Tag Archives: Mining3

Mining3’s ‘Top of Coal’ tech heads for commercialisation with CR Digital pact

Mining3’s “Top of Coal” technology is heading for commercialisation after the company signed an agreement with CR Digital for the next phase of the innovation’s development.

The announcement comes on the back of promising new results delivered from the most recent trial in the Bowen Basin of Queensland, where the technology was tested over 12 weeks and collected downhole data from over 250-plus boreholes, the companies said.

“Accurately detecting the approaching top of a coal seam prior to blasting is fundamental to efficient coal recovery,” Mining3 and CR Digital said. “During the extraction stage, a significant percentage (up to 12%) of overall coal loss is attributable to blast damage and coal dilution, which then makes it difficult to separate the coal cleanly from the waste during both overburden excavation and coal processing. By eliminating the damage done to the top of seam, substantial increases in recovery are enabled.”

With support from ACARP, Mining3 has been developing a measurement while drilling (MWD) system that detects the top of a coal seam while routinely drilling blast holes.

During the drilling process, the detection system uses resistance measurements ahead of the drill bit to detect approaching coal in real time. This method of detecting “Top of Coal” brings significant benefits to surface mining operations, Mining3 says, including:

  • Providing a reliable indication of the approach to “Top of Coal” that will enable drilling to be stopped before touching coal or at a minimum standoff distance;
  • Increase production by reducing damage to coal from blasting; and
  • Strata recognition and mapping during routine blasthole drilling.

The system can also be retro fitted to a standard rotary air blast drill rig.

CR Digital, part of the global CR Group, is now working with Mining3 on the commercialisation of the technology, and the integration of the Top of Coal technology into its technology portfolio.

Together, CR Digital and Mining3 see potential for the technology to be an extension to the Thunderbird 1110 and StrataSense products within the CR Digital portfolio.

“Collectively, this agnostic range can be retrofitted to any rotary air blast drill rig and is intended to build on the StrataSense capability of CR Digital, to compile a three-dimensional understanding of the bench and coal seam in real time,” the companies said.

Mining3 recruits ENGIE for next phase of mining hydrogen research

ENGIE, a global energy company, has become Mining3’s newest member, fast tracking, the Australia-based organisation says, the development of solutions to major industry issues, such as mining decarbonisation.

ENGIE joins Mining3 in its next phase of hydrogen research to co-create hydrogen solutions and help reach carbon neutrality for the mining sector in the coming decades, Mining3 said.

Mining3, along with its industry members, are dedicated to developing and delivering transformational technology to improve the productivity, sustainability, and safety of the mining industry. Its members are mining companies, OEMs and research organisations, including CSIRO, Newcrest, Komatsu, Dyno Nobel, The University of Queensland, OZ Minerals, South32, Queensland University of Technology, AngloGold Ashanti, Caterpillar and Vale.

ENGIE is a global energy company aiming to accelerate the transition towards a carbon-neutral and sustainable world, through renewable energy, renewable hydrogen and other environmentally-friendly solutions, reconciling economic performance with a positive impact on people and the planet, Mining3 said.

Mining3 CEO, Paul Lever, said: “Mining3 has already identified a number of projects that align with both ENGIE’s strategy as well as the mining industry’s current and future needs. We believe that these only scrape the surface of what can be done in this space, and are looking forward to developing a diverse and forward-thinking energy roadmap for our members.

“Our priorities at Mining3 are focused on developing next generation mining systems and technologies, and we see sustainability drivers, and particularly renewables, as key components for this strategy in the coming years. We plan to be on the forefront of this research, and I believe we can achieve this with ENGIE as a partner on renewable hydrogen.”

Michele Azalbert, CEO of ENGIE’s Hydrogen Business Unit, said ENGIE was “delighted” to join Mining3 and its members to co-develop renewable hydrogen-based solutions for the mining industry.

