to lift and then automatically discard tramp ferrous metal present in conveyed ore, Bunting says.

“In operation, the large Electro Overband Magnet is suspended in a crossbelt orientation across the non-magnetic head pulley of a conveyor transporting mined ore,” the company explains. “Any tramp ferrous metal entering the deep and strong magnetic field is attracted to the face of the electromagnet and lifted up and onto the surface of a continuously-moving self-cleaning rubber belt.

“Reinforced and heavy-duty rubber wipers on the belt catch the captured metal, transferring it to the side and away from the conveyed ore. As the wipers move the ferrous metal out of the Overband Magnet’s magnetic field, it drops under gravity into a collection area.”

This latest Electro Overband Magnet is part of a major plant expansion and upgrade at Kittilä, Bunting said. This will see ore production go from 1.6 Mt/y to 2 Mt/y, with gold output expected to rise by 50,000 oz/y to 70,000 oz/y when completed.

When initially contacted, Bunting engineers worked closely with the mine operator to design a bespoke Overband Magnet for the difficult application, it said. Design considerations included the width of the conveyor, the volume of conveyed ore, and the size and shape of the tramp ferrous metal. With these details, the Bunting design team calculated the minimum magnetic field and force density for optimum separation using an in-house developed Electro Overband Magnet Selection program.

These criteria provided the basis for the design of the electromagnetic coil by the Bunting-Redditch engineering team.

The final design is a model 205 OCW50 Crossbelt Electro Overband Magnet, with the 17 kW electromagnetic coil, generating the strong magnetic field, cooled using recirculated oil. Efficient cooling of the electromagnet is critical as the magnetic force decreases proportionally to the rising temperature of the coil, Bunting said.

The Overband Magnet is 4.2 m long, 3 m wide and 2.2 m high, and weighs just over 13 t.

The Electro Overband Magnet is designed for positioning in a crossbelt orientation over the non-magnetic head pulley of a 1,600 mm wide conveyor, inclined at 12° and travelling at 0.75 m/s. The conveyed ore has a particle size range of between 70-400 mm, Bunting said, varying in conveyed capacity between 450-765 t/h (equating to 2.7 Mt/y).

“The tramp iron ranges widely in size and nature and includes steel rebar (2,400 x 20 mm diameter), cable bolts (600 x 15 mm diameter), steel mesh, and broken drill bits,” Bunting said. “With a maximum working gap of 600 mm (distance between the magnet face and the bottom of the ore conveyor), the Electro Overband Magnet is designed to lift and separate the tramp metal through a splayed burden of up to 500 mm. This requires a substantially deep and strong magnetic field and related force density.”

Adrian Coleman, General Manager of Bunting’s Redditch facility, said large mining projects, such as this, often require bespoke solutions.

“Over 40 years, we have gained considerable experience in designing and building large Electro Overband Magnets,” he said.

“However, this was the largest we have ever manufactured at Redditch, presenting many challenges, which were overcome. And the design and manufacturing process all took place during the COVID-19 crisis.”

Metso Outotec SMD mills to boost output at Boliden’s Harjavalta concentrator

Boliden Harjavalta has chosen Metso Outotec’s SMD grinding mills to improve the capacity of its slag concentrator, in Finland, the mining OEM says.

Boliden Harjavalta produces high-quality metals for European industrial customers, churning out 120,000 t of copper and 26,000 t of nickel in 2019.

The purpose of the slag concentrator is to recover copper from the slag produced in the copper smelter and to return it to the copper production cycle as high-quality slag concentrate, Metso Outotec said, with grinding being an essential part of the slag concentration process.

The raw materials of the Boliden Harjavalta smelter consist of concentrates and recycled metals, according to Boliden, with the company’s two mines in Finland – Kylylahti and Kevitsa – providing the smelter with concentrates. Concentrates are also purchased from external mines, Boliden says.

The order has been booked in Metso Minerals’ June quarter 2020 orders received.

Based on tests, Metso SMD (stirred media detritor, specialised for fine grinding applications) was chosen as the grinding technology, Metso Outotec said.

