Tag Archives: MacLean Engineering

Global underground mining pioneer Don MacLean passes away

MacLean Engineering has announced the passing of founder and Chairman, Donald MacLean, referring to him as a visionary leader that left an indelible mark not only on the company but also on the global mining fraternity.

A professional Mining Engineer, long-time miner and entrepreneur, Don built his namesake company into a global force for hard-rock mining innovation on the back of flagship, industry-changing products. One such product is the MacLean Scissor Bolter, a product that turned 30 in 2021 and has gone on to ship more than 500 units.

In 2014, Don was inducted into the International Mining Hall of Fame. In 2023, he was honoured with the ‘Safety Leadership’ award by the Canadian Mining, Metallurgy and Petroleum association in recognition of his outstanding contributions to the mining community. This includes his continued focus on ore flow conditioning at the drawpoint in the underground mining space.

The MacLean Engineering statement said: “Don led with grace and wisdom, guiding us to new heights. For the past five decades, his vision for safety and innovation has served as the bedrock of our company, and it will undoubtedly continue to do so in the years to come. His legacy will forever resonate within our organisation. Our thoughts are with his family during this difficult time. May Don MacLean rest in peace, and may we continue to uphold the values he instilled in us.”

Don founded MacLean Engineering in 1973 and had been in the mining equipment business since the early 1970s. He was a professional mining engineer who early in his career worked for Inco in Sudbury. Looking back at our citation for Don’s Hall of Fame induction: “Although not a mechanical engineer, Don brought ideas and concepts that could be turned into useful products. He spearheaded drawpoint obstruction clearance machines, known as Blockhole Jumbos, in the late 1970s that, although a very simple concept initially, became dependable and irreplaceable tools for underground bulk mining.”

Don MacLean with one of his machines in development in 1978

The citation continued: “It was his belief in the importance of ore flow conditioning at the drawpoint and his willingness to foster and adapt new technologies that enabled his company to go from being a regional manufacturer to one having an international impact on the underground mining equipment scene.”

Moving to the late 1990s, Rio Tinto, Anglo American and Palabora went in search of a machine that would ensure that drawpoints and drawbells at the conceptual Palabora block cave mine could and would be kept free of obstructions. Drawbells were initially designed at a 16 m height and subsequently increased to 20 m. “The major global manufacturers all passed on the request but MacLean stepped up and developed the High Reach Rig (HRR), a diesel-powered mobile unit that could reach up 20 m, drill multiple 75 mm holes, charge them with re-pump emulsion explosives and arm the holes with a detonator. The operator controlled the machine via radio-remote controls from outside the drawpoint, sitting in a detachable track-mounted unit that docked with the mother rig for transport around the mine.”

These are just two examples of his innovative and problem solving approach. Of course, he also oversaw the globalisation of the company not just in the Americas but also the opening of offices in South Africa, Australia and elsewhere. And he took MacLean firmly into the future of mining, continuing as Chairman as the company became a pioneer in battery electric and zero emissions solutions with its EV Series product line. In 2016, MacLean sold its first battery electric vehicle unit and by the end of 2019, it had sold 31 battery electric vehicle units, across five separate model lines. Often the MacLean units have been the first electric machines onsite, before any production fleet equipment.

Since then it has only been onwards and upwards, including the incorporation of greater automation to enhance operator safety in deeper underground mines – in the company’s 50th year, 2023, MacLean unveiled the 985 Abi-Bolter which included the integration of autonomous robotics into the bolting and screening functions of the MacLean scissor bolter.

Don said at the time: “The world has changed since our founding in 1973, and so has mining. MacLean is right there on the frontlines of that industry evolution, helping to shape and propel it forward.”

A Celebration of Life will be held at the Georgian Bay Hotel, 10 Vacation Drive, Collingwood, Ontario L9Y 5G4 on Thursday, January 18 at 1:30 p.m EST.

Newcrest plans for ZERO Automotive, MacLean ML5 battery-electric trials at Cadia

Having committed to and benefitted from the use of battery-electric haulage at its Brucejack underground mine in Canada, Newcrest Mining is now looking into equipment electrification options at its Cadia underground mine in Australia.

In its recently published annual report, the company confirmed it was planning for electric vehicle trials at the mine in New South Wales. This follows the deployment of a fleet of Sandvik Z50 battery-electric trucks at Brucejack, along with a trial of Sandvik’s LH518B battery-electric loader.

Newcrest, which is currently the subject of a friendly takeover from Newmont Mining, continued to progress its “Net Zero by 2050” goal during its financial year to June 30, 2023, with the scoping and planning of key trials and studies to implement the Group Net Zero Emissions Roadmap continuing.

A company spokesperson confirmed to IM that its plans at Cadia – a block cave operation that is currently being expanded – could see a ZERO Automotive battery-electric light utility vehicle deployed for trials in its current financial year. This comes alongside plans to test out MacLean’s battery electric ML5 Multi-Lift, also in FY2024.

ZERO Automotive has made inroads into the Australian underground mining space, deploying vehicles at multiple OZ Minerals (now BHP) sites, in addition to bringing an ultra-safe ZED70 Ti battery-electric converted utility vehicle, using LTO battery technology, to IGO’s Nova project in Western Australia.