“These solutions will help the industry players reach their carbon-neutrality goals, as well as help reduce emissions for countries where mining is a key industry, such as Australia, Brazil, Chile, Peru and South Africa, where we are developing hydrogen projects,” Azalbert said. “Through partnerships and collaboration with other experts at Mining3, ENGIE is looking forward to delivering renewable hydrogen solutions to the entire mining ecosystem.”

Mining3 equips miners with tools for proximity detection decision making

Mining3 has launched an online sensor technology capability tool that provides users with, it says, unbiased information on Proximity Detection System (PDS) sensors to assist in their decision-making process.

The PDS Toolkit is part of the Mining3 ACARP funded project titled, ‘PDS Validation Framework – Phase 3’. The interface provides a high-level summary of the six most prevalent PDS sensors available to the market, according to Mining3.

This information has been extracted from the PDS Sensor Capability Assessment document developed by the PDS Project Team comprised of Mining3, the University of Pretoria and The University of Queensland. The document, in its entirety, will also be published and made available to industry shortly, Mining3 said.

Mining3 Chief Operating Officer, Susan Grandone, said: “The purpose of this toolkit is to provide a fundamental understanding of how various sensors operate, both individually and in combination. This, in turn, will aid in a user’s decision-making process by providing unbiased information and data on each sensor.”

As well as providing individual sensor information, the toolkit contains a spider attribute chart that enables users to toggle between the sensors, identifying strengths and weaknesses for a specific application or attribute. A searchable scoring system with the ability to filter is also available in a table format underneath.

Finally, sensor technology usage in the PDS/Collision Avoidance System industry and references used in compiling the assessment document and developing the toolkit are also provided.

Free access to the PDS Toolkit is available to the industry, however users will need to register as a method of accepting the usage disclaimer, Mining3 said.

Click here to access the toolkit.

Mining3 makes emulsion breakthrough on alternative explosives project

In November, Mining3 says it achieved a significant milestone with the successful detonation of a world first hydrogen peroxide-based emulsion explosive as part of its alternative explosives project.

Using proprietary formulations, a series of trial blasts confirmed its ability to detonate, and provided early steps into the characterisation of this improved product, Mining3 said. “The new formulation is a major achievement in superseding water-gel/hydrogel formulations and a crucial advancement in product stability and sleep-time,” the company said.

Mining3 and the School of Mechanical and Mining Engineering at the University of Queensland are testing alternative explosive formulations, which eliminate the nitrogen component and replace it with hydrogen peroxide as the main oxidising agent. By removing the nitrogen component of the explosive formulation, it eliminates any NOx fumes generated after blasting, the partners said.

Back in January, Mining3 reported that detonation performance tests, conducted in December 2018 using new materials in the formula – physical sensitisation materials based on glass and polystyrene materials – had delivered improved explosive performance, reliability and product stability.

In its latest report, Mining3 reported on its emulsion developments: “Gums and emulsifiers, are the binding agents in water-gel and emulsions, respectively. Importantly, gums have a low-level organic contamination which leads to hydrogen peroxide degradation and limited current water-gel technology for manufacture-and-immediate-detonation applications.

“With synthetically produced emulsifiers, the material can be inert-to-hydrogen peroxide, lengthening the product stability to a significant period and enabling broader applications in the mining industry.”

Considerable effort has been invested in the pursuit of compatible emulsifiers, Mining3 said, and, with recent successes in detonation trials, it has made the past year of research “worthwhile”.

It continued: “Not only do we have a formulation with advanced oxidiser/fuel intimacy but also considerable advances in stability. Manufacture techniques have also maintained the ambient temperature methodology that gives the hydrogen peroxide-based explosives technology a distinct advantage in production cost.”

Over five days at RUREX, Australia’s only professional independent detonation testing range, upwards of 60 detonation tests were fired. Several other formulations were tested that will advance in the technology pipeline, but it is the confirmation of emulsion tests that was the most immediate success, according to Mining3.

This research has been supported by ACARP from its inception and transfer of this technology to the industry is eagerly anticipated, Mining3 added.