“Maintenance for the SMD is safe and cost-effective thanks to the simple mechanical structure of the mill and the smaller number of moving parts compared to traditional grinding mills,” the company explained.

Timo Sarvijärvi, Metso Outotec’s Head of Mining in the Nordics market area, said the company, at testing stage, noticed slag could be processed very efficiently using SMD technology.

“Now the slag concentrator can process larger amounts of material, without compromising the targets set for copper recovery,” Sarvijärvi said.

Sotkamo Silver chases processing efficiencies with Outotec-TOMRA XRT solution

Sotkamo Silver is looking to reduce the amount of material it grinds and floats at its silver operation in Finland through the introduction of X-ray Transmission (XRT) ore sorting technology.

The company said it began pilot testing of the XRT machine in May after the unit was supplied and successfully commissioned at the mine by Outotec and TOMRA. Outotec and TOMRA have been cooperating on the supply of Outotec-branded sorting solutions for the mining and metallurgical industry since 2014.

Sotkamo’s trial pilot testing builds on previous test work at TOMRA’s testing facilities in Germany.

Previous XRT ore sorting test work carried out by TOMRA on 2,200 kg of Sotkamo samples showed the silver content from low-grade ore increasing some 1.9 x to 116 g/t Ag, while the average silver content in ore rose 1.43 x to 195 g/t Ag. In addition to this, about 60% of the rock previously classified as low-grade ore was removed as gangue with the testing, with some 43% of rock reporting as gangue from the average grade ore samples.

Following this work, back in 2018, Sotkamo Silver said it was looking to install an Outotec-TOMRA XRT ore sorter in the process flowsheet after two-stage crushing (jaw and cone crushers) had taken place and the rock was some 30-70 mm in size.

In the update today, Sotkamo Silver said the XRT technology can scan every feed particle to identify the relative atomic density differences within particles and then separate desired high-grade particles from the barren material pneumatically.

It said sorting of marginal ore would be carried out after primary crushing and it was expected to reduce roughly 50% of non-ore material going into the grinding and flotation process.

“This improves significantly the energy efficiency as less material is grinded, and also material efficiency as marginal ore can be exploited and processed to mill feed,” the company said, adding that leftover barren material would be used as rock-fill in the underground mine.

During the first three months of 2020, around 129,000 t of ore was processed at the silver mine, yielding some 391,000 oz of silver, 462 t of lead, 958 t of zinc and 998 oz of gold in the concentrates.

Otso Gold enlists Tetra Tech for new restart plan at Finland gold mine

Otso Gold has appointed Coffey Geotechnics Ltd, a Tetra Tech Company, to complete and publish an updated NI 43-101 feasibility study for the restart of the Otso gold mine, in Finland.

Tetra Tech is running a live model to support and optimise the current drill program at the project that will inform the feasibility study.

“The feasibility study will be particularly focused on the optimised mine plan to underpin the return to production on a long-term sustainable basis,” the company said.

The drill program will also seek to upgrade the resources. Further, pursuant to the requirements of NI 43-101, all areas of the Otso gold mine will be included in the feasibility study, therefore the company will seek to use the opportunity to optimise the process plant further, it said.

“The company notes that its process plant has a 2 Mt nameplate capacity and has previously produced at recoveries above the modelling on which the process plant was designed and built,” Otso said. “It is also noted that the company’s initial decision to proceed to production was made without first establishing mineral reserves supported by a feasibility study.”

Brian Wesson, President and CEO, said: “The appointment of Tetra Tech for the feasibility study is another important milestone in the return to production of the Otso gold mine.

“Management judged that the completion of a feasibility study was necessary notwithstanding the mine having a process plant, infrastructure and licences all in place – to provide further confidence in the company’s restart plan and the economics of a competent sustainable mine plan. The company has been working closely with Tetra Tech to expedite the feasibility study.”

Back in March 2019, Nordic Gold (the previous owners of the mine) terminated its agreement with mining contractor Tallqvist Oy and decided to place the Laiva (now Otso) gold mine on care and maintenance, months after pouring first gold.