MacLean’s ML5, meanwhile, is the newest addition to the company’s utility vehicle product line, initially designed as a safe and purpose-built alternative to the use of integrated tool carriers in underground operations across Australia. This specific application context – mine services installation and repair work from a certified elevated work platform with a 6.5-m working height and a 4.5-t payload – was the foundation of the ML5’s engineered design for safety, productivity and versatility.

Newcrest’s plans to incorporate more electric equipment into its operating fleet have – most likely – been influenced by the impressive results the company has seen at Brucejack, with the battery-electric trucks expected to improve truck productivity, lower unit costs and abate approximately 65,000 tonnes of CO2 emissions through to 2030.

MacLean ready to highlight growing African presence at Mining Indaba

A MacLean EV Series™ carrier fitted with a third-party emulsion charging plant is part of the company’s expanded presence at this year’s edition of the Mining Indaba in Cape Town, South Africa.

MacLean Africa will be showcasing this latest battery-electric mining vehicle (BEV) offering outside the CTICC in front of the Cullinan Hotel during the event, which runs from February 7-10.

The Sudbury-based company has had an established, in-country presence in South Africa since 2001. This was the company’s first ever international branch and, since that time, the local sales and support team has grown in line with the expansion of the MacLean fleet deployment across the continent. The company now supports MacLean mining vehicles at customer operations across South Africa, as well as in Namibia, Tanzania, the Democratic Republic of the Congo and Mali.

MacLean Africa General Manager, John-Paul Theunissen, said: “Our message to the African mining community at Indaba is simple and I hope, resonant – MacLean is manufacturing and supporting mining equipment that is custom designed for underground mining on this continent, supported by an in-country team of skilled engineers, product managers, field service technicians, and repair and rebuild mechanics. We are here for the long haul; we have the critical mass of talent and parts and manufacturing capacity and we have your full fleet of production support mining vehicles, ready to get to work.”

MacLean President, Kevin MacLean, added: “I’m excited by what MacLean Africa has already done in terms of building out the MacLean fleet footprint across Africa and I’m even more excited by what the future holds for us in this crucial mining region. We can walk with customers as they explore options for the rollout of a battery-electric, automated, and data-rich mobile fleet that will drive the ‘no boots on the ground’ mining of the 21st century. We have it all – the present and the future of underground mining mobile equipment, technology, and services. We are above ground where your fleet is underground in Africa.”

This year is an important one for MacLean as it marks the company’s 50th year of operations. What started out as a niche, custom equipment solutions provider for the Canadian industry in the 1970s has evolved to what it now claims is now the world’s largest Canada-based manufacturer of underground mining vehicles, with a worldwide staffing contingent that surpasses 1,000 employees across four continents.

MacLean opens doors to R&D facility, shows off latest mining innovations

MacLean has opened the doors to its Research & Training Facility in Sudbury, Ontario, for the first time since acquiring the underground R&D lab in 2018.

The company welcomed industry VIPs to tour its facility and get behind-the-scenes access to the range of MacLean product development spanning mobile equipment electrification, automation and digitalisation.

Guests had the chance tour the ‘Ducky Decline’ to get demonstrations of MacLean ground support installation robotics, as well as video remote control for the secondary reduction application in the underground mining cycle. In addition, the open house also provided the chance for visitors to get up close with a battery-electric version of the company’s latest model of shotcrete sprayer – the SS5 with Quickscan thickness imaging (graphic below) and Chemsave accelerant savings technologies – as well as the latest addition to the MacLean Utility Vehicle product line – the GR5 Grader – purpose-designed for the rigours of the underground environment.

“The pandemic didn’t set us back in terms of pushing forward with product development, but it did force us to delay being able to show the mining world just how much of an innovation engine this underground facility truly is for us,” MacLean President, Kevin MacLean, said. “I was thrilled to be there with Don this week to welcome everybody and deliver the message in person: MacLean is committed to investing in paradigm-changing mining vehicle innovation that helps make the industry safer and more productive.”

Stella Holloway, MacLean Vice President of Northern Ontario Operations, added: “Our Research & Training Facility is also an active collaboration space with the broader industry, through our existing training partnership with Cambrian College’s Centre for Smart Mining and the great work we’re doing training the next generation of mine worker. Now that we have the ability to open our doors and show, not just tell industry colleagues what we’re doing as a mining innovators, it feels great – I look forward to this type of in-person dialogue getting reinstated and ramping up in the months and years to come.”

Maarten van Koppen, MacLean Vice President of Product Management, said the company was cognisant that there are hurdles to broader adoption of electrification, automation and digitalisation across the global mining industry, but he stressed that the upside benefits meant the effort was worthwhile.

“That’s why having this facility is so critical to our ability to deliver mobile equipment solutions that not only solve today’s problems, but also create the foundation for the next generations of mine design and operations around the underground mining globe,” he said.

David Jacques, MacLean VP of Engineering, stated: “The company as a whole persevered through the pandemic to get rigs designed, built, shipped and commissioned, which wasn’t always straightforward. It’s why they call it ‘innovation’ – not just continually improving the way things are currently done, but also asking: is there a different way to tackle this problem that will deliver paradigm-changing safety and productivity dividends? This is how we think at MacLean, and the Research & Training Facility allows us to put that philosophy into action.”