Dr Andrew Kettle, Senior Experimental Scientist and Project Executor, said: “These blasts have confirmed that we are pursuing the right pathway forward. We have invigorated enthusiasm going forward to further characterise the new emulsions in preparation for mine site trials in 2020. We are indebted, of course, to the ongoing support of ACARP and RUREX, and the vision of Mining3.”

Mine sites testing out CSIRO, Mining3’s precision mining concept

CSIRO and Mining3’s wide-ranging precision mining concept looks to be gaining momentum with multiple mining companies testing out aspects of this innovative notion to reduce the footprint of future mine sites.

Among the headlines from the organisations’ latest report on this technology was its ore sorting technology, NextOre, has three trials underway at mine sites, with up to three more systems to be delivered this year.

A Chilean copper mine is testing up to 10 types of sensors, complementing other recent trials in Australia and CSIRO desktop studies. Another study found that a mining company could make the same profit as it is now, but with a 30% reduction in capital and operating costs.

In this pursuit, the mining industry can learn a lot from medical science, according to CSIRO Research Director in Precision Mining and Mining3 Research Leader, Ewan Sellers.

As the CSIRO rock mechanics specialist says, modern medicine has used technology to better understand and treat illnesses and injuries while reducing the impact on people. Sellers is now working towards creating low impact “zero entry mines”.

CSIRO explains: “Precision mining is the industry’s version of keyhole surgery. Once a deposit is discovered, precision mining aims to target the ore and extract the deposit as economically and sustainably as possible.”

CSIRO and Mining3’s shared vision is for mines of the future to be mostly underground, remotely operated by robotics, with minimal or remote offices and a very small environmental footprint. All waste would be used to make other products.

Sellers believes this vision could become a reality for most mines within 20 years, as vast mining operations that leave large scars are consigned to history.

Minerals 4D

Key to enabling precision mining is a concept CSIRO is leading called Minerals 4D.

Minerals 4D ‘intelligence’ aims to image minerals in the subsurface and predict their distribution. By integrating sensors and specialised imaging techniques tied with data analysis and machine learning, miners can better understand the orebody and quantify the rock mass at multiple scales.

Precise cutting, blasting and in-mine processing techniques can then accurately target the ore and leave the waste behind. Miners can focus on the most economic part of the deposit, reducing the need to move, crush and process massive amounts of rock, saving significant amounts of energy, water and waste.

CSIRO said: “Although information about the grade of the material and type of rock may currently be known over a block or at mine scale, Minerals 4D aims to add information about the mineralogy at a much smaller scale. This will enable companies to target the orebody and characterise the rock mass more accurately to increase efficiency at the processing plant.”

Rob Hough, the Science Director for CSIRO Mineral Resources, says Minerals 4D is about adding a time series to three-dimensional (3D) data. Essentially, it’s about tracking mineralogy over time.

The mining industry is now capable, through its geophysical sensing technology, to create extremely accurate 3D spatial models of orebodies, but 4D adds in the critical time element – tracking that mineralogy through the metal production line as if it were a barcode in a manufacturing circuit.

The concept involves linking modular mining operations to sensors – including fibre optics and systems attached to robots – to precisely characterise material in the subsurface before mining, through to a mine face, bench, conveyor, stockpile, truck, train or a ship.

Then you can measure the chemistry, mineralogy and rock structures at a range of scales, and provide unprecedented detail and volumes of data that capture ore and waste variability. Measuring the mineralogy is critical to understanding the quality, so where the value is created and lost.

This is like the artificial intelligence algorithms that companies such as Petra Data Science are developing to track ore from the pit to the processing plant.

A focus on value, rather than volume, means less waste and emissions in this context.

“If you have the knowledge of what you’re dealing with in a 3D picture you can then start to make predictions as to how minerals will perform when you go to mine, through to process and beneficiation,” Hough says.

“Operators can choose one set of mining or processing systems over another, knowing the texture and hardness of a material. We need to understand what is in the rock mass in terms of the minerals, but also how hard it is, its strength and how it breaks up to best separate the ore from the waste rock.”

Drone-deployed sensors

It is now possible to produce a detailed face map of a mine, fly a drone with spectral sensors to image surface mineralogy and use data analytics to identify correlations between ore types and rock strength. X-ray diffraction is also being used for analysis. These instruments are applied to samples in the field, drill holes and at bespoke laboratories that run thousands of samples at a low cost in order to build a 3D mineralogy model.

“We have a range of sensors available, but we don’t yet have a fully ‘sensed’ mine,” Hough adds.

“What we’re missing is all sensors in place, in a given operation. We’re also missing the assembling of data to inform decision making throughout the process as it happens – we need that information conveyed in real time and viewed in our remote operations centres.”

Advanced sensor-based ore-sorting

CSIRO partnered with RFC Ambrian and Advisian Digital to launch joint venture, NextOre, to deliver a sensor that intelligently directs a conveyor – sorting valuable ore from waste. CSIRO said NextOre has three trials of the sensor system underway at mine sites, with up to three more systems to be delivered this year.

“On the back of better data, we should be able to take advantage of applied mathematics that will then allow us to move to artificial intelligence and machine learning,” Hough says. “I can see a real-time conveyor belt start making automatic decisions about what is coming down the line. It’s the ultimate sensing and sorting solution.”

Reducing energy and water use

Sellers believes a move to precision mining can improve the conditions for communities living nearby mines, and even improve the social acceptance of mining.

He said several companies are testing out the value cases of sensors and data integration, and he understands they need to see proof that precision mining works on the ground. The economic benefits of sensing were demonstrated recently at a Western Australia iron ore mine, where A$25 million ($17 million) of additional resources were discovered using data provided by a relatively inexpensive hyperspectral sensor, according to CSIRO.

A Chilean copper mine is testing up to 10 types of sensors, complementing other recent trials in Australia and CSIRO desktop studies, it said. Another study found a mining company could make the same profit as it is now, but with a 30% reduction in capital and operating costs.

“Once miners gain confidence that we can actually do this, I think it will take off very quickly,” he says.

Precision mineral exploration and discovery

Beyond the mine itself, tracking minerals over time – in 4D – will also benefit greenfields exploration upstream.

According to CSIRO Digital Expert, Ryan Fraser, implementing the Minerals 4D concept is at its most challenging at the exploration and discovery stage – the point where data are sparse, and little is known about a potential target orebody.

“For example, we know a lot about a deposit such as Mount Isa, including how it forms. So, can we use the intelligence we have of that mineral system to foresee where the next Mount Isa will be?” he asks.

Fraser says if we understand how mineralogy evolves over time and the overall geological process, we can then look for signatures across the Australian landscape that help to identify similar things.

“Normally you drill in these spots, take back samples, check data and then in about two years you might have some idea of what’s under the surface and have some idea of mineral boundaries.”

The new sampling techniques will be far quicker and more efficient, he says.

“Instead of sampling a sparse, evenly spaced grid, we use machine learning to reduce uncertainties and guide where to sample and that will enable us to do much smarter edge detection of mineral boundaries,” Fraser explains.

Already this kind of predictive work has been tested in a project for the South Australian (SA) government at Coompana in SA with surprisingly accurate results and significant cost savings over traditional methods, according to CSIRO.

Other key challenges that researchers and the industry are working to address to make this a reality, include designing and developing sensors robust enough to work effectively in the mining environment (for example, in robotic cutting machines) and across rock types, and understanding which sites in the mine process are most suitable for sensors.

CSIRO concluded: “These sensors will be linked to precise and automated drilling, cutting and blasting technologies under development through Mining3 to transform the way that mining is performed.”

Ava Risk Group, Mining3 launch Aura IQ conveyor monitoring solution

Ava Risk Group and Mining3 say they are ready for the global launch of the Aura IQ conveyor health monitoring solution following surface and sub-surface testing with some of the world’s largest mining houses and bulk material handling facilities.