Maestro heads for the IoT edge with new future-proofed solutions

Driving out capital expenditure and standardising IIoT infrastructure have been the two key pillars propelling Maestro Digital Mine forward, and, 10 years after its formation, these two drivers are on show with its latest launches at the SME MineXchange Annual Conference & Expo in Salt Lake City.

Over the last decade, the company has become synonymous with improving underground mine ventilation safety as well as reducing blast re-entry times, with an offering that includes air quality stations, automated regulators, and “fail-safe” LED displays. Yet, Maestro’s core is IIoT devices and last mile digital networks for underground mines.

Michael Gribbons, CEO and Co-founder for Maestro, says the company’s production of “IIoT solutions” pre-dates the popular use of this acronym, with its big launch in Salt Lake City set to take Maestro into new “edge-based” territory that will allow it to cope with multiple communication protocols or artificial intelligence-led process miners look to leverage over the next decade.

He explained to IM: “We have re-envisioned and redesigned both our hardware, embedded firmware and external software to allow greater flexibility and capabilities for today and the future; the platform, if you will.”

This current hardware platform has, among other things, underpinned the success of its Vigilante AQS™, which was created to solve applications for mine ventilation monitoring and control.

“Every year, Vigilante customers kept asking for different capabilities, and we have said yes to these requests until we couldn’t.” Gribbons said. “We ran out of hardware space – we just couldn’t do the things the clients were asking anymore, forcing a major platform redesign that is now shipping.”

This constant cycle of improvement has already led Maestro into the realm of dust monitoring and regulator control. It also saw the company devise products and solutions that eradicated the need for expensive PLCs, customer panels and fabrication. Its plug-and-play philosophy, in turn, has reduced the amount of engineering required to install and monitor these solutions.

“For example, legacy analogue actuators are now being driven out of the equation by coupling ModuDrive™ actuators to automate regulators allowing significant capital expenditure reductions and improved diagnostic monitoring by using edge-based embedded IIoT technologies,” Gribbons said. “The mining industry is following other industries by applying modular construction where proven solutions can be selected and applied instead of the typical one-time custom engineering design and build where individual components are collated and customised on an individual basis. The main advantages of applying modular construction is schedule acceleration and capital expenditure reduction.”

Gribbons sees the new platform – a combination of hardware, user interface, on-premise and cloud-based software allowing data to be stored and trended by the customer as they choose – being able to take advantage of “true edge-based technology” to make better and quicker decisions.

The new platform installed on the Vigilante AQS, SuperBrite™ Marquee display, MaestroFlex™ regulator and ModuDrive actuator are on display at the SME conference.

Looking past the fixed automation infrastructure Maestro has made its name on, the company is now embedding its expertise into more mobile solutions that the industry has been taking a liking to, namely drones and unmanned robots.

Also featured on the Maestro stand – and the Exyn Technologies stand – at the event is an aerial drone with a Maestro gas monitoring IIoT device fitted on it.

This new gas monitoring drone, which will integrate critical gas sensors onto the ExynAero™ and ExynPak™ platforms, is, effectively, the “quickest and safest mobile gas monitor on the planet”, Gribbons remarked. “The drone is able to automatically launch and log targeted gases directly on the point cloud in any confined area without deploying mine rescue personal with Scott Air-Paks. Again, we are improving worker safety and accelerated time to obtain accurate data in emergency conditions or for more granular data at the headings for reducing blast re-entry times.”

Powered by ExynAI’s multi-sensor fusion capabilities, gas sensor readings are captured while the robot is in flight and displayed in real-time via a ruggedised tablet, Exyn explained. These sensor readings are saved with precise coordinates in a high-fidelity point cloud that can be exported and examined in a variety of mining software.

These mobile applications will remain a minority interest for Maestro, but it offers the company another way to influence the underground mine safety dynamic and ensure it stays loyal to its “we leave no one stranded” brand promise.

Such collaborations are nothing new for Maestro. Just last year, it teamed up with Howden to integrate its IIoT solutions into the Ventsim CONTROL ventilation optimisation software, while, in 2020, it brought the Plexus PowerNet™ last mile communication network to MacLean Engineering’s Sudbury test mine and Dynamic Earth’s educational mine to enable continuous connectivity underground.

Gribbons said the company has also just worked with Spain-based Zitron on designing large 4 x 4 m MaestroFlex™ regulators on underground booster fans at a major gold mine in Canada.

All these partnerships are part of the company’s recipe for success.

“We’ve progressively eliminated elements of underground mine automation infrastructure to simplify and allow for the future automation of mining,” Gribbons said. “This is working; the clients continue to return, and we stay true to our core purpose of enhancing lives by the pursuit of productivity and safety excellence.”

MacLean releases fit-for-purpose underground mine grader

With the first-ever MacLean GR5 underground road grader already shipped to Africa and additional units scheduled for factory production, the newest addition to the MacLean line of Mine-Mate™ utility vehicles, which offers up a ruggedised, high performance mobile solution for maintaining haulage ramps in optimal condition, is ready to be introduced to the mining world.

The GR5 mining vehicle is an evolution for MacLean, starting back in 2018 when the company collaborated with the specialty engineering firm, MEDATech, to retrofit a battery-electric grader for Borden Gold in northern Ontario (then owned and operated by Goldcorp). Based on the engineering and manufacturing learnings from this one-off custom project, MacLean embarked on a collaborative process to better understand the grader vehicle category, so that it could be successfully adapted from road to underground mining applications.

Working closely with road grader industry professionals from a former Canadian grader OEM with industry expertise, MacLean went back to the drawing board to develop a fit-for-purpose design for the underground environment.

“While most products in this category tend to be considered too lightweight for the work, the GR5 is purposely sized to match the tractive effort and drawbar pull of full-sized surface graders,” MacLean said. “The unit features a CAN bus control system that allows joystick control technology to be deployed for both steering and application functions simultaneously to ease operator comfort and control, while also boasting an onboard vehicle telemetry package that can monitor the performance and health of the vehicle.”

On the powertrain side, the unit can be either battery-electric or diesel-powered and comes equipped standard with a six-wheel infinitely adjustable drive system using dual hydrostatic motors and active traction control, the company said.

Size, manoeuvrability, visibility, simplicity, and ruggedness were key design factors. As a result, the unit is similar in height to the rest of the MacLean Utility Vehicle product line, designed to work optimally in 5 m x 5 m headings. The unit’s design also includes a combination of frame articulation and front wheel-steering, which minimises its turning radius underground and its moldboard system uses a simpler design than its surface grader counterparts to ensure durability and reliability.

Dan Stern, Senior Product Manager, said: “When we designed the GR5 Grader we started from the ground-up, where we literally began with a clean slate and developed the rig using the latest in proven technologies and components. The GR5’s cab environment, for example, was developed using an Oculus Rift VR headset to map out placement of controls, verify visibility and sightlines, and ultimately get a good sense of what this rig would feel like to operate before any steel was cut.”

David Jacques, Vice President of Engineering at MacLean, added: “The product development approach on this unit is a great example of what we like to call MacLean ‘Application Intelligence’, where we take our mobile equipment engineering expertise and combine it with our knowledge of the mining environment to design units that are fit for the job they need to do underground. We truly believe we’ve ‘made the grade’ and developed a winning product that leverages our core knowledge of the underground environment and combines it with application knowledge from grader design experts to address the actual needs of the mining industry – it all comes back to our Application Intelligence.”

Maarten van Koppen, Vice President of Product Management at MacLean, said: “The state of ramps is always an important factor in a mine’s haulage performance, and it becomes even more important in the context of full-fleet electrification that mining companies around the globe are actively pursuing. I know this first-hand from my time as a Mining Engineer at Borden Gold, where I was part of the team responsible for designing and developing that project. To maximise the benefits of down-ramp energy regeneration, mines need well-maintained roadbeds, and we’ve got the solution.”

Cambrian College to set up Battery Electric Vehicle Lab

Sudbury’s renowned Cambrian College is to establish a “Battery Electric Vehicle Lab” after being named a recipient of federal government funding through the Canada Foundation for Innovation (CFI) initiative.

Cambrian’s BEV lab is one of 150 projects across Canada to receive funding, with the C$45 million ($35 million) in funding dished out to 43 institutions.

The C$1 million in funding will “provide a significant jolt to our ongoing efforts to help heavy industry adopt battery-electric vehicles and technologies”, Cambrian said in a Twitter post.

The government, in announcing its funding, said: “By establishing the Battery Electric Vehicle Lab, Cambrian College and its Director, Applied Research & Innovation, Michael Commito, hope to encourage this industry to adopt battery-electric vehicles and equipment.

“Ultimately, this project will allow companies to lower operating costs, improve worker health and safety, and play a part in fighting climate change.”

Last year, fellow Sudbury local, MacLean Engineering, partnered with Cambrian to support skills and technology development for the “electric, automated, and digitalised mine of today and tomorrow”.

MacLean’s van Koppen on affecting industry change

MacLean Engineering has been a fast mover when it comes to leveraging battery-electric equipment, having announced an EV Series platform back in September 2016 and rolled out electrified machinery across its production support offering in the five-and-a-half-years since.

A family-owned company with roots in Canada’s mining technology heartland – Sudbury – MacLean is continuing to innovate with new solutions that leverage not only electrification, but the latest in automation and digitalisation too.

IM spoke to Maarten van Koppen, VP Product Management, ahead of his presentation at The Electric Mine 2022, in Stockholm, Sweden, to find out how these three industry trends are converging in line with the company’s Application Intelligence philosophy.

IM: As a mine engineer with experience integrating both battery-electric and autonomous equipment into mining operations (at the Borden operation, among others), what new perspectives have you brought to MacLean since you joined in 2020?

MvK: It’s a little atypical for a mining engineer from a mining company to join an OEM. Mine engineering graduates do join OEMs, but the typical route is to head there straight from school.