With conveyors underpinning efficiency, and ultimately profitability in bulk handling operations globally, maintenance has traditionally been a real problem.

“Conventional methods of advanced conveyor failure detection is often unreliable, subjective, time-consuming and labour intensive, but that is all about to change,” Ava and Mining3 said.

Aura IQ uses real-time data to optimise production and on-site performance, enhance occupational health, hygiene and safety management, and introduce new predictive maintenance and support capabilities to asset management, they say.

With test work in the bag, Aura IQ is now available for sale globally.

The companies said: “Aura IQ’s award winning technology harnesses the power of Ava Risk Group’s fibre optic detection and sensing platform (FFT TM Aura Ai-2), combined with Mining3’s advanced signal processing algorithms, predictive analytics, and identification tools to acoustically monitor and assess conveyor health via the cloud-based analysis, reporting and alerts.

“Providing deeper insights to maintenance technicians, site personnel, regional operational hubs and global headquarters, conveyors are automatically connected to the cloud via an Industrial Grade Wireless Internet of Things Gateway, enabling daily asset reliability reports from every conveyor, at every site around the world.”

By transmitting a series of short, laser pulses along a single fibre optic cable retrofitted along the length of a conveyor, acoustic disturbances from the conveyor system cause microscopic changes in the backscattered laser light that is then categorised into known parameters, the two companies explained.

Data is then simultaneously gathered from every metre of the conveyor and processed by Aura IQ to pre-emptively alert operators, either on or off-site (in operational hubs or control rooms), to potential failures before they happen.

Andrew Hames, Head of Innovation, Extractives and Energy at the Ava Risk Group, said: “This is a game changing solution which will optimise conveyor performance and create substantial cost savings for operators.

“A typical conveyor can have up to 7,000 bearings per kilometre, which means 7,000 potential points of failure. Aura IQ can monitor the condition of every conveyor roller – eliminating the need to ‘walk the belt’ and allowing a controlled and scheduled plan of roller maintenance and replacement to be put in place.

“With Aura IQ, costly delays from roller failure are a thing of the past, while less manual involvement reduces health and safety risks. Taking a formalised and proactive approach to asset health monitoring means data can also be used to optimise maintenance strategies – reducing reliance on costly manual inspections and demonstrating ongoing compliance with operational standards.”

Weir highlights Enduron HPGR and Terraflow tailings demand in H1 results

The Minerals and ESCO divisions continued to stand out in Weir Group’s half-year 2019 financial results, with the two mining focused segments now representing around 75% of group revenues.

The Weir Group recorded revenue of £1.3 billion ($1.6 billion) in the first six months of the year, up from £1.07 billion a year earlier prior to the ESCO acquisition. Operating profit, meanwhile, was £172 million, up 25% year-on-year, with the Minerals division posting an operating margin of 17.2% and ESCO recording a margin of 14.1% (up 300 basis points from a year earlier).

In addition to Minerals and ESCO now commanding some 75% of group revenues, the two’s recurring aftermarket sales also now represent about 80% of total revenues.

In the first half of 2019, Minerals orders grew 5% with aftermarket orders up 8%, reaching record levels, according to Weir. “Original equipment orders, which are traditionally lumpier, fell by 2% year-on-year, but returned to growth in Q2 (June quarter) and this is expected to accelerate in the second half,” the company said.

ESCO, meanwhile, recorded a 5% increase in pro-forma revenues to £280 million, with annualised cost savings of $20 million ahead of schedule when it comes to the company’s medium-term target of achieving $30 million synergies.

During the period, original equipment demand within the Minerals segment benefited from miners continuing to expand current operations and investment in new mines, with demand for new technologies that increase efficiency and sustainability while lowering total costs, Weir noted.

This included strong demand for the company’s Enduron® HPGR (high pressure grinding roll) technology that reduces water and energy consumption, the company said, adding that the company had been contracted to support a large greenfield development in the UK in the period.

Weir said it also saw growing interest in its Terraflow® solution to enable tailings waste to be cost-effectively recycled or repurposed. This equipment brings wet tailings down to 90% solids paste to be pumped into a containment area or used for paste backfill.

The company added: “Aftermarket demand was strong, due to production growth and structural trends. These include continued ore grade declines that increase the amount of rock that needs to be processed, intensifying wear and tear and leading to additional demand for spares and services,” the company added.

During the period, Weir also added a new Minerals service facility in Alaska, which, it said, gives the division the ability to rapidly respond to demand for spares and services and is a “key differentiator in need-it-now mining markets, where production intensity is increasing, and the costs of unplanned downtime are significant”.

The company’s technology work continued to focus on incremental innovations and “Mine of the Future developments” aimed at solutions that are smarter, more efficient and sustainable, Weir said. This included focusing research and development on new pump and alloy designs, digitisation, ore hoisting, hybrid separation and tailings management.

Weir ESCO benefited from the same macro mining trends as its Minerals segment including increased ore production and the focus by mining customers on optimising productivity, the company said.

“This supported demand for differentiated technology that is proven to sustainably increase efficiency,” it said.
The first half of the year saw early market share gains for the N70 Nemisys® lip system, which extends the division’s Nemisys technology – featuring a cast or plate lip with shrouds and a three-piece tooth system. This is currently being trialled on smaller machine classes including wheel loaders, Weir said. “The N70 improves customer productivity through increased wear life, lower fuel consumption and reduced maintenance costs.”

The company also launched its GET Detect System during the period, an innovation it worked with Australia’s Mining3 on that provides instant feedback to the machine operator if one of the ground engaging tools used to extract minerals is lost or damaged.

The Electric Mine charges on to Sweden

Following the success of the inaugural Electric Mine event in Toronto, Canada, in April, International Mining Events has wasted no time in confirming the 2020 follow up; this time in Stockholm, Sweden.

Taking place at the Radisson Blu Waterfront Hotel on March 19-20, 2020, The Electric Mine 2020 will be even bigger, featuring new case studies from miners implementing electrification projects and presentations from the key OEMs and service suppliers shaping these solutions.

A leading hub in Europe for mining equipment and innovation, Sweden was the obvious choice for the 2020 edition of the event. Miners including Boliden and LKAB have already made electric moves above and below ground, and the north of the country is set to host Europe’s first home-grown gigafactory, the Northvolt Ett lithium-ion battery cell facility.

Sweden and Finland also play host to Europe’s major mining OEMs such as Epiroc, Sandvik, Metso and Outotec (soon to possibly be Metso Outotec Corp), and the Nordic region has a rich mining innovation legacy.

Capacity crowd

The announcement of the 2020 Electric Mine edition comes hot on the heels of a hugely successful debut in Toronto.

With the Radisson Admiral, on Toronto Harbourfront, filled out to capacity, the circa-150 attendees were treated to more than 20 world-class papers from miners Vale, Goldcorp (now Newmont Goldcorp), Kirkland Lake Gold, Boliden and Nouveau Monde Graphite; OEMs Epiroc, Sandvik, Caterpillar, Volvo CE and BELAZ; and equipment and service specialists Siemens, ABB, GE Transportation (a Wabtec company). Presentations from Doug Morrison (CEMI), Marcus Thomson (Norcat), David Sanguinetti (Global Mining Guidelines Group), Erik Isokangas (Mining3) and Ali Madiseh (University of British Columbia), meanwhile, provided the R&D angle delegates were after.

The event was a truly global affair, attracting delegates and exhibitors from Africa, Australasia, Europe, North America and South America, all eager to hear about developments across the sector.

Bigger and better

International Mining Events is upping the ante for 2020, increasing the event capacity to 200 delegates and making plans for a possible site visit to witness electric equipment in action.

Talks from several miners, as well as global international companies, will again underpin the 1.5-day conference program, which will also expand to cover the use of renewable/alternative energy within the field.

There will, again, be opportunities for sponsorship and exhibiting, with several companies already in discussions about booking the prime opportunities for the event.

If you would like to know more about The Electric Mine 2020, please feel free to contact Editorial Director, Paul Moore ([email protected]) or Editor, Dan Gleeson ([email protected]).

In the meantime, we look forward to seeing you in Stockholm!

Dyno Nobel and Mining3 technology development initiatives align

Incitec Pivot Ltd (IPL) has announced that Dyno Nobel has entered an agreement with Mining3 to collaborate with global mining industry members to “develop and deliver transformational technology to improve the productivity, sustainability, and safety of the mining industry”.

As of March 1, IPL – parent company to Dyno Nobel – signed the membership deed to collaborate with, and leverage from the world-class research Mining3 offers, it said.

Mining3 Chief Executive Officer, Paul Lever, said: “Having this major global explosive supplier joining Mining3 strengthens the breadth of engagement within the mining industry, brings a fresh new perspective and an opportunity to participate in a wider range of innovations.”

Robert Rounsley, IPL’s newly appointed Chief Technology Development Officer, said: “We are actively building out Dyno Nobel’s technology development capability. We can offer our customers an even richer solution set, and we believe collaborating with Mining3 and its members will accelerate this undertaking.”

Dyno Nobel is a world-renowned explosives manufacturer with a strong customer focus, which prides itself in delivering practical innovation on the ground today and in the future for its mining and resources customers.

Dyno Nobel plans to leverage the Mining3 membership through the identification of, and collaboration for, the development of new technologies important to the industry.

Wayne Stange, Dyno Nobel’s Vice President of Mining Technology, said, “There are several Mining3 projects that are aligned with our technology development initiatives. Through our Mining3 membership, we will be able to work with a range of researchers and mining equipment and technology services to accelerate the development of transformational technology”.

One project Mining3 is working on, which will probably interest Dyno Nobel, is the pursuit of a non-toxic post-blast bulk alternative explosive.

Major miners join Mining3 and SMI for Cave Mining 2040

Mining3 and the University of Queensland’s Sustainable Minerals Institute (SMI) have joined forces with Newcrest Mining, Vale, OZ Minerals, BHP and PT Merdeka Copper Gold to develop the Cave Mining 2040 initiative.

Cave Mining 2040 was originally proposed by Professor Gideon Chitombo (SMI) whose clear understanding of caving needs and his strong engagement with the mining industry was key to its successful formation, according to Mining3.

The international consortium will collaborate on projects aimed at developing new and improved cave mining methods that could help meet future demand for minerals, the company added.

Mining3’s CEO Paul Lever said: “Involving researchers, industry and government will accelerate the required innovations and information to transform cave mining, ensuring its longevity through viable and sustainable methods.”

Cave Mining 2040 aims to develop solutions to reduce lead times and capital investment while also improving viability, safety, cost, production, and societal and environmental acceptance, according to Mining 3.

SMI Director, Professor Neville Plint, said the agreement was important because it brings together two Queensland-based, world-class research organisations. “We are working collaboratively with industry to unlock complex orebodies that occur at depth and require advancements in cave mining technologies,” he said.

“We look forward to developing further partnerships to enhance Queensland’s and Australia’s reputation as a leader in research, technology and innovation.”

After initial consultation with established and future mine owners, mining equipment and technology services, original equipment manufacturers, and a range of other organisations a number of cave mining challenges have been identified.

The first phase of Cave Mining 2040, Horizon 1, is now underway comprising eight research areas – total deposit knowledge, cave engineering, cave establishment, mine design for new and emerging technologies, high stresses and major seismicity, macro-block design and sequencing optimisation, sublevel caving and open automation platform.

Cave Mining 2040 is a cornerstone activity within the Transforming Cave Mining initiative – a partnership between Mining3 and the SMI.