In terms of electrification and automation, the perspective that I brought to MacLean was an acute awareness of what is ‘on the other side of the fence’. Having that knowledge has slightly changed the way we interact with customers.

I made a point of preparing material for consultants and study managers that could be very useful in preparing tradeoff studies and inspiring more discussion. We now have an overview for consultants that lists the budgetary prices – based on an ‘average’ MacLean vehicle – for both electric and diesel equipment in an apples-to-apples comparison. We also have crude cost models that can be customised with different energy prices, labour rates and a couple of other key drivers. That really helps consultants with these early tradeoff studies.

Having been a study manager at Borden, I can appreciate what it takes to make consultants and study managers’ lives easier. We are now getting positive feedback from industry that speaks to that.

The good news for me and MacLean was that there was a solid team with Stuart, Anthony and others already doing this work. They understood what the industry was looking for and our key strengths as an OEM.

Since coming in, I have also taken over the static simulations for our EV Series offering. A lot of customers still have range anxiety and I have been able to help with that by customising these simulations for their own sites factoring in, for example, their ramp grades, lengths, etc. Through those simulations, you can outline different scenarios and explain the opportunity charging philosophy in a way that is specific to their operation.

And, finally, MacLean was already on this track, but I reiterated that our battery rental arrangements were very simple and needed to remain so. It is typically just a fixed rate, single number per month. Other OEMs use other arrangements that are a little more complicated, but my experience is that, in terms of forecasting and budgeting, these systems can become onerous to administer and difficult to model out accurately without encountering a bias around expected machine utilisation rates.

IM: At the same time, what was it that attracted you to a company like MacLean?

MvK: First and foremost, my dad, until he retired, was a heavy-duty mechanic who was promoted up the ladder in the company he worked for. This was primarily in the Port of Rotterdam where he helped maintain the big forklifts that operate there – these can be quite complicated from an operational point of view. In that regard, I have always had an affinity and interest in equipment, something that has carried through to my siblings, all of whom are involved in engineering.

Second, joining a family-owned company with three generations of MacLeans involved is a sign of long-term commitment. That was also very attractive.

On a slightly different note, I felt that joining an OEM would allow me to affect the greatest amount of change across the industry. In my role, I get to talk to customers all over the world with a wide range of projects, enabling me to explain where electric machines might make most sense for them in terms of generating increased shareholder value, improved working conditions for employees, etc. That also had a bearing on my decision to join MacLean.

Then, of course, there was an opportunity to embark on a steep learning curve – learning about powertrains, drive trains and all the mechanical and electric bits and pieces that go into our machines. It has been very rewarding so far.

Maarten van Koppen, MacLean Engineering’s VP Product Management

IM: Have you been surprised by the industry take-up of these new solutions since joining MacLean? What trends have supported this acceleration in demand?

MvK: That’s an interesting question. Taking it back a little further, when I started off at Borden, I expected the industry adoption to be quite rapid – perhaps more so than it has been.

We were on a good track in 2019, but the pandemic caused a brief interruption. I think a lot of operations took that time to re-evaluate certain choices or projects.

We were very busy with consultants on tradeoff studies in the early days of the pandemic – that never really stopped – and we’re starting to see these studies result in fleet orders.

The other thing that went under the radar with the pandemic is, in 2020, all the big mining companies made massive commitments to carbon reductions. Part of that is now starting to trickle through with quotes and interest.

For companies that have aggressive targets for 2030, this is impacting fleet decisions today. If you buy a machine now, it will most likely last for 15 years or more, so you are effectively deciding today about what machines you will be operating in 2037.

IM: MacLean initially announced an equipment electrification plan all the way back in September 2016 at MINExpo, selling your first EV Series machine that year. Since then, you have accrued in excess of 100,000 operating hours on these machines. When evaluating this data, what has surprised you in terms of operating performance, industry acceptance, cost outcomes, etc?

MvK: We have a lot of experience with all our BEV equipment, which is spread out across the offering. We have, through this experience, confirmed operating performance and proven the increased speed of these machines going up-ramp. For instance, with the new batteries we are using on 17% ramps, providing the road conditions are OK, you can drive up that ramp at 15 km/h with an empty battery-electric boom truck. You are looking at 8 km/h with a diesel-powered boom truck, so the speed difference is quite significant.

We have also carried out some very targeted trials, one of which was with a customer in British Columbia, Canada, last summer, where we captured those carbon savings with a bit more detail.

In that trial, we recorded 315 hours on the machine over the course of three months. If you had used a diesel machine over those hours, it would have consumed about 5,000 litres of diesel, generating about 18 t of carbon. With the grid being as clean as it is in BC, the carbon emissions from powering up the machine were about 100 times lower than pure diesel – about 130 kg in total.

Even when we do the back calculation using conventional diesel generation to power up these electric machines, it is still three times cleaner than a machine with a diesel engine.

The one thing we still need to do at our test facility in Sudbury is to confirm what heat savings we can achieve when using BEVs compared with diesel vehicles. We know from other work in the industry that we should see an order of magnitude lower heat emissions, and we are looking at building on our own in-house simulations with real-world test data.

IM: Has this data and feedback influenced your EV Series product line developments over this timeframe? What new products/concepts have come to light on the back of analysing this data?

MvK: Absolutely. Our on-board chargers, for instance, now come from a different supplier that offers better performance, a lower price point and an improved tolerance to less-than-ideal power infrastructure. If you have more robust electronics on these batteries, it is always likely to be better suited to more underground mines.

We have also been able to simplify the drivetrain by removing the transfer case for some of our lighter machines such as the shotcrete sprayer.

As well, we have some exciting changes coming up with the offering of a CCS-2-type off-board charger receptacle. For all-electric mines where off-board chargers are required to power other equipment, such as trucks and loaders, we figured it would make sense for our equipment to be compatible. This means we can charge machines with up to 250 kW of power, provided the off-board charger can push that kind of energy. As for on-board charging, we hit a practical limit to our maximum 100 kW charging capacity. Most mine grids have a limit of about 150 kW on their 400-1,000 V AC mine grids to accommodate jumbos, so we have to stay within that limit. Depending on customer needs, we can configure the charging solution to what makes sense for their project or operation.

MacLean, on the charging front, is also working with the BluVein consortium out of Australia to explore overhead battery charging. While primarily focused on haul trucks, this type of charging solution could be a good fit for our battery-electric grader. Graders typically work on ramps – where this charging infrastructure would be located – and, out of all the machines in our portfolio, a grader is the one machine that should not stop moving in ideal circumstances. The overhead charger matches the application in that regard.

We don’t blanket everything with one solution at MacLean – there is a niche for every solution when it comes to batteries and charging. Yet, knowing and understanding what the application is provides us the opportunity to configure a better product for the customer. That type of Application Intelligence is at our core.

Where this ties back to our battery-electric vehicle experience is in the importance of the ramp quality in these types of operations. In every haulage operation, you know the smoother the ramp, the faster you can tram and the more efficient it is for the overall mine. Yet, the added benefit that comes with battery-electric machines is the regeneration opportunities presented with a smoother ramp. That is why we felt it was necessary to come up with a product like this.

IM: On-board, opportunity charging with a standardised battery capacity has been the order of day for the majority of machines you have deployed in mining to this point. Is this blueprint changing for the next generation EV Series in line with the different applications?

MvK: We’re open to evaluating just about everything, but the one thing we are married to is the idea of the battery staying on our vehicle. This makes sense for the type of equipment we make and the applications we serve. Outside of that, we’re pretty flexible.

On top of the CCS 2-type charger coming out in 2022, we have a chiller for active cooling available to allow BEVs to work at higher ambient temperatures. That is currently on a boom truck in South Africa. As you can imagine, it is easier to test a chiller in a South African summer than a Canadian winter. We think we can operate those machines effectively up to 50°C ambient temperature and possibly more.

The battery supplier change is very big for us and we now have a roadmap to improve performance where we can more easily switch between battery products with that one supplier, taking advantage of future improvements.

It is interesting times as that whole battery-electric vehicle component field is changing so much with the world going greener in general terms. The more components we can pick from that are meant for mobile industrial uses, the better we can configure our machines. The one thing I don’t think people realise is that mining equipment manufacturers are way too small to mandate customised components on a machine. We are at the mercy of what components are available on the market.

Those technology improvements will also hopefully put some downward pressure on costs when all the supply chain interruptions settle down.

IM: Where is the industry’s level of maturity with battery-electric solutions? Have many of the initial barriers to entry (upfront cost, worries over range, etc) been overcome?

MvK: I think there is still a bit of a ‘sticker shock’ when people see the quotation for a BEV, which is common among the OEMs. Yet, people are now looking beyond the initial capital cost, taking into consideration the cost savings that can be realised over the lifetime of the machine.

What I find interesting is how capital markets are now playing a role.

For example, underground coal miners, on top of the regulatory pressures they are facing, are now finding it very difficult to attract capital for their operations. The flipside is true when we think about some junior companies out of Canada that have announced plans to go carbon neutral and fully electric – they have been able to attract capital from investors that would typically steer away from mining. This is especially true when they are looking to mine ‘battery minerals’.

There is still a level of scepticism and hesitancy, but customers that have trialled BEVs generally realise the need to go all-electric. I do expect with the regulatory changes in certain jurisdictions where we do a lot of business, there will be more enquiries. If it becomes a tradeoff between going all-electric or spending a tonne of money on upgrading your ventilation infrastructure to abide by regulations, the battery-electric vehicle value proposition for existing operations will become a lot clearer.

“Knowing and understanding what the application is provides us the opportunity to configure a better product for the customer,” van Koppen says. Pictured is the battery-powered TM3 concrete transmixer

IM: In terms of technology development, MacLean has also been developing automation and digitalisation solutions. How do you see all three – electrification, automation and digitalisation – complementing each other?

MvK: The combination of electrification and digitisation is a good match. A lot of our telemetry developments came from the BEV side where we needed those diagnostics; these are now carrying over to the diesel side. Also, integrating automation and digitisation makes a lot of sense for a lot of the same reasons that you need the data to automate operations.

A lot of the engineering challenges will be around automation and electrification working together, and how you get energy into the machine. Driving, stopping and controlling the machine is not a problem – it is actually probably easier on an electric machine – it is how to get energy into it. The consortium we are in with BluVein is one solution, but I don’t think it is the ‘only’ solution. There are others on the market, but they currently come with a price point that makes them prohibitive.

IM: I know you have partnered with universities and colleges on the robotics side of things in recent years. What’s the latest on these developments?

MvK: A lot of the collaboration, to this point, has focused on boom movements. We are starting to automate boom movements as we think it will have applications in not just oversize management with water cannons, blockholers, or secondary ore reduction drills, but shotcrete and explosives loading too.

We are also partnering on several other things with universities and colleges on tech development. One of the things that comes to mind is the Robobolter we are working on right now. Here we are looking to put a robotic arm on the deck of our tried and proven Omnia bolter platform to take the operator out of the environment.

Customers have been telling us for a while that, due to the travel times, heat or seismic exposure, they would like to see the operator further removed from the face when it comes to bolting operations. At the same time, we wanted to make sure this solution had all the strengths of our proven platform bolter – being able to load up for an entire round, provide multiple types of support without extensive retooling, etc. We’re looking to introduce that product in 2023.

Like many of our new products coming out, these vehicles will primarily be designed around battery-electric operation, with a diesel option. That is a shift in thinking – designing for electric with a diesel consideration, instead of the other way around. The grader is the exception to that as we had to make the first one in diesel form. But, when we look at our new explosives rig coming out next year, that is primarily designed as an electric machine, which we will make available in diesel as well.

IM: Is the Robobolter likely to be your most advanced machine in terms of automation, digitalisation and electrification when it comes out in 2023?

MvK: I think the Robobolter, at launch, will be our most advanced machine, but there is increased internal competition within MacLean to reach new benchmarks across our offering. That competition is good for the business and the industry.

It’s refreshing and encouraging that the MacLean ownership is big on growth in both product lines and the territories which we operate in. We also want to disrupt the sector in the niches we operate in, having full support in terms of innovating and coming up with new products.

On top of that, as it is family-owned company, you can make decisions that best suit our customers. For example, our ownership will not allow us to sell machines we cannot support in the field.  This philosophy has somewhat saved our bacon with the supply chain pressures the industry is experiencing of late, ensuring we have enough spares to supply new machines as well as service those in the field.

Maarten van Koppen will be presenting ‘Electric, automated and digitally-connected: the MacLean machine pipeline’ at The Electric Mine 2022 conference in Stockholm, Sweden, on February 17-18, 2022. For more information on the event, click here.

New Gold to collaborate with MineSense in underground ore sorting move

MineSense is gearing up for a move underground with the help of New Gold and its New Afton gold-copper mine in British Columbia, Canada.

The Vancouver-based technology company has already established and proven its ShovelSense technology for the open-pit mining sector, with its X-ray Fluorescence (XRF) sensor-based system now operating on shovels, wheel loaders and excavators on a commercial basis across six operating mines. This includes large installations at Teck’s Highland Valley and Copper Mountain’s copper operations in BC, as well as one ShovelSense unit at the Antamina copper operation in Peru.

Designed for operation in extreme environments and retrofits on any existing mobile equipment, ShovelSense units come equipped with a human machine interface and proprietary algorithms that measure and report ore grade/characteristics. They can also connect directly to fleet management or other existing control software systems, enabling mine operators to reconcile geological block models with actual ore grade data.

Having finetuned the system for above-ground operations, the company is now embarking on its underground move, according to MineSense President and CEO, Jeff More.

A trial of the underground ShovelSense system at New Gold’s New Afton mine is first up to complete product development. The company will be installing a unit on a Cat R1600G LHD for this step. This will be followed closely by installation at a “large entity” in Chile – with More anticipating start up in the September or December quarter.

The development agreement with New Gold at the BC-based mine is looking to trial and finetune the system for underground operations, with More confident the ShovelSense system will stand up to the test.

“The core technology – all of the algorithms, software, hardware – is the same as ShovelSense for open-pit mining,” More said. “It is the ‘application package’ – looking at how we can attach the unit to the machine and protect it in an underground environment – that is what we have to test out. The design for this is already complete; it’s just a matter of trialling it.”

New Afton represents a good test for the system.

New Afton is Canada’s only operating block cave mine, with the New Afton deposit part of a larger copper-gold porphyry district in the region. The operation regularly mines 15,000-16,000 t/d of ore and waste, with the majority of this currently going to the mill.

The company has already pursued “ore segregation” projects to boost the grade of material being fed through to the processing side, but the move into the higher-grade C-Zone in 2023-2029 will place an even greater emphasis on ore/waste boundaries and milled tonnes at the operation.

At the same time, the ShovelSense deployment at New Afton will represent the first time MineSense has sent a unit into a mine that has so much payable gold, with most operations the company has worked on being primarily base metal-oriented.

In 2020, New Afton produced 64,000 oz of the yellow metal, along with 32,659 t of the red metal.

“This will be the first time we’re touching gold at this level; we have other mines that have payable gold but not at that level,” More explained.

In New Afton’s case, sampling and historical data has proven that the orebody’s copper and gold ratios tend to be consistent and unchanging over the long term. With this knowledge, New Afton has used technology in the past to determine the copper value and make ore/waste production decisions. ShovelSense allows New Afton to move the ore/waste production decision to the drawpoint, according to MineSense. This reduces mixing and blending during the crushing and conveying circuit which can homogenise the material to the point where it is not worth segregating.

Trialling new technology such as this is nothing new for New Afton.

The operation already uses automated loading through Sandvik’s AutoMine solution, is employing electrification with the use of Sandvik and MacLean Engineering battery-powered mobile equipment, and, in the process plant, has Gekko Systems’ highest volume InLine Pressure Jig IPJ3500 to improve gravity concentration.

More says the ShovelSense unit could be in the Cat LHD bucket at New Afton in August, with the machine then going through an above-ground trial ahead of the underground transition at the end of September.

“By early Q4, we should have completed the pilot,” he said.

MacLean reinforces shotcrete ops with new EV sprayer, transmixer

MacLean Engineering has become renowned for its battery-electric equipment in the last four-to-five years, having announced its electrified plans at MINExpo 2016, and steadily upped its offering in line with industry demand.

Yet, it is not the only company in its field backing battery-powered production support developments underground.

Recognising the same trend that led to MacLean initiating its EV Series program in 2015, its competitors have also looked to electrify their own diesel-powered units.

Few of them to this point have clocked up the same amount of operating hours on battery that MacLean can boast; even fewer of them have gone beyond the limits of their diesel-powered predecessors with the adoption of new opex-enhancing technology and safety additions.

The company is now leveraging this experience with the launch of a new shotcrete-transmixer combination that, MacLean says, will make it the only OEM able to offer fully electrified, articulated shotcrete operations purpose-designed for underground mining applications.

Jonathan Lavallee, Product Manager – Shotcrete Equipment, got IM up to speed with developments.

“The SS5 battery-electric shotcrete sprayer is now mechanically complete,” he said ahead of the launch today. “We’ve tested it at our underground test mine and it has exceeded our expectations.”

Filling out an offering of shotcrete sprayers that includes the diesel-powered SS2 and SS3 machines, the battery-powered SS5 shotcrete unit is close to 7 ft (2.13 m) wide and is the first-ever MacLean sprayer to have a forward-facing cab for a better view of shotcreting operations from inside the cab.

In addition to a better view, the shift from mid-ship to forward-facing cab has also aided with placing the batteries and the EV components on the rear side of the machine to ensure rebound dust and particulates from shotcrete operations are not getting inside the EV components, Lavallee said.

Alongside this machine will be the 2.59-m-wide battery-powered TM3 concrete transmixer, which is based on a diesel-equivalent machine already on the market and will serve the SS5’s shotcrete needs.

Like all of MacLean’s EV Series machines, the SS5 sprayer will be able to tram on battery and connect to the power infrastructure within the mine for spraying.

This might not be all, according to Lavallee.

“Depending on the size of your heading, the battery re-generation capability on site and the air quality/quantity, there could be an option to shoot on pure battery,” he said.

Testing at the MacLean Research and Training Facility in Sudbury saw the prototype machine complete two full mixer trucks worth of shotcrete – roughly 12 cu.m – while still having enough battery power remaining to conduct a thorough wash down and washout of the equipment and tram to the nearest point of recharge, according to Lavallee.

While there was no on-board compressor fitted to this prototype – with the machine using mine air at the test facility – Lavallee is confident the commercial unit will provide the option of spraying off battery for parts of a mine where power services have not yet been established.

“Depending on the size of your heading, the battery re-generation capability on site and the air quality/quantity, there could be an option to shoot on pure battery [with the SS5],” Jonathan Lavallee says
There is more to the SS5 than battery-powered operation alone, which Lavallee, a man with shotcrete experience at Oyu Tolgoi, Grasberg, Outotec and GCP Applied Technologies, is keen to talk up.

Fitted with a “first of its kind” automatic accelerator dosing system and the company’s Auto Doser platform, Lavallee says the machine will allow operations to save money on shotcrete consumption, increase the quality of material going onto the walls and, most importantly, create a safer environment for miners.

“My mission has always been to ensure the product is 100% quality and reacts and solidifies as it is supposed to without causing any falls or damage to personnel or equipment,” he said.

Other than the new accelerator, the system will use sophisticated scanning technology for shotcrete thickness monitoring.

“That will, again, enable you to enhance the quality of the material going onto the drifts and headings,” Lavallee said. “It will also eventually help with cost reductions through reducing overshooting.”

These elements, combined, could have a significant impact on the operating cost associated with the SS5, with Lavallee hinting at 30-60% savings from the dosing system, and plus-20% savings in shotcrete consumption with the use of the accelerator and real-time scanning technology.

The Australia market will be the first to test out the new sprayer, with a unit set to be delivered to a customer site in the June quarter. Ahead of this, it is heading to the company’s branch in Elko, Nevada, for additional testing.

This unit will also be equipped with a newer type of battery MacLean is currently putting through its paces, in addition to an in-development compressor.

MacLean, again, appears to have not only electrified its mining equipment niche; but reinforced it with all the technology smarts forward-thinking miners are